

In questions 1 to 33, out of the four options, only one is correct. Write the correct answer.

1. In 2ⁿ, n is known as:

(a) Base (b) Constant (c) exponent (d) Variable

Solution:

(c) Exponent

Explanation: 2 is the rational number which is the base here and n is the power of 2. Hence, it is an exponent.

2. For a fixed base, if the exponent decreases by 1, the number becomes:

(a) One-tenth of the previous number.

(b) Ten times of the previous number.

(c) Hundredth of the previous number.

(d) Hundred times of the previous number.

Solution:

(a) One-tenth of the previous number

Explanation: Suppose for 10^6 , when the exponent is decreased by 1, it becomes 10^5 . Hence, $10^5/10^6 = 1/10$.

3. 3⁻² can be written as:

(a) 3^{2} (b) $1/3^{2}$ (c) $1/3^{-2}$ (d) -2/3Solution: (b) $1/3^{2}$ Explanation: By the law of exponent we know: $a^{-n} = 1/a^{n}$. Hence, $3^{-2}=1/3^{2}$

4. The value of $1/(4)^{-2}$ is:

(a) 16 (b) 8 (c) 1/16 (d) 1/8 Solution: (a) 16 Explanation: $1/(4)^{-2} = 1/(1/4^2) = 4^2 = 16$

5. The value of $3^5 \div 3^{-6}$ is:

(a) 3^5 (b) 3^{-6} (c) 3^{11} (d) 3^{-11} Solution: (c) 3^{11} Explanation: By the law of exponents, we know, $a^m/a^n = a^{m-n}$

Hence, $3^5 \div 3^{-6} = 3^{5-(-6)} = 3^{11}$

6. The value of $(2/5)^{-2}$ is: (a) 4/5 (b) 4/25 (c) 25/4 (d) 5/2 Solution: (c) 25/4 Explanation: By the law of exponent we know: $a^{-n} = 1/a^n$. Hence, $(2/5)^{-2} = 1/(2/5)^2 = 1/(4/25) = 25/4$

7. The reciprocal of $(2/5)^{-1}$ is:

(a) 2/5 (b) 5/2 (c) -5/2 (d) -2/5Solution: (b) 5/2Explanation: By the law of exponent we know: $a^{-n} = 1/a^n$. Hence, $(2/5)^{-1}=1/(2/5)=5/2$

8. The multiplicative inverse of 10⁻¹⁰⁰ is

(a) 10 (b) 100 (c) 10^{100} (d) 10^{-100} Solution: (c) 10^{100} Explanation: By the law of exponent we know: $a^{-n} = 1/a^n$. So, $10^{-100} = 1/10^{100}$ The multiplicative inverse for any integer a is 1/a, such that; a x 1/a = 1Hence, the multiplicative inverse for $1/10^{100}$ is 10^{100} as, $1/10^{100}$ x $10^{100} = 1$

9. The value of $(-2)^{2x^{3}-1}$ is (a) 32 (b) 64 (c) - 32 (d) - 64 Solution: (c) - 32 Explanation: $(-2)^{2x^{3}-1}=(-2)^{6-1}=(-2)^{5}=-32$

10. The value of (-2/3)⁴ is equal to:
(a) 16/81 (b) 81/16 (c) -16/81 (d) 81/-16
Solution:
(a) 16/81
Explanation: (-2/3)⁴ = (-2/3)(-2/3)(-2/3)(-2/3) = 16/81

11. The multiplicative inverse of (-5/9)⁻⁹⁹ is: (a) (-5/9)⁹⁹ (b) (5/9)⁹⁹ (c) (9/-5)⁹⁹ (d) (9/5)⁹⁹ Solution: (-5/9)⁹⁹ Explanation: Take the reference of Q.8 mentioned above.

12. If x be any non-zero integer and m, n be negative integers, then $x^m \times x^n$ is equal to:

(a) x^m (b) x^{m+n} (c) xⁿ (d) x^{m-n}
Solution:
(b) x^{m+n} (By the law of exponents)

13. If y be any non-zero integer, then y^0 is equal to:

(a) 1 (b) 0 (c) - 1 (c) Not defined
Solution:
(a) 1 (By the law of exponent)

14. If x be any non-zero integer, then x⁻¹ is equal to

(a) x (b) 1/x (c) - x (c) -1/x
Solution:
(b) 1/x (By the law of exponents)

15. If x be any integer different from zero and m be any positive integer, then x^{-m} is equal to:

(a) x^m (b) -x^m (c) 1/x^m (d) -1/x^m
Solution:
(c) 1/x^m (By the law of exponents)

16. If x be any integer different from zero and m, n be any integers, then $(x^m)^n$ is equal to:

(a) x^{m+n} (b) x^{mn} (c) x^{m/n} (d) x^{m-n}
Solution:
(b) x^{mn} (By the law of exponents)

17. Which of the following is equal to $(-3/4)^{-3}$?

(a) $(3/4)^{-3}$ (b) $- (3/4)^{-3}$ (c) $(4/3)^3$ (d) $(-4/3)^3$ Solution: (d) $(-4/3)^3$ Explanation: $(-3/4)^{-3} = 1/(-3/4)^3 = (-4/3)^3$

(By the law of exponents: $a^{-n} = 1/a^n$)

18. $(-5/7)^{-5}$ is equal to: (a) $(5/7)^{-5}$ (b) $(5/7)^{5}$ (c) $(7/5)^{5}$ (d) $(-7/5)^{5}$ Solution: (d) $(-7/5)^{5}$ Explanation: $(-5/7)^{-5}=1/(-5/7)^{5}=(-7/5)^{5}$ (By the law of exponents: $a^{-n} = 1/a^{n}$)

19. $(-7/5)^{-1}$ is equal to:

(a) 5/7 (b) – 5/7 (c) 7/5 (d) -7/5 Solution: (b) – 5/7 Explanation: (-7/5)⁻¹= 1/(-7/5) = -5/7

20. $(-9)^3 \div (-9)^8$ is equal to: (a) $(9)^5$ (b) $(9)^{-5}$ (c) $(-9)^5$ (d) $(-9)^{-5}$ Solution: (d) $(-9)^{-5}$ Explanation: $(-9)^3 \div (-9)^8 = (-9)^{3-8} = (-9)^{-5}$ (By the law of exponents: $a^m \div a^n = a^{m-n}$)

7/5) = -5/7 **o:** $(\mathbf{d}) (-9)^{-5}$ $= (-9)^{3-8} = (-9)^{-5}$

21. For a non-zero integer x, $x^7 \div x^{12}$ is equal to: (a) x^5 (b) x^{19} (c) x^{-5} (d) x^{-19} Solution: (c) x^{-5}

Explanation: $x^7 \div x^{12} = x^{7-12} = x^{-5}$ (By the law of exponents: $a^m \div a^n = a^{m-n}$)

22. For a non-zero integer x, $(x^4)^{-3}$ is equal to:

(a) x^{12} (b) x^{-12} (c) x^{64} (d) x^{-64} Solution: (b) x^{-12} Explanation: $(x^4)^{-3} = x^{4 \times (-3)} = x^{-12}$ (By the law of exponents: $(a^m)^n = a^{mn}$)

23. The value of $(7^{-1} - 8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1}$ is: (a) 44 (b) 56 (c) 68 (d) 12 Solution:

(a) 44 Explanation: $(7^{-1} - 8^{-1})^{-1} - (3^{-1} - 4^{-1})^{-1}$ = $(1/7 - 1/8)^{-1} - (1/3 - 1/4)^{-1}$ = $(1/56)^{-1} - (1/12)^{-1}$ = 56 - 12 = 44

24. The standard form for 0.000064 is (a) 64×10^4 (b) 64×10^{-4} (c) 6.4×10^5 (d) 6.4×10^{-5} Solution: (d) 6.4×10^{-5}

25. The standard form for 234000000 is (a) 2.34×10^8 (b) 0.234×10^9 (c) 2.34×10^{-8} (d) 0.234×10^{-9} Solution: (a) 2.34×10^8 Explanation: $234000000 = 234 \times 10^6 = 2.34 \times 10^2 \times 10^6 = 2.34 \times 10^8$

26. The usual form for 2.03 × 10⁻⁵ (a) 0.203 (b) 0.00203 (c) 203000 (d) 0.0000203 Solution: (d) 0.0000203

27. (1/10)⁰ is equal to (a) 0 (b) 1/10 (c) 1 (d) 10 Solution:

(c) 1 Since, $a^0 = 1$ (by law of exponent)

28. $(3/4)^5 \div (5/3)^5$ is equal to (a) $(3/4 \div 5/3)^5$ (b) $(3/4 \div 5/3)^1$ (c) $(3/4 \div 5/3)^0$ (d) $(3/4 \div 5/3)^{10}$ Solution: (a) $(3/4 \div 5/3)^5$ (By law of exponent: (a)^m÷(b)^m = (a÷b)^m

29. For any two non-zero rational numbers x and y, $x^4 \div y^4$ is equal to (a) $(x \div y)^0$ (b) $(x \div y)^1$ (c) $(x \div y)^4$ (d) $(x \div y)^8$ Solution: (c) $(x \div y)^4$ (By law of exponent: $(a)^m \div (b)^m = (a \div b)^m$)

30. For a non-zero rational number p, $p^{13} \div p^8$ is equal to (a) p^5 (b) p^{21} (c) p^{-5} (d) p^{-19} Solution: (a) p^5 (By law of exponent: (a)^m \div (a)ⁿ = (a)^{m-n})

31. For a non-zero rational number z, $(z^{-2})^3$ equal to (a) z^6 (b) z^{-6} (c) z^1 (d) z^4 Solution: (b) z^{-6} (By the law of exponents: $(a^m)^n = a^{mn}$)

32. Cube of -1/2 is (a) 1/8 (b) 1/16 (c) -1/8 (d) -1/16 Solution: (c) -1/8 Explanation: Cube of $-1/2 = (-1/2)^3$ = $(-1/2) \times (-1/2) \times (-1/2) = -1/8$

33. Which of the following is not the reciprocal of $(2/3)^4$? (a) $(3/2)^4$ (b) $(3/2)^{-4}$ (c) $(2/3)^{-4}$ (d) $3^4/2^4$ Solution: (b) $(3/2)^{-4}$ Explanation: $(2/3)^4 = 1/(2/3)^{-4} = (3/2)^{-4}$

In questions 34 to 50, fill in the blanks to make the statements true. 34. The multiplicative inverse of 10^{10} is 10^{-10}

35.
$$\mathbf{a}^3 \times \mathbf{a}^{-10} = \mathbf{a}^{3+(-10)} = \mathbf{a}^{3-10} = \mathbf{\underline{a}}^{-7}$$

36. $5^0 = \underline{1}$

37. $5^5 \times 5^{-5} = 5^{5+(-5)} = 5^{5-5} = 5^0 = 1$

38. The value of $(1/2^3)^2$ equal to $(1/2^6)$. Explanation: $(1/2^3)^2 = (1/2)^{3x^2} = (1/2)^6$

39. The expression for 8⁻² as a power with the base 2 is $(2)^{-6}$ Explanation: $8^{-2} = (2 \times 2 \times 2)^{-2} = (2^3)^{-2}$

40. Very small numbers can be expressed in standard form by using <u>negative</u> exponents.

41. Very large numbers can be expressed in standard form by using <u>positive</u> exponents.

42. By multiplying (10)⁵ by (10)⁻¹⁰ we get $\underline{10^{-5}}$ Explanation: $(10)^5 \times (10)^{-10} = 10^{5+(-10)} = 10^{5-10} = 10^{-5}$

43. $[(2/13)^{-6} \div (2/13)^3]^3 \times (2/13)^{-9} = (2/13)^{-36}$ Explanation: $[(2/13)^{-6} \div (2/13)^3]^3 \times (2/13)^{-9}$ $= [(2/13)^{-6-3}]^3 \times (2/13)^{-9}$ $= [(2/13)^{-9}]^3 \times (2/13)^{-9}$ $= (2/13)^{-9\times3} \times (2/13)^{-9}$ $= (2/13)^{-27} \times (2/13)^{-9}$ $= (2/13)^{-27-9}$ $= (2/13)^{-36}$

44. Find the value $[4^{-1} + 3^{-1} + 6^{-2}]^{-1}$

Solution: $[4^{-1} + 3^{-1} + 6^{-2}]^{-1}$ = $(1/4+1/3+1/6^2)^{-1}$ = $[(9+12+1)/36]^{-1}$ = $(22/36)^{-1}$ = (36/22)

45. $[2^{-1} + 3^{-1} + 4^{-1}]^0 = \underline{1}$ (Using law of exponent, $a^0=1$)

46. The standard form of (1/100000000) is 1.0×10^{-8}

Explanation: $(1/10000000) = 1/1 \times 10^8 = 1.0 \times 10^{-8}$

47. The standard form of 12340000 is $\underline{1.234 \times 10^7}$ Explanation: 12340000 = $1234 \times 10^4 = 1.234 \times 10^3 \times 10^4 = 1.234 \times 10^7$

48. The usual form of 3.41 \times 10^6 is <u>3410000.</u> <u>Explanation:</u> $3.41 \times 10^6 = 3.41 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$ $= 341 \times 10 \times 10 \times 10 \times 10$ = 3410000

49. The usual form of 2.39461 × **10**⁶ is <u>2394610.</u> <u>Explanation:</u> 2.39461 × 10⁶ = 2.39461 × 10 × 10 × 10 × 10 × 10 × 10 = 239461 × 10 = 239461 × 10

50. If $36 = 6 \times 6 = 6^2$, then 1/36 expressed as a power with the base 6 is 6^{-2} . Explanation: $36 = 6 \times 6 = 6^2$ $1/36 = 1/6^2 = 6^{-2}$

