

EXERCISE 18.1

PAGE NO: 18.7

Find the maximum and the minimum values, if any, without using derivatives of the following functions:

1.
$$f(x) = 4x^2 - 4x + 4$$
 on R

Solution:

Given f (x) =
$$4x^2 - 4x + 4$$
 on R

$$=4x^2-4x+1+3$$

By grouping the above equation we get,

$$=(2x-1)^2+3$$

Since,
$$(2x - 1)^2 \ge 0$$

$$= (2x - 1)^2 + 3 \ge 3$$

$$= f(x) \ge f(\frac{1}{2})$$

Thus, the minimum value of f(x) is 3 at $x = \frac{1}{2}$

Since, f(x) can be made large. Therefore maximum value does not exist.

2.
$$f(x) = -(x-1)^2 + 2$$
 on R

Solution:

Given
$$f(x) = -(x-1)^2 + 2$$

It can be observed that $(x-1)^2 \ge 0$ for every $x \in R$

Therefore, $f(x) = -(x-1)^2 + 2 \le 2$ for every $x \in R$

The maximum value of f is attained when (x - 1) = 0

$$(x-1) = 0, x = 1$$

Since, Maximum value of $f = f(1) = -(1-1)^2 + 2 = 2$

Hence, function f does not have minimum value.

3.
$$f(x) = |x + 2|$$
 on R

Solution:

Given
$$f(x) = |x + 2| \ge 0$$
 for $x \in R$

$$= f(x) \ge 0$$
 for all $x \in R$

So the minimum value of f(x) is 0, which attains at x = 2

Hence, f(x) = |x + 2| does not have the maximum value.

4.
$$f(x) = \sin 2x + 5$$
 on R

Solution:

Given f (x) = $\sin 2x + 5$ on R We know that $-1 \le \sin 2x \le 1$ = $-1 + 5 \le \sin 2x + 5 \le 1 + 5$ = $4 \le \sin 2x + 5 \le 6$

Hence, the maximum and minimum value of h are 4 and 6 respectively.

5.
$$f(x) = |\sin 4x + 3|$$
 on R

Solution:

Given f (x) = $|\sin 4x + 3|$ on R We know that $-1 \le \sin 4x \le 1$ = $2 \le \sin 4x + 3 \le 4$ = $2 \le |\sin 4x + 3| \le 4$

Hence, the maximum and minimum value of f are 4 and 2 respectively.