Quadrilaterals

Properties of Parallelogram

Opposite sides of a parallelogram are equal

in $\triangle ABC$ and $\triangle CDA$ AC = AC [Common / transversal] $\angle BCA = \angle DAC$ [alternate angles] $\angle BAC = \angle DCA$ [alternate angles] $\triangle ABC \cong \triangle CDA$ [ASA rule] Hence, AB = DC and AD = BC [C.P.C.T.C]

Opposite angles in a parallelogram are equal

In parallelogram *ABCD AB* || *CD*; and *AC* is the transversal Hence, $\angle 1 = \angle 3$(1) (alternate interior angles)

 $BC \parallel DA$; and AC is the transversal Hence, $\angle 2 = \angle 4....(2)$ (alternate interior angles)

Adding (1) and (2) $\angle 1 + \angle 2 = \angle 3 + \angle 4$ $\angle BAD = \angle BCD$ Similarly, $\angle ADC = \angle ABC$

Properties of diagonal of a parallelogram

- Diagonals of a parallelogram bisect each other.

In $\triangle AOB$ and $\triangle COD$, $\angle 3 = \angle 5$ [alternate interior angles] $\angle 1 = \angle 2$ [vertically opposite angles] AB = CD [opp. Sides of parallelogram] $\triangle AOB \cong \triangle COD$ [AAS rule] OB = OD and OA = OC [C.P.C.T] Hence, proved

Conversly,

- If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

- Diagonal of a parallelogram divides it into two congruent triangles.

In $\triangle ABC$ and $\triangle CDA$, AB = CD [Opposite sides of parallelogram] BC = AD [Opposite sides of parallelogram] AC = AC [Common side] $\triangle ABC \cong \triangle CDA$ [by SSS rule] Hence, proved

Diagonals of a rhombus bisect each-other at right angles

Diagonals of a rhombus bisect each - other at right angles

In $\triangle AOD$ and $\triangle COD$, OA = OC [Diagonals of parallelogram bisect each other] OD = OD [Common side] AD = CD [Adjacent sides of a rhombus] $\triangle AOD \cong \triangle COD$ [SSS rule] $\angle AOD = \angle DOC$ [C.P.C.T] $\angle AOD + \angle DOC = 180$ [\therefore AOC is a straight line] Hence, $\angle AOD = \angle DOC = 90$ Hence proved

Diagonals of a rectangle bisect each-other and are equal

In $\triangle ABC$ and $\triangle BAD$, AB = BA [Common side] BC = AD [Opposite sides of a rectangle] $\angle ABC = \angle BAD$ [Each = 90⁰ \therefore ABCD is a Rectangle] $\triangle ABC \cong \triangle BAD$ [SAS rule] $\therefore AC = BD$ [C.P.C.T]

Consider $\triangle OAD$ and $\triangle OCB$, AD = CB [Opposite sides of a rectangle] $\angle OAD = \angle OCB$ [\because AD||BC and transversal AC intersects them] $\angle ODA = \angle OBC$ [\because AD||BC and transversal BD intersects them] $\triangle OAD \cong \triangle OCB$ [ASA rule] $\therefore OA = OC$ [C.P.C.T] Similarly we can prove OB = OD Diagonals of a square bisect each-other at right angles and are equal

Square ABCD

In $\triangle ABC$ and $\triangle BAD$, AB = BA [Common side] BC = AD [Opposite sides of a Square] $\angle ABC = \angle BAD$ [Each = 90⁰ \therefore ABCD is a Square] $\triangle ABC \cong \triangle BAD$ [SAS rule] $\therefore AC = BD$ [C.P.C.T]

Consider $\triangle OAD$ and $\triangle OCB$, AD = CB [Opposite sides of a Square] $\angle OAD = \angle OCB$ [\because AD||BC and transversal AC intersects them] $\angle ODA = \angle OBC$ [\because AD||BC and transversal BD intersects them] $\triangle OAD \cong \triangle OCB$ [ASA rule] $\therefore OA = OC$ [C.P.C.T] Similarly we can prove OB = OD

In $\triangle OBA$ and $\triangle ODA$, OB = OD [proved above] BA = DA [Sides of a Square] OA = OA [Common side] $\triangle OBA \cong \triangle ODA$, [SSS rule] $\therefore \angle AOB = \angle AOD$ [C.P.C.T] But, $\angle AOB + \angle AOD = 180^{\circ}$ [Linear pair] $\therefore \angle AOB = \angle AOD = 90^{\circ}$

Important results related to parallelograms

Parallelogram ABCD

Opposite sides of a parallelogram are parallel and equal. AB||CD, AD||BC, AB = CD, AD = BC

Opposite **angles** of a parallelogram are **equal** adjacent angels are **supplementary**. $\angle A = \angle C, \angle B = \angle D,$ $\angle A + \angle B = 180^{\circ}, \angle B + \angle C = 180^{\circ}, \angle C + \angle D = 180^{\circ}, \angle D + \angle A = 180^{\circ}$

A **diagonal** of parallelogram divides it into **two congruent triangles**. $\Delta ABC \cong \Delta CDA$ [With respect to AC as diagonal] $\Delta ADB \cong \Delta CBD$ [With respect to BD as diagonal]

The diagonals of a parallelogram **bisect** each other. AE = CE, BE = DE

 $\angle 1 = \angle 5$ (alternate interior angles) $\angle 2 = \angle 6$ (alternate interior angles) $\angle 3 = \angle 7$ (alternate interior angles) $\angle 4 = \angle 8$ (alternate interior angles) $\angle 9 = \angle 11$ (vertically opp. angles) $\angle 10 = \angle 12$ (vertically opp. angles)

The Mid-Point Theorem

The mid-point theorem

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of the third side

In $\triangle ABC$, E - midpoint of AB; F - midpoint of AC **Construction**: Produce EF to D such that EF = DF. In $\triangle AEF$ and $\triangle CDF$, AF = CF [F is midpoint of AC] $\angle AFE = \angle CFD \ [V.O.A]$ $EF = DF \ [Construction]$ $\therefore \Delta AEF \cong \Delta CDF \ [SAS rule]$ Hence, $\angle EAF = \angle DCF....(1)$ $DC = EA = EB \ [E \text{ is the midpoint of AB}]$ $DC \parallel EA \parallel AB \ [Since, (1), alternate interior angles]$ $DC \parallel EB$ So EBCD is a parallelogram Therefore, BC = ED and $BC \parallel ED$ Since, $ED = EF + FD = 2EF = BC \ [\because EF=FD]$ We have, $EF = \frac{1}{2}BC$ and $EF \parallel BC$ Hence proved

Introduction to Quadrilaterals

Quadrilaterals

Any four points in a plane, of which three are non collinear are joined in order results in to a four sided closed figure called **'quadrilateral'**

Angle sum property of a quadrilateral

Angle sum property - Sum of angles in a quadrilateral is 360

In riangle ADC

 $\angle 1 + \angle 2 + \angle 4 = 180$ (Angle sum property of triangle).....(1)

In $\triangle ABC$, $\angle 3 + \angle 5 + \angle 6 = 180$ (Angle sum property of triangle).....(2)

(1) + (2): $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360$ I.e, $\angle A + \angle B + \angle C + \angle D = 360$ Hence proved

Types of Quadrilaterals

Trapezium

A **trapezium** is a quadrilateral with any **one pair of opposite sides parallel**.

Trapezium

PQRS is trapezium in which PQ||RS

Parallelogram

A **parallelogram** is a quadrilateral, with both pair of **opposite sides parallel and equal**. In parallelogram, diagonals bisect each other.

Parallelogram ABCD

Parallelogarm ABCD in which AB||CD, BC||AD and AB = CD, BC = AD

Rhombus

A **rhombus** is a parallelogram with **all sides equal.** In rhombus, diagonals bisect each other perpendicularly

Rhombus ABCD

A rhombus *ABCD* in which AB = BC = CD = AD and $AC \perp BD$

Rectangle

A rectangle is a parallelogram with all angles as right angles.

A rectangle *ABCD* in which, $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$

Square

A square is a special case of parallelogram with all angles as right angles and all sides equal.

A square *ABCD* in which $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$ and AB = BC = CD = AD

Kite

A kite is a quadrilateral with adjacent sides equal.

A kite ABCD in which AB = BC and AD = CD

Venn diagram for different types of quadrilaterals

