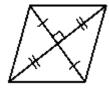


EXERCISE

PAGE: 110

In questions 1 to 52, there are four options, out of which one is correct. Write the correct answer. 1. If three angles of a quadrilateral are each equal to 75°, the fourth angle is					
(a) 150°	(b) 135°	(c) 45°	(d) 75°		
Solution:-					
(b) 135°					
We know that,	sum of interior an	ngles of quadrilatera	al is equal to 360°.		
From the quest	ion it is given that	, three angles of a c	quadrilateral are each equal to 75°.		
	he fourth angle b	e x.			
	+ 75° + x = 360°				
225 + x =					
x = 360° -	- 225				
x = 135°					
2. For which of	the following, dia	agonals bisect each	other?		
(a) Square	(b) Kite	(c) Trapezium	(d) Quadrilateral		
Solution:-					
(a) Square					
	Xb				
2 Ear which of	the following fig	ures, all angles are o			
(a) Rectangle Solution:-	(b) Kite	(c) Trapezium	(d) Rhombus		
(a) Rectangle					
So, in rectangle	all angles are equ	ual to 90°.			

4. For which of the following figures, diagonals are perpendicular to each other?(a) Parallelogram(b) Kite

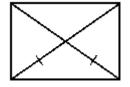


(c) Trapezium Solution:-

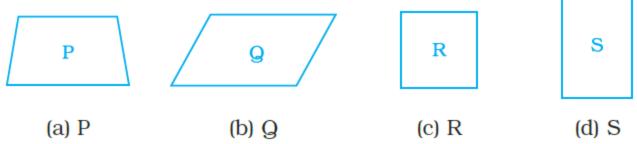
(d) Rectangle

(b) Kite

In kite, diagonals are perpendicular to each other is as shown in the figure below.



- 5. For which of the following figures, diagonals are equal?
- (a) Trapezium
- (c) Parallelogram

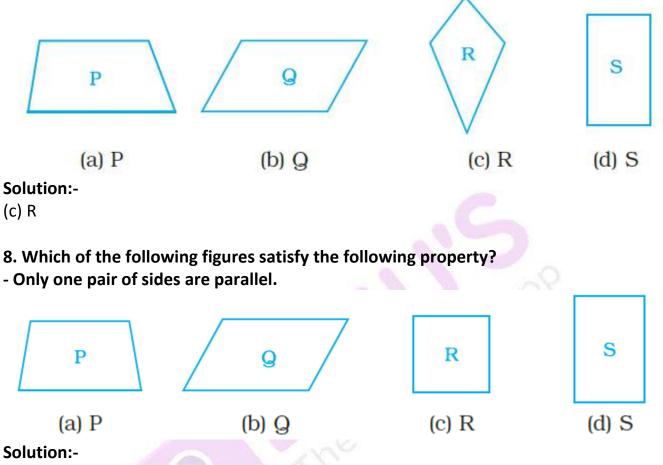

(b) Rhombus (d) Rectangle

Solution:-(d) Rectangle

For rectangle, diagonals are equal is as shown in the figure below.

- 6. Which of the following figures satisfy the following properties?
- All sides are congruent.
- All angles are right angles.
- Opposite sides are parallel.

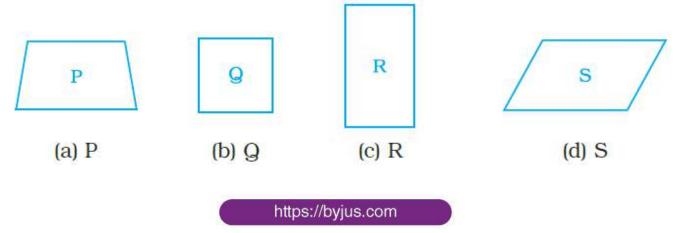
Solution:-

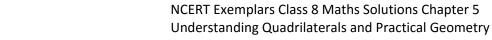

(c) R

So, square has all sides are congruent, all angles are right angles and opposite sides are parallel.

7. Which of the following figures satisfy the following property?

- Has two pairs of congruent adjacent sides.




(a) P

By observing the above figure we can able say that trapezium has only one pair of sides are parallel.

9. Which of the following figures do not satisfy any of the following properties?

- All sides are equal.
- All angles are right angles.
- Opposite sides are parallel.

Solution:-

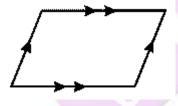
(a) P

By observing the above figure we can able say that trapezium do not satisfy any of the properties mentioned in the question.

10. Which of the following properties describe a trapezium?

- (a) A pair of opposite sides is parallel.
- (b) The diagonals bisect each other.
- (c) The diagonals are perpendicular to each other.
- (d) The diagonals are equal.

Solution:-


(a) A pair of opposite sides is parallel.

11. Which of the following is a property of a parallelogram?

- (a) Opposite sides are parallel.
- (b) The diagonals bisect each other at right angles.
- (c) The diagonals are perpendicular to each other.
- (d) All angles are equal.

Solution:-

(a) Opposite sides are parallel.

12. 12. What is the maximum number of obtuse angles that a quadrilateral can have? (a) 1 (b) 2 (c) 3 (d) 4

Solution:-

(c) 3

As we know that, obtuse angle is an angle between 90° to 180°.

The sum of the interior angles of a quadrilateral is equal to 3600. So all the angles can't be obtuse since then the sum will more than 3600. Therefore a maximum of 3 obtuse angles that a quadrilateral have.

13. How many non-overlapping triangles can we make in a n-gon (polygon having n sides), by joining the vertices?

(a) n −1 Solution:- (b) n − 2	(b) n –2	(c) n –3	(d) n –4
(a) 180° Solution:- (c) 540° We know that, the	m of all the angles (b) 360° e sum of all the ang	(c) 540° les of a polygon is ((d) 720° n - 2) × 180°.
	umber of sides in th as 5 sides, i.e. n = 5	ne polygon,	
(a) 180° Solution:- (d) 720° We know that, the	m of all angles of a (b) 360° e sum of all the ang umber of sides in th s 6 sides, i.e. n = 6	(c) 540° les of a polygon is ((d) 720° n - 2) × 180°.
ratio of these ang		elogram are (5x – 5 (c) 1 : 4	5)° and (10x + 35)°, then the (d) 1 : 2
-	l whose all sides an ach other at right a (b) parallelogram	angles is a	angles are equal and the (d) rectangle

Solution:-

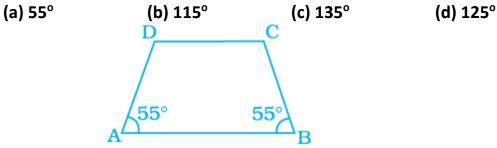
(a) rhombus

A quadrilateral whose all sides are equal, opposite angles are equal and the diagonals bisect each other at right angles is a <u>rhombus</u>.

18. A quadrilatera(a) rectangleSolution:-(a) rectangle	l whose opposite s (b) parallelogram			al is a Iombus
19. A quadrilatera	l whose all sides, o	diagonals and ang	les are equal i	s a
(a) square Solution:- (a) Square	(b) trapezium	(c) rectang	gle	(d) rhombus
20. How many dia	gonals does a hex	agon have?		
(a) 9	(b) 8	(c) 2	(d) 6	
Solution:-				
(a) 9				
We know that,		c · · · · /		
The number of dia	gonais in a polygoi	h of h sides is h(h -	· 3)/2	
Where n = 6				
Then,				
$= 6 \times (6 - 3)/$	2			
$= 6 \times 3/2$				
= 18/2 = 9				
- 5				

21. If the adjacent sides of a parallelogram are equal then parallelogram is a(a) rectangle(b) trapezium(c) rhombus(d) squareSolution:-

(c) rhombus


22. If the diagonals of a quadrilateral are equal and bisect each other, then the

quadrilateral is a (a) rhombus Solution:-	(b) rectang	le	(c) square	(d) parallelogram
23. The sum of all (a) 180° Solution:-	exterior angles of (b) 360°	a triangle is (c) 540°	(d) 720 [°]	5
(b) 360°				
The sum of all exte	erior angles of a tri	angle is 360°		
24. Which of the f	ollowing is an equ	iangular and	equilateral pol	ygon?
(a) Square Solution:-	(b) Rectangle	(c) RI	nombus	(d) Right triangle
(a) Square				
Square is an equia	ngular and equilat	eral polygon.		
 25. Which one has (a) Trapezium Solution:- (b) Rhombus Rhombus has all the 	(b) Rhombus	(c) Rectang	le (d) Para	allelogram
26. The angles of a	a quadrilateral are	in the ratio		smallest angle is
(a) 72°	(b) 144°	(c) 36°	(d) 18°	
Solution:-				
(c) 36°	C 11			
We know that, sur			aterals is equal	to 360°.
Let us assume the Then,	angles be x, 2x, 3x	and 4x		
x + 2x + 3x +	4x = 360°			
10x = 360°				
x = 360/10				
x = 36				
Therefore the angl	les are x = 36°			
	$2x = 2 \times 36$			
	$3x = 3 \times 36$			
	$4x = 4 \times 36$	= 144°		

27. In the trapezium ABCD, the measure of $\angle D$ is

Solution:-

(d) 125°

By observing the given figure $\angle D$ and $\angle A$ are supplementary. We know that, sum of supplementary angle is equal to 180° . Then, $\angle D + \angle A = 180^{\circ}$

> $\angle D + 55^{\circ} = 180^{\circ}$ $\angle D = 180^{\circ} - 55^{\circ}$ $\angle D = 125^{\circ}$

28. A quadrilateral has three acute angles. If each measures 80°, then the measure of the fourth angle is

(d) 140°

(c) 105°

(a) 150°

Solution:-

(b) 120°

We know that, sum of all interior angle of quadrilaterals is equal to 360°. Let us assume the fourth angle be x

Then,

```
80^{\circ} + 80^{\circ} + 80^{\circ} + x = 360^{\circ}
240° + x = 360°
x = 360° - 240°
x = 120°
```

(b) 120°

29. The number of sides of a regular polygon where each exterior angle has a measure of 45° is

(a) 8 (b) 10 (c) 4 (d) 6

Solution:-

(a) 8

Now let us assume number of sides of a regular polygon be n.

WKT, sum of all exterior angles of all polygons is equal to 360°.

Form the question it is given that each exterior angle has a measure of 45°. Then,

```
n × 45° = 360°
n = 360°/45°
n = 8
```

30. In a parallelogram PQRS, if $\angle P = 60^\circ$, then other three angles are

(a) 45°, 135°, 120°	
(c) 60°, 135°, 135°	

(b) 60°, 120°, 120° (d) 45°, 135°, 135°

Solution:-

(b) 60°, 120°, 120°

In parallelogram $\angle P$ and $\angle Q$ are supplementary.

We know that, sum of supplementary angle is equal to 180°.

Then, $\angle P + \angle Q = 180^{\circ}$

 $\angle 60^{\circ} + \angle Q = 180^{\circ}$ $\angle P = 180^{\circ} - 60^{\circ}$ $\angle P = 120^{\circ}$

And also, opposite angles $\angle P$ and $\angle R$ are equal in parallelogram.

So, $\angle P = \angle R = 60^{\circ}$

∠Q = ∠S = 120°

Therefore, the other three angles of parallelograms are 60°, 120° and 120°.

31. If two adjacent angles of a parallelogram are in the ratio 2 : 3, then the measure of angles are

(a) 72°, 108° (b) 36°, 54° (c) 80°, 120° (d) 96°, 144° Solution:-

(a) 72°, 108°

We know that, sum of adjacent angles of a parallelogram = 180° Let us assume two angles be 2x and 3x

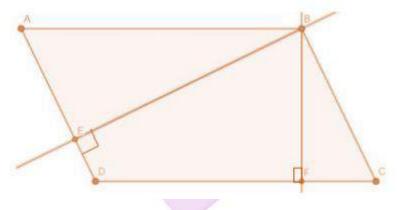
Then,

 $2x + 3x = 180^{\circ}$ $5x = 180^{\circ}$ $x = 180^{\circ}/5$ $x = 36^{\circ}$ Therefore the two angles are $2x = 2 \times 36 = 72^{\circ}$

 $3x = 3 \times 36 = 108^{\circ}$

32. If PQRS is a parallelogram, then $\angle P - \angle R$ is equal to

(a) 60° (b) 90° (c) 80° (d) 0° Solution:-
(d) 0° (d) 0° We know that opposite angles $\angle P$ and $\angle R$ are equal in parallelogram.
So, $\angle P - \angle R = 0^{\circ}$ 33. The sum of adjacent angles of a parallelogram is
(a) 180° (b) 120° (c) 360° (d) 90°


Solution:-

(a) 180°

34. The angle between the two altitudes of a parallelogram through the same vertex of an obtuse angle of the parallelogram is 30°. The measure of the obtuse angle is (a) 100° (b) 150° (c) 105° (d) 120°

Solution:-

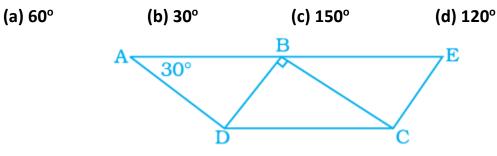
(b) 150°

ABCD is a parallelogram.

From the question it is given that, $\angle EBF = 30^{\circ}$

WKT, sum of interior angles of a quadrilateral = 360°

Then,

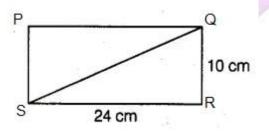

 $\angle EBF + \angle BED + \angle EDF + \angle DFB = 360^{\circ}$

 $\angle EDF = 360^{\circ} - (90^{\circ} + 90^{\circ} + 30^{\circ})$

 \angle EDF = 150° which is an obtuse angle.

35. In the given figure, ABCD and BDCE are parallelograms with common base DC. If BC \perp BD, then \angle BEC =

Solution:-

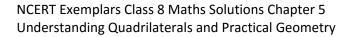

(a) 60° From the given figure, $\angle BAD = 30^{\circ}$ $\angle BCD = 30^{\circ}$... [: opposite angles of parallelogram are equal] Now, let us consider the triangle CBD From angle sum property, $\angle DBC + \angle BCD + \angle CDB = 180^{\circ}$ $90^{\circ} + 30^{\circ} + \angle CDB = 180^{\circ}$ $120^{\circ} + \angle CDB = 180^{\circ}$ $\angle CDB = 180^{\circ} - 120^{\circ}$ $\angle CDB = 60^{\circ}$

 $\therefore \angle BEC = 60^\circ$, because opposite angles of parallelogram are equal.

36. Length of one of the diagonals of a rectangle whose sides are 10 cm and 24 cm is(a) 25 cm(b) 20 cm(c) 26 cm(d) 3.5 cm

Solution:-

(c) 26 cm



PQRS is a rectangle,

Where SR = 24 cm, QR = 10 cm Now, consider the triangle QRS

From the rule of Pythagoras theorem,

 $QS^{2} = SR^{2} + QR^{2}$ $QS^{2} = 24^{2} + 10^{2}$ $QS^{2} = 576 + 100$

 $QS^2 = 676$ $QS = \sqrt{676}$ QS = 26 cm

37. If the adjacent angles of a parallelogram are equal, then the parallelogram is a(a) rectangle(b) trapezium(c) rhombus (d) any of the threeSolution:-

(a) rectangle

38. Which of the following can be four interior angles of a quadrilateral?
(a) 140°, 40°, 20°, 160°
(b) 270°, 150°, 30°, 20°
(c) 40°, 70°, 90°, 60°
(d) 110°, 40°, 30°, 180°
Solution:(a) 140°, 40°, 20°, 160°
We know that sum of interior angles of quadrilaterals is 360°.
So, 140° + 40° + 20° + 160° = 360°

In option (d) has angle sum equal to 360°, but one angle is 180° if it is considered then the quadrilateral becomes a triangle.

39. The sum of angles of a concave quadrilateral is

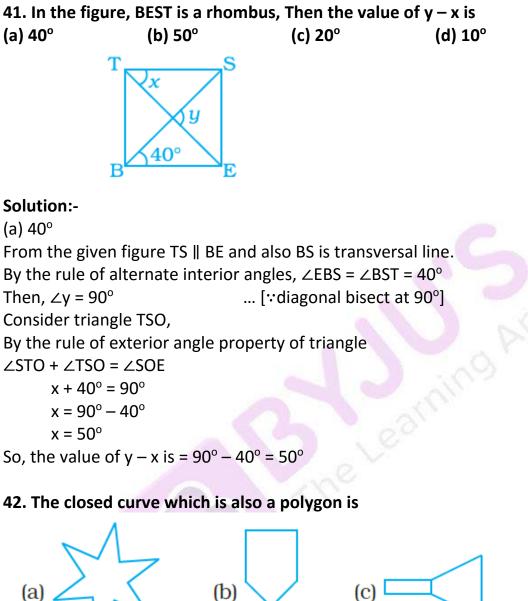
(a) more than 360°	(b) less than 360°
(c) equal to 360°	(d) twice of 360°
Solution:-	

(c) equal to 360°

We know that sum of angles of concave and convex quadrilateral is equal to 360°.

40. Which of the following can never be the measure of exterior angle of a regular polygon?

(a) 22° (b) 36° (c) 45° (d) 30° Solution:-


(a) 22°

We know that, Sum of exterior angles of a polygon is equal to 360°

If we divide 360[°] by any one of the angles must be a whole number since it gives the number of sides.

Then, 360° divide by 22 it gives fraction. So 22° can never be the measure of exterior angle of a regular polygon.

Solution:-

The closed curve which is also a polygon is figure (a). Because there is no line segments intersect each other.

43. Which of the following is not true for an exterior angle of a regular polygon with n sides?

```
(a) Each exterior angle = 360^{\circ}/n
```

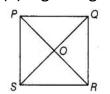
```
(b) Exterior angle = 180° – interior angle
```

```
(c) n = 360°/exterior angle
```


(d) Each exterior angle = ((n - 2) × 180°)/n) Solution:-

(d) Each exterior angle = $((n - 2) \times 180^{\circ})/n)$ Because each exterior angle is equal to $360^{\circ}/n$

44. PQRS is a square. PR and SQ intersect at O. Then \angle POQ is a


(a) Right angle

(b) Straight angle

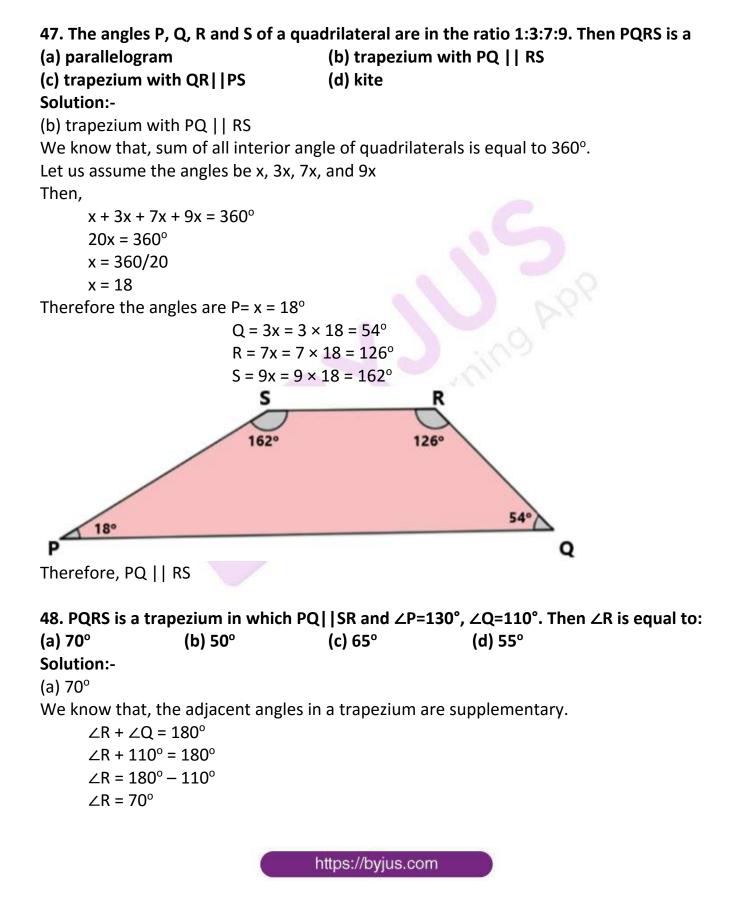
(c) Reflex angle

```
(d) Complete angle
```

Solution:-(a) Right angle

The diagonals in the square intersect each other at right angle i.e. 90° Therefore, $\angle POQ$ is a right angle.

45. Two adjacent angles of a parallelogram are in the ratio 1:5. Then all the angles of the parallelogram are


(a) 30° , 150° , 30° , 150° (b) 85° , 95° , 85° , 95° (c) 45° , 135° , 45° , 135° (d) 30° , 180° , 30° , 180° Solution:-(a) 30° , 150° , 30° , 150° We know that, sum of adjacent angles of a parallelogram = 180° Let us assume two angles be x and 5x Then, $x + 5x = 180^{\circ}$ $6x = 180^{\circ}$ $x = 180^{\circ}/6$ $x = 30^{\circ}$ Therefore the two angles are $x = 30^{\circ}$ $5x = 5 \times 30 = 150^{\circ}$

46. A parallelogram PQRS is constructed with sides QR = 6 cm, PQ = 4 cm and \angle PQR = 90°. Then PQRS is a

(a) square(b) rectangle(c) rhombus(d) trapeziumSolution:-

(b) rectangle

(d) 9

49. The number of sides of a regular polygon whose each interior angle is of 135° is

(c) 8

(a) 6	(b) /
Solution:-	
Now let us	assume number

Now let us assume number of sides of a regular polygon be n.

WKT, sum of all exterior angles of all polygons is equal to 360°.

Form the question it is given that each exterior angle has a measure of 45°. Then,

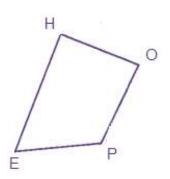
n = 360°/Exterior angle n = 360°/(180° - 135°) n = 360°/45° n = 8

		s both the angles, the	II IL IS d
(a) kite Solution:-	(b) parallelogram	(c) rhombus	(d) rectangle
(c) rhombus			

51. To construct a unique parallelogram, the minimum number of measurements required is

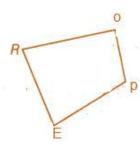
(a) 2	(b) 3	(c) 4	(d) 5
Solution:-			
(b) 3			

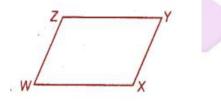
To construct a unique parallelogram, we need the measurement of two adjacent sides of the parallelogram and the angle between them.


52. To construct a unique rectangle, the minimum number of measurements required					
is (a) 4	(b) 3	(c) 2	(d) 1		
Solution:-					
(c) 2					

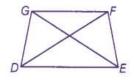
To construct a unique rectangle, we need only the measurement of the length and the breadth of a rectangle.

In questions 53 to 91, fill in the blanks to make the statements true. 53. In quadrilateral HOPE, the pairs of opposite sides are ______. Solution:-


In quadrilateral HOPE, the pairs of opposite sides are HO and PE, HE and OP.


54. In quadrilateral ROPE, the pairs of adjacent angles are ______. Solution:-

In quadrilateral ROPE, the pairs of adjacent angles are <u>RO and OP, OP and PE, PE and ER</u>, ER and RO.


55. In quadrilateral WXYZ, the pairs of opposite angles are ______. Solution:-

In quadrilateral WXYZ, the pairs of opposite angles are $\angle W$ and $\angle Y$, $\angle X$ and $\angle Z$.

56. The diagonals of the quadrilateral DEFG are ______ and ______. Solution:-

The diagonals of the quadrilateral DEFG are <u>DF and EG</u>.

57. The sum of all ______ of a quadrilateral is 360°.

Solution:-

The sum of all <u>angles</u> of a quadrilateral is 360°.

The measure of each exterior angle of a regular pentagon is <u>72°</u>.

We know that, the measure of each exterior angle of a regular pentagon is 360°/n.

Where 'n' is the number of sides in the polygon,

Then, pentagon has 5 sides, i.e. n = 5

So, 360°/5

= 72°

59. Sum of the angles of a hexagon is Solution:-

Sum of the angles of a hexagon is 720°.

We know that, the sum of all the angles of a polygon is $(n - 2) \times 180^{\circ}$.

Where 'n' is the number of sides in the polygon,

Then, hexagon has 6 sides, i.e. n = 6

So, (n - 2) × 180° (6 - 2) × 180° 4 × 180° 720°

60. The measure of each exterior angle of a regular polygon of 18 sides is ______ Solution:-

The measure of each exterior angle of a regular polygon of 18 sides is <u>20°</u>.

We know that, the measure of each exterior angle of a regular polygon is 360°/n. Where 'n' is the number of sides in the polygon,

Then, polygon has 18 sides, i.e. n = 18 So, 360°/18

= 20°

61. The number of sides of a regular polygon, where each exterior angle has a measure of 36°, is ______.

Solution:-

The number of sides of a regular polygon, where each exterior angle has a measure of

36°, is <u>10</u>.

We know that, the measure of each exterior angle of a regular polygon is 360°/n. Where 'n' is the number of sides in the polygon,

Then, exterior angle has a measure of 36°

So, 36° = 360°/n

n = 360°/36° n = 10

62. _____ is a closed curve entirely made up of line segments. The another name for this shape is ______.

Solution:-

Concave polygon.

Concave polygon has more than one reflex angle.

63. A quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure is ______.

Solution:-

A quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure is <u>kite</u>.

64. The measure of each angle of a regular pentagon is _____.

Solution:-

The measure of each angle of a regular pentagon is <u>108</u>. We know that, the sum of all the angles of a polygon is $(n - 2) \times 180^{\circ}$. Where 'n' is the number of sides in the polygon, Then, pentagon has 5 sides, i.e. n = 5

So, (n - 2) × 180°

(5 - 2) × 180° 3 × 180° 540°

Measure of each angle = $540^{\circ}/5 = 108^{\circ}$

65. The name of three-sided regular polygon is _____

Solution:-

The name of three-sided regular polygon is an equilateral triangle.

66. The number of diagonals in a hexagon is _____. Solution:-The number of diagonals in a hexagon is 9. We know that, The number of diagonals in a polygon of n sides is n(n - 3)/2Where n = 6Then, $= 6 \times (6 - 3)/2$ $= 6 \times 3/2$ = 18/2 = 9 67. A polygon is a simple closed curve made up of only Solution:-A polygon is a simple closed curve made up of only line segments. 68. A regular polygon is a polygon whose all sides are equal and all are equal. Solution:-A regular polygon is a polygon whose all sides are equal and all angles are equal. 69. The sum of interior angles of a polygon of n sides is right angles. Solution:-The sum of interior angles of a polygon of n sides is 2n - 4 right angles. 70. The sum of all exterior angles of a polygon is _____. Solution:-The sum of all exterior angles of a polygon is 360°. 71. _____ is a regular quadrilateral. Solution:-Square is a regular quadrilateral. All the angles and sides of square are equal. 72. A guadrilateral in which a pair of opposite sides is parallel is . Solution:-

A quadrilateral in which a pair of opposite sides is parallel is trapezium.

73. If all sides of a quadrilateral are equal, it is a ______. Solution:-

If all sides of a quadrilateral are equal, it is a <u>rhombus</u>, square.

74. In a rhombus diagonals intersect at _____ angles. Solution:-

In a rhombus diagonals intersect at <u>right</u> angles.

75. _____ measurements can determine a quadrilateral uniquely.

Solution:-

<u>5</u> measurements can determine a quadrilateral uniquely.

5 measurements are four sides one angle or 3 sides and 2 included angle.

76. A quadrilateral can be constructed uniquely if its three sides and _____

angles are given.

Solution:-

A quadrilateral can be constructed uniquely if its three sides and <u>2 included</u> angles are given.

77. A rhombus is a parallelogram in which ______ sides are equal.

Solution:-

A rhombus is a parallelogram in which <u>all</u> sides are equal.

78. The measure of ______ angle of concave quadrilateral is more than 180°.

Solution:-

The measure of $\underline{1}$ angle of concave quadrilateral is more than 180° .

79. A diagonal of a quadrilateral is a line segment that joins two ______ vertices of the quadrilateral.

Solution:-

A diagonal of a quadrilateral is a line segment that joins two <u>opposite</u> vertices of the quadrilateral.

80. The number of sides in a regular polygon having measure of an exterior angle as 72° is ______.

Solution:-

The number of sides in a regular polygon having measure of an exterior angle as 72° is <u>5</u>. We know that, the measure of each exterior angle of a regular pentagon is $360^{\circ}/n$. Where 'n' is the number of sides in the polygon,

Then, pentagon has exterior angle = 72°

So, 72° = 360°/n n = 360°/72°

n = 5

81. If the diagonals of a quadrilateral bisect each other, it is a

Solution:-

If the diagonals of a quadrilateral bisect each other, it is a Parallelogram.

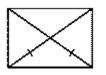
82. The adjacent sides of a parallelogram are 5 cm and 9 cm. Its perimeter is

Solution:-

The adjacent sides of a parallelogram are 5 cm and 9 cm. Its perimeter is 28 cm. We know that, perimeter of Parallelogram = 2 × (sum of lengths of adjacent sides)

= 2 × (5 + 9) = 2 × 14 = 28 cm

83. A nonagon has ______ sides.


Solution:-

A nonagon has <u>9</u> sides.

84. Diagonals of a rectangle are _____. Solution:-

Diagonals of a rectangle are <u>equal</u>.

85. A polygon having 10 sides is known as _____.

Solution:-

A polygon having 10 sides is known as <u>Decagon</u>.

86. A rectangle whose adjacent sides are equal becomes a ______ Solution:-

A rectangle whose adjacent sides are equal becomes a Square.

87. If one diagonal of a rectangle is 6 cm long, length of the other diagonal is

Solution:-

If one diagonal of a rectangle is 6 cm long, length of the other diagonal is <u>6cm</u>. Because, diagonals of a rectangle are equal.

88. Adjacent angles of a parallelogram are _____

Solution:-

Adjacent angles of a parallelogram are supplementary.

89. If only one diagonal of a quadrilateral bisects the other, then the quadrilateral is known as ______.

Solution:-

If only one diagonal of a quadrilateral bisects the other, then the quadrilateral is known as <u>kite</u>.

90. In trapezium ABCD with AB||CD, if $\angle A = 100^{\circ}$, then $\angle D =$ _____. Solution:-

In trapezium ABCD with AB||CD, if $\angle A = 100^{\circ}$, then $\angle D = \underline{80^{\circ}}$.

We know that, in trapezium adjacent angles of non – parallel sides are supplementary.

 $\angle A + \angle D = 180^{\circ}$ $100^{\circ} + \angle D = 180^{\circ}$ $\angle D = 180^{\circ} - 100^{\circ}$ $\angle D = 80^{\circ}$

91. The polygon in which sum of all exterior angles is equal to the sum of interior angles is called ______.

Solution:-

The polygon in which sum of all exterior angles is equal to the sum of interior angles is called <u>Quadrilateral</u>.

In questions 92 to 131 state whether the statements are true (T) or (F) false. 92. All angles of a trapezium are equal.

Solution:-

False.

Because, all angles of a trapezium are not equal.

93. All squares are rectangles.

Solution:-

True.

All squares are rectangles, because it has 4 right angles.

94. All kites are squares.

Solution:-

False.

In kites all the angles are not equal to 90° but, in the square all angles are equal to 90°.

95. All rectangles are parallelograms

Solution:-

True.

Because, all the properties of parallelogram are satisfied by the rectangle.

96. All rhombuses are squares.

Solution:-

False.

Because, the angels of rhombus are not equal to 90° so all rhombuses are not squares.

97. Sum of all the angles of a quadrilateral is 180°.

Solution:-

False.

Sum of all the angles of a quadrilateral is 360°.

98. A quadrilateral has two diagonals.

is a polygon.

Solution:-

True.

99. Triangle is a polygon whose sum of exterior angles is double the sum of interior angles.

True.

V

Solution:-

100.

False.

The given figure intersects with itself more than once.