EXERCISE 21.1

Find the sum of the following series to \boldsymbol{n} terms:

1. $1^{3}+3^{3}+5^{3}+7^{3}+$ \qquad

Solution:

Let T_{n} be the nth term of the given series.
We have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =[1+(\mathrm{n}-1) 2]^{3} \\
& =(2 \mathrm{n}-1)^{3} \\
& =(2 \mathrm{n})^{3}-3(2 \mathrm{n})^{2} \cdot 1+3 \cdot 1^{2} \cdot 2 \mathrm{n}-1^{3}\left[\text { Since, }(a-b)^{3}=a^{3}-3 a^{2} b+3 \mathrm{ab}^{2}-b\right] \\
& =8 n^{3}-12 n^{2}+6 n-1
\end{aligned}
$$

Now, let S_{n} be the sum of n terms of the given series.
We have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}[2 k-1]^{3} \\
& =\sum_{k=1}^{n}\left[8 k^{3}-1-6 k(2 k-1)\right] \\
& =\sum_{k=1}^{n}\left[8 k^{3}-1-12 k^{2}+6 k\right] \\
& =\sum_{k=1}^{n}\left[8 k^{3}-1-12 k^{2}+6 k\right] \\
& =8 \sum_{k=1}^{n} k^{3}-\sum_{k=1}^{n} 1-12 \sum_{k=1}^{n} k^{2}+6 \sum_{k=1}^{n} k \\
& =\frac{8 n^{2}(n+1)^{2}}{4}-n-\frac{12 n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& =2 n^{2}(\mathrm{n}+1)^{2}-\mathrm{n}-2 \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+3 \mathrm{n}(\mathrm{n}+1) \\
& =\mathrm{n}(\mathrm{n}+1)[2 \mathrm{n}(\mathrm{n}+1)-2(2 \mathrm{n}+1)+3]-\mathrm{n} \\
& =\mathrm{n}(\mathrm{n}+1)\left[2 \mathrm{n}^{2}-2 \mathrm{n}+1\right]-\mathrm{n} \\
& =\mathrm{n}\left[2 \mathrm{n}^{3}-2 \mathrm{n}^{2}+\mathrm{n}+2 \mathrm{n}^{2}-2 \mathrm{n}+1-1\right] \\
& =\mathrm{n}\left[2 \mathrm{n}^{3}-\mathrm{n}\right] \\
& =\mathrm{n}^{2}\left[2 \mathrm{n}^{2}-1\right]
\end{aligned}
$$

\therefore The sum of the series is $\mathrm{n}^{2}\left[2 \mathrm{n}^{2}-1\right]$
2. $2^{3}+4^{3}+6^{3}+8^{3}+\ldots \ldots \ldots$.

Solution:

Let T_{n} be the nth term of the given series.
We have:
$\mathrm{T}_{\mathrm{n}}=(2 \mathrm{n})^{3}$

$$
=8 n^{3}
$$

Now, let S_{n} be the sum of n terms of the given series.
We have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} 8 k^{3} \\
& =8 \sum_{k=1}^{n} k^{3} \\
& =8\left[\frac{n(n+1)}{2}\right]^{2} \\
& =8 \times \frac{n^{2}(n+1)^{2}}{4} \\
& =2 \mathrm{n}^{2}(\mathrm{n}+1)^{2} \\
& =2\{\mathrm{n}(\mathrm{n}+1)\}^{2}
\end{aligned}
$$

\therefore The sum of the series is $2\{\mathrm{n}(\mathrm{n}+1)\}^{2}$

3. 1.2.5 + 2.3.6 + 3.4.7 +

Solution:

Let T_{n} be the nth term of the given series.
We have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+4) \\
& =\mathrm{n}\left(\mathrm{n}^{2}+5 \mathrm{n}+4\right) \\
& =\mathrm{n}^{3}+5 \mathrm{n}^{2}+4 \mathrm{n}
\end{aligned}
$$

Now, let S_{n} be the sum of n terms of the given series.
We have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} 5 k^{2}+\sum_{k=1}^{n} 4 k \\
& =\sum_{k=1}^{n} k^{3}+5 \sum_{k=1}^{n} k^{2}+4 \sum_{k=1}^{n} k
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\frac{n^{2}(n+1)^{2}}{4}+\frac{5 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2} \\
& =\frac{n^{2}(n+1)^{2}}{4}+\frac{5 n(n+1)(2 n+1)}{6}+2 n(n+1) \\
& =\frac{n(n+1)}{2}\left(\frac{n(n+1)}{2}+\frac{5(2 n+1)}{3}+4\right) \\
& =\frac{n(n+1)}{2}\left(\frac{n^{2}+n}{2}+\frac{10 n+5}{3}+4\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n(n+1)}{2}\left(\frac{3 n^{2}+3 n+20 n+10+24}{6}\right) \\
& =\frac{n}{12}(n+1)\left(3 n^{2}+23 n+34\right)
\end{aligned}
$$

\therefore The sum of the series is
$=\frac{n}{12}(n+1)\left(3 n^{2}+23 n+34\right)$

4. 1.2.4 + 2.3.7 + 3.4.10 + ... to n terms.

Solution:
Let T_{n} be the nth term of the given series.
We have:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =\mathrm{n}(\mathrm{n}+1)(3 \mathrm{n}+1) \\
& =\mathrm{n}\left(3 \mathrm{n}^{2}+4 \mathrm{n}+1\right) \\
& =3 \mathrm{n}^{3}+4 \mathrm{n}^{2}+\mathrm{n}
\end{aligned}
$$

Now, let S_{n} be the sum of n terms of the given series.
We have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n} 3 k^{3}+\sum_{k=1}^{n} 4 k^{2}+\sum_{k=1}^{n} k \\
& =3 \sum_{k=1}^{n} k^{3}+4 \sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\frac{3 n^{2}(n+1)^{2}}{4}+\frac{4 n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} \\
& =\frac{3 n^{2}(n+1)^{2}}{4}+\frac{2 n(n+1)(2 n+1)}{3}+\frac{n(n+1)}{2} \\
& =\frac{n(n+1)}{2}\left(\frac{3 n(n+1)}{2}+\frac{4(2 n+1)}{3}+1\right) \\
& =\frac{n(n+1)}{2}\left(\frac{3 n^{2}+3 n}{2}+\frac{8 n+4}{3}+1\right) \\
& =\frac{n(n+1)}{2}\left(\frac{9 n^{2}+9 n+16 n+8+6}{6}\right) \\
& =\frac{n}{12}(n+1)\left(9 n^{2}+25 n+14\right)
\end{aligned}
$$

\therefore The sum of the series is
$=\frac{n}{12}(n+1)\left(9 n^{2}+25 n+14\right)$
$5.1+(1+2)+(1+2+3)+(1+2+3+4)+\ldots$ to n terms

Solution:

Let T_{n} be the nth term of the given series.
We have:
$\mathrm{T}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) / 2$

$$
=\left(\mathrm{n}^{2}+\mathrm{n}\right) / 2
$$

Now, let S_{n} be the sum of n terms of the given series.
We have:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\left(\frac{k^{2}+k}{2}\right) \\
& =\frac{1}{2} \sum_{k=1}^{n}\left(k^{2}+k\right) \\
& =\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right] \\
& =\frac{n(n+1)}{4}\left(\frac{2 n+1}{3}+1\right) \\
& =\frac{n(n+1)}{4}\left(\frac{2 n+4}{3}\right) \\
& =\frac{n(n+1)(2 n+4)}{12} \\
& =\frac{n(n+1)(n+2)}{6}
\end{aligned}
$$

\therefore The sum of the series is $[\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)] / 6$

EXERCISE 21.2

Sum the following series to \boldsymbol{n} terms:

1. $\mathbf{3 + 5 + 9 + 1 5 + 2 3 + \ldots}$

Solution:
Let T_{n} be the nth term and S_{n} be the sum to n terms of the given series.
We have,
$\mathrm{S}_{\mathrm{n}}=3+5+9+15+23+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \ldots$
Equation (1) can be rewritten as:
$\mathrm{S}_{\mathrm{n}}=3+5+9+15+23+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
By subtracting (2) from (1) we get
$\mathrm{S}_{\mathrm{n}}=3+5+9+15+23+\ldots \ldots \ldots \ldots .+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\underline{S}_{n}=3+5+9+15+23+\ldots \ldots \ldots \ldots+T_{n-1}+T_{n}$
$0=3+\left[2+4+6+8+\ldots+\left(T_{n}-T_{n-1}\right)\right]-T_{n}$
The difference between the successive terms are $5-3=2,9-5=4,15-9=6$,
So these differences are in A.P
Now,

$$
\begin{aligned}
& 3+\left[\frac{(n-1)}{2}\{4+(n-2) 2\}\right]-T_{n}=0 \\
& 3+\left[\frac{(n-1)}{2}(2 n)\right]=T_{n} \\
& 3+n(n-1)=T_{n}
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\{3+k(k-1)\} \\
& =\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 3-\sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{6}+3 n-\frac{n(n+1)}{2} \\
& =\frac{n}{3}\left[\frac{(n+1)(2 n+1)}{2}+9-\frac{3}{2}(n+1)\right] \\
& =\frac{n\left[n^{2}+8\right]}{3} \\
& =\frac{n}{3}\left(n^{2}+8\right)
\end{aligned}
$$

\therefore The sum of the series is $\mathrm{n} / 3\left(\mathrm{n}^{2}+8\right)$
2. $2+5+10+17+26+$ \qquad

Solution:

Let T_{n} be the nth term and S_{n} be the sum to n terms of the given series.
We have,
$\mathrm{S}_{\mathrm{n}}=2+5+10+17+26+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \ldots$
Equation (1) can be rewritten as:
$\mathrm{S}_{\mathrm{n}}=2+5+10+17+26+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
By subtracting (2) from (1) we get
$\mathrm{S}_{\mathrm{n}}=2+5+10+17+26+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\underline{S}_{\underline{n}}=2+5+10+17+26+\ldots \ldots \ldots \ldots+T_{n-1}+T_{n}$
$0=2+\left[3+5+7+9+\ldots+\left(\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}-1}\right)\right]-\mathrm{T}_{\mathrm{n}}$
The difference between the successive terms are 3, 5, 7, 9
So these differences are in A.P
Now,

$$
\begin{aligned}
& 2+\left[\frac{(n-1)}{2}\{6+(n-2) 2\}\right]-T_{n}=0 \\
& 2+\left[n^{2}-1\right]=T_{n} \\
& {\left[n^{2}+1\right]=T_{n}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\left(k^{2}+1\right) \\
& =\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 1 \\
& =\frac{n(n+1)(2 n+1)}{6}+n \\
& =\frac{n(n+1)(2 n+1)+6 n}{6} \\
& =\frac{n\left(2 n^{2}+3 n+7\right)}{6} \\
& =\frac{n}{6}\left(2 n^{2}+3 n+7\right)
\end{aligned}
$$

\therefore The sum of the series is $n / 6\left(2 n^{2}+3 n+7\right)$
3. $1+3+7+13+21+\ldots$

Solution:
Let T_{n} be the nth term and S_{n} be the sum to n terms of the given series.
We have,
$\mathrm{S}_{\mathrm{n}}=1+3+7+13+21+$ \qquad $+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \ldots$
Equation (1) can be rewritten as:
$\mathrm{S}_{\mathrm{n}}=1+3+7+13+21+$. \qquad $+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
By subtracting (2) from (1) we get
$\mathrm{S}_{\mathrm{n}}=1+3+7+13+21+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\underline{S}_{n}=1+3+7+13+21+\ldots \ldots \ldots \ldots+T_{n-1}+T_{n}$
$0=1+\left[2+4+6+8+\ldots+\left(T_{n}-T_{n-1}\right)\right]-T_{n}$
The difference between the successive terms are $2,4,6,8$
So these differences are in A.P
Now,

$$
\begin{aligned}
& 1+\left[\frac{(n-1)}{2}\{4+(n-2) 2\}\right]-T_{n}=0 \\
& 1+\left[n^{2}-n\right]=T_{n} \\
& {\left[n^{2}-n+1\right]=T_{n}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\left(k^{2}-k+1\right) \\
& =\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 1-\sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{6}+n-\frac{n(n+1)}{2} \\
& =\frac{n(n+1)}{2}\left(\frac{2 n-2}{3}\right)+n \\
& =n\left(\frac{n^{2}-1+3}{3}\right) \\
& =\frac{n}{3}\left(n^{2}+2\right)
\end{aligned}
$$

\therefore The sum of the series is $\mathrm{n} / 3\left(\mathrm{n}^{2}+2\right)$

$4.3+7+14+24+37+\ldots$

Solution:

Let T_{n} be the nth term and S_{n} be the sum to n terms of the given series.
We have,
$\mathrm{S}_{\mathrm{n}}=3+7+14+24+37+$. \qquad $+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \ldots$
Equation (1) can be rewritten as:
$\mathrm{S}_{\mathrm{n}}=3+7+14+24+37+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
By subtracting (2) from (1) we get
$\mathrm{S}_{\mathrm{n}}=3+7+14+24+37+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\underline{S}_{n}=3+7+14+24+37+\ldots \ldots \ldots \ldots+T_{\underline{n}-1}+T_{\underline{n}}$
$0=3+\left[4+7+10+13+\ldots+\left(\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}-1}\right)\right]-\mathrm{T}_{\mathrm{n}}$

The difference between the successive terms are 4, 7, 10, 13
So these differences are in A.P
Now,

$$
\begin{aligned}
& 3+\left[\frac{(n-1)}{2}\{8+(n-2) 3\}\right]-T_{n}=0 \\
& 3+\left[\frac{(n-1)}{2}(3 n+2)\right]-T_{n}=0 \\
& {\left[\frac{3 n^{2}-n+4}{2}\right]=T_{n}} \\
& {\left[\frac{3}{2} n^{2}-\frac{n}{2}+2\right]=T_{n}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\left(\frac{3}{2} k^{2}-\frac{k}{2}+2\right) \\
& =\frac{3}{2} \sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 2-\frac{1}{2} \sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{4}+2 n-\frac{n(n+1)}{4} \\
& =\frac{n(n+1)(2 n)+8 n}{4} \\
& =\frac{(n+1)\left(2 n^{2}\right)+8 n}{4} \\
& =\frac{n}{2}[n(n+1)+4] \\
& =\frac{n}{2}\left[n^{2}+n+4\right]
\end{aligned}
$$

\therefore The sum of the series is $\mathrm{n} / 2\left[\mathrm{n}^{2}+\mathrm{n}+4\right]$
5. $1+3+6+10+15+\ldots$

Solution:
Let T_{n} be the nth term and S_{n} be the sum to n terms of the given series.
We have,
$\mathrm{S}_{\mathrm{n}}=1+3+6+10+15+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}} \ldots$
Equation (1) can be rewritten as:
$\mathrm{S}_{\mathrm{n}}=1+3+6+10+15+\ldots \ldots \ldots \ldots .+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
By subtracting (2) from (1) we get
$\mathrm{S}_{\mathrm{n}}=1+3+6+10+15+\ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}-1}+\mathrm{T}_{\mathrm{n}}$
$\underline{S}_{n}=1+3+6+10+15+\ldots \ldots \ldots \ldots+T_{n-1}+T_{n-}$
$0=1+\left[2+3+4+5+\ldots+\left(\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}-1}\right)\right]-\mathrm{T}_{\mathrm{n}}$
The difference between the successive terms are $2,3,4,5$

So these differences are in A.P
Now,

$$
\begin{aligned}
& 1+\left[\frac{(n-1)}{2}(4+(n-2) 1)\right]-T_{n}=0 \\
& 1+\left[\frac{(n-1)}{2}(n+2)\right]-T_{n}=0 \\
& {\left[\frac{n^{2}+n}{2}\right]=T_{n}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} T_{k} \\
& =\sum_{k=1}^{n}\left(\frac{k^{2}+k}{2}\right) \\
& =\frac{1}{2} \sum_{k=1}^{n} k^{2}+\frac{1}{2} \sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{12}+\frac{n(n+1)}{4} \\
& =\frac{n(n+1)}{4}\left(\frac{2 n+1}{3}+1\right) \\
& =\frac{n(n+1)}{4}\left(\frac{2 n+4}{3}\right) \\
& =\frac{n(n+1)}{2}\left(\frac{n+2}{3}\right) \\
& =\frac{n(n+1)(n+2)}{6} \\
& =\frac{n}{6}(n+1)(n+2)
\end{aligned}
$$

\therefore The sum of the series is $n / 6(n+1)(n+2)$

