

EXERCISE 22.1

PAGE NO: 22.12

1. If the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ subtends an angle α at the origin O, prove that : OP. OQ $\cos \alpha = x_1 x_2 + y_1 y_2$. Solution:

Given,

Two points P and Q subtends an angle α at the origin as shown in figure:

From figure we can see that points O, P and Q forms a triangle. Clearly in ΔOPQ we have:

$$\cos \alpha = \frac{OP^2 + OQ^2 - PQ^2}{2OP.OQ}$$
 {from cosine formula}

2 OP.OQ
$$\cos \alpha = OP^2 + OQ^2 - PQ^2 \dots$$
 equation (1)

We know that the, coordinates of O are $(0, 0) \Rightarrow x_2 = 0$ and $y_2 = 0$

Coordinates of P are $(x_1, y_1) \Rightarrow x_1 = x_1$ and $y_1 = y_1$

By using distance formula we have:

$$OP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(x_1 - 0)^2 + (y_1 - 0)^2}$$

$$= \sqrt{x_1^2 + y_1^2}$$

Similarly, OQ =
$$\sqrt{(x_2 - 0)^2 + (y_2 - 0)^2}$$

= $\sqrt{x_2^2 + y_2^2}$

And,
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\therefore OP^2 + OQ^2 - PQ^2 = x_1^2 + y_1^2 + x_2^2 + y_2^2 - \{(x_2 - x_1)^2 + (y_2 - y_1)^2\}$$

By using
$$(a-b)^2 = a^2 + b^2 - 2ab$$

:
$$OP^2 + OQ^2 - PQ^2 = 2x_1 x_2 + 2y_1 y_2 \dots$$
 Equation (2)

So now from equation (1) and (2) we have:

$$20P. OQ \cos \alpha = 2x_1x_2 + 2y_1y_2$$

$$OP. OQ \cos \alpha = x_1 x_2 + y_1 y_2$$

Hence Proved.

2. The vertices of a triangle ABC are A(0,0), B(2,-1) and C(9,0). Find cos B. Solution:

Given:

The coordinates of triangle.

From the figure,

By using cosine formula,

In \triangle ABC, we have:

$$\cos \mathbf{B} = \frac{AB^2 + BC^2 - AC^2}{2AB.BC}$$

Now by using distance formula we have:

$$AB = \sqrt{(2-0)^2 + (-1-0)^2} = \sqrt{5}$$

$$BC = \sqrt{(9-2)^2 + (0-(-1))^2} = \sqrt{7^2 + 1^2} = \sqrt{50}$$

And,
$$AC = \sqrt{(9-0)^2 + (0-0)^2} = 9$$

Now substitute the obtained values in the cosine formula, we get

$$\therefore \cos \mathbf{B} = \frac{(\sqrt{5})^2 + (\sqrt{50})^2 - 9^2}{2\sqrt{5}\sqrt{50}} = \frac{55 - 81}{2\sqrt{5}\sqrt{2 \times 25}} = \frac{-26}{10\sqrt{10}} = \frac{-13}{5\sqrt{10}}$$

3. Four points A (6, 3), B (-3, 5), C (4, -2) and D (x, 3x) are given in such a way

that
$$\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$$
, find x.

Solution:

Given:

The coordinates of triangle are shown in the below figure.

Also,
$$\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$$

Now let us consider Area of a ΔPQR

Where, $P(x_1, y_1)$, $Q(x_2, y_2)$ and $R(x_3, y_3)$ be the 3 vertices of ΔPQR .

So, Area of
$$(\Delta PQR) = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

Area of (
$$\triangle DBC$$
) = $\frac{1}{2}$ [x(5 - (-2)) + (-3)(-2 - 3x) + 4(3x - 5)]
= $\frac{1}{2}$ [7x + 6 + 9x + 12x - 20] = 14x - 7

Similarly, area of
$$(\Delta ABC) = \frac{1}{2} [6(5 - (-2)) + (-3)(-2 - 3) + 4(3 - 5)]$$

= $\frac{1}{2} [42 + 15 - 8] = \frac{49}{2} = 24.5$

$$\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2} = \frac{14x - 24.5}{24.5}$$

$$24.5 = 28x - 14$$

$$28x = 38.5$$

$$x = 38.5/28$$

$$= 1.375$$

4. The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not. Solution:

Given:

The coordinates of 4 points that form a quadrilateral is shown in the below figure

Now by using distance formula, we have:

$$AB = \sqrt{(9-2)^2 + (1-0)^2} = \sqrt{7^2 + 1} = \sqrt{50}$$

$$BC = \sqrt{(11-9)^2 + (6-1)^2} = \sqrt{2^2 + 5^2} = \sqrt{29}$$

It is clear that, $AB \neq BC$ [quad ABCD does not have all 4 sides equal.]

∴ ABCD is not a Rhombus