

EXERCISE 18.4

PAGE NO: 18.37

1. Find the absolute maximum and the absolute minimum values of the following functions in the given intervals: (i) f (x) = $4x - x^2/2$ in [-2, 45]

Solution:

Given function is $f(x) = \frac{4x - \frac{x^2}{2}}{2}$

On differentiation we get

∴f'(x) = 4 – x

Now, for local minima and local maxima we have f'(x) = 0

$$4-x=0$$

Then, we evaluate of f at critical points x = 4 and at the interval $\left[-2, \frac{1}{2}\right]$

$$f(4) = \frac{4(4) - \frac{(4)^2}{2}}{2} = 8$$

$$f(-2) = \frac{4(-2) - \frac{(-2)^2}{2}}{2} = -10$$

$$f\left(\frac{9}{2}\right) = 4\left(\frac{9}{2}\right) - \frac{\left(\frac{9}{2}\right)^2}{2} = 18 - \frac{81}{8} = 7.875$$

Hence, we can conclude that the absolute maximum value of f on [-2, 9/2] is 8 occurring at x = 4 and the absolute minimum value of f on [-2, 9/2] is -10 occurring at x = -2

(ii) $f(x) = (x - 1)^2 + 3$ in [-3, 1]

Solution:

Given function is $f(x) = (x - 1)^2 + 3$ On differentiation we get $\therefore f'(x) = 2(x - 1)$

https://byjus.com

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima

Now, for local minima and local maxima we have f'(x) = 0 2(x - 1) = 0 x = 1Then, we evaluate of f at critical points x = 1 and at the interval [-3, 1] $f(1) = (1 - 1)^2 + 3 = 3$ $f(-3) = (-3 - 1)^2 + 3 = 19$ Hence, we can conclude that the absolute maximum value of f on [-3, 1] is 19 occurring at x = -3 and the minimum value of f on [-3, 1] is 3 occurring at x = 1

(iii) f (x) = $3x^4 - 8x^3 + 12x^2 - 48x + 25$ in [0, 3]

Solution:

Given function is $f(x) = 3x^4 - 8x^3 + 12x^2 - 48x + 25$ in [0, 3] On differentiating we get $f'(x) = 12x^3 - 24x^2 + 24x - 48$ $f'(x) = 12(x^3 - 2x^2 + 2x - 4)$ $f'(x) = 12(x - 2)(x^2 + 2)$ Now, for local minima and local maxima we have f'(x) = 0 x = 2 or $x^2 + 2 = 0$ for which there are no real roots. Therefore, we consider only $x = 2 \in [0, 3]$. Then, we evaluate of f at critical points x = 2 and at the interval [0, 3] $f(2) = 3(2)^4 - 8(2)^3 + 12(2)^2 - 48(2) + 25$ f(2) = 48 - 64 + 48 - 96 + 25 = -39 $f(0) = 3(0)^4 - 8(0)^3 + 12(0)^2 - 48(0) + 25 = 25$ $f(3) = 3(3)^4 - 8(3)^3 + 12(3)^2 - 48(3) + 25 = 16$ Hence, we can conclude that the absolute maximum value of f on [0, 3] is 25 occurring

at x = 0 and the minimum value of f on [0, 3] is – 39 occurring at x = 2

(iv) $f(x) = (x - 2)\sqrt{x - 1}$ in [1, 9]

Solution:

Given f(x) = $(x - 2)\sqrt{x - 1}$ f'(x) = $\sqrt{x - 1} + \frac{(x - 2)}{2\sqrt{x - 1}}$ Put f'(x) = 0

$$\Rightarrow \sqrt{x-1} + \frac{(x-2)}{2\sqrt{x-1}} = 0$$

$$\Rightarrow \frac{2(x-1) + (x-2)}{2\sqrt{x-1}} = 0$$

$$\Rightarrow \frac{3x-4}{2\sqrt{x-1}} = 0$$

 $\Rightarrow X = \frac{1}{3}$

Now, f(1) = 0

$$f(4/3) = \left(\frac{4}{3} - 2\right)\sqrt{\frac{4}{3} - 1} = -\frac{2}{3\sqrt{3}} = -\frac{2\sqrt{3}}{9}$$

Hence, we can conclude that the absolute maximum value of f is 14 $\sqrt{2}$

occurring at x = 9 and the minimum value of is $-\frac{2\sqrt{3}}{9}$ occurring at x = 4/3

2. Find the maximum value of $2x^3 - 24x + 107$ in the interval [1, 3]. Find the maximum value of the same function in [-3, -1].

Solution:

Let $f(x) = 2x^3 - 24x + 107$ $\therefore f'(x) = 6x^2 - 24 = 6(x^2 - 4)$ Now, for local maxima and local minima we have f'(x) = 0 $\Rightarrow 6(x^2 - 4) = 0$ $\Rightarrow x^2 = 4$ $\Rightarrow x = \pm 2$ We first consider the interval [1, 3]. Then, we evaluate the value of f at the critical point $x = 2 \in [1, 3]$ and at the end points

of the interval [1, 3].

f (2) = 2 (2³)- 24 (2) + 107 = 75 f (1) = 2(1)³ - 24(1) + 107 = 85

 $f(3) = 2(3)^3 - 24(3) + 107 = 89$

Hence, the absolute maximum value of f(x) in the interval [1, 3] is 89 occurring at x = 3, Next, we consider the interval [-3, -1].

Evaluate the value of f at the critical point $x = -2 \in [1, 3]$

 $f(-3) = 2(-3)^3 - 24(-3) + 107 = 125$

https://byjus.com

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima

f (-2) = 2 (-2)³ - 24 (-3) + 107 = 139 f (-1) = 2 (-1)³ - 24 (-2) + 107 = 129 Hence, the absolute maximum value when x = -2 is 139.

https://byjus.com