

EXERCISE 5A

1. Find the value of:

- (i) 6^2
- (ii) 7^3
- (iii) 4⁴
- (iv) 5⁵ (v) 8³
- (vi) 7⁵

Solution:

- (i) 6^2
- It can be written as
- $=6\times6$
- = 36
- (ii) 7^3
- It can be written as
- $=7\times7\times7$
- = 343
- (iii) 4⁴
- It can be written as
- $=4\times4\times4\times4$
- = 256
- (iv) 5^5
- It can be written as
- $=5\times5\times5\times5\times5$
- = 3125
- $(v) 8^3$
- It can be written as
- $= 8 \times 8 \times 8$
- =512
- (vi) 7^5
- It can be written as
- $= 7 \times 7 \times 7 \times 7 \times 7$
- = 16807

2. Evaluate:

- (i) $2^3 \times 4^2$ (ii) $2^3 \times 5^2$ (iii) $3^3 \times 5^2$

- (ii) 3×3 (iv) $2^2 \times 3^3$ (v) $3^2 \times 5^3$ (vi) $5^3 \times 2^4$ (vii) $3^2 \times 4^2$
- $(viii) (4 \times 3)^3$

PAGE: 73

(ix) $(5 \times 4)^2$ Solution:

(i)
$$2^3 \times 4^2$$

It can be written as

$$= 2 \times 2 \times 2 \times 4 \times 4$$

On further calculation

- $= 8 \times 16$
- = 128

(ii)
$$2^3 \times 5^2$$

It can be written as

$$=2\times2\times2\times5\times5$$

On further calculation

- $=8\times25$
- = 200

(iii)
$$3^3 \times 5^2$$

It can be written as

$$= 3 \times 3 \times 3 \times 5 \times 5$$

On further calculation

- $=27\times25$
- = 675

(iv)
$$2^2 \times 3^3$$

It can be written as

$$= 2 \times 2 \times 3 \times 3 \times 3$$

On further calculation

- $=4\times27$
- = 108

(v)
$$3^2 \times 5^3$$

It can be written as

$$= 3 \times 3 \times 5 \times 5 \times 5$$

On further calculation

- $=9\times125$
- = 1125

(vi)
$$5^3 \times 2^4$$

It can be written as

$$= 5 \times 5 \times 5 \times 2 \times 2 \times 2 \times 2$$

On further calculation

- $= 125 \times 16$
- = 2000

(vii)
$$3^2 \times 4^2$$

It can be written as

$$= 3 \times 3 \times 4 \times 4$$

On further calculation

 $=9\times16$

= 144

(viii) $(4 \times 3)^3$

It can be written as

$$= 4 \times 4 \times 4 \times 3 \times 3 \times 3$$

On further calculation

 $= 64 \times 27$

= 1728

(ix) $(5 \times 4)^2$

It can be written as

 $= 5 \times 5 \times 4 \times 4$

On further calculation

 $=25\times16$

=400

3. Evaluate:

(i) $(3/4)^4$

 $(ii) (-5/6)^5$

(iii) $(-3/-5)^3$

Solution:

 $(i) (3/4)^4$

It can be written as

$$= (3/4) \times (3/4) \times (3/4) \times (3/4)$$

On further calculation

$$= (3 \times 3 \times 3 \times 3)/(4 \times 4 \times 4 \times 4)$$

= 81/256

 $(ii) (-5/6)^5$

It can be written as

$$= (-5/6) \times (-5/6) \times (-5/6) \times (-5/6) \times (-5/6)$$

On further calculation

$$= [(-5) \times (-5) \times (-5) \times (-5) \times (-5)]/(6 \times 6 \times 6 \times 6 \times 6)$$

= -3125/776

 $(iii) (-3/-5)^3$

It can be written as

$$= (-3/-5) \times (-3/-5) \times (-3/-5)$$

On further calculation

$$= [(-3) \times (-3) \times (-3)]/[(-5) \times (-5) \times (-5)]$$

= 27/125

4. Evaluate:

(i) $(2/3)^3 \times (3/4)^2$

(ii)
$$(-3/4)^3 \times (2/3)^4$$

(iii)
$$(3/5)^2 \times (-2/3)^3$$

Solution:

(i)
$$(2/3)^3 \times (3/4)^2$$

It can be written as

$$= (2/3) \times (2/3) \times (2/3) \times (3/4) \times (3/4)$$

On further calculation

- $= 8/27 \times 9/16$
- = 1/6
- (ii) $(-3/4)^3 \times (2/3)^4$

It can be written as

 $= (-3/4) \times (-3/4) \times (-3/4) \times (2/3) \times (2/3) \times (2/3) \times (2/3)$

On further calculation

- $= -27/64 \times 16/81$
- = -1/12

(iii) $(3/5)^2 \times (-2/3)^3$

It can be written as

 $= (3/5) \times (3/5) \times (-2/3) \times (-2/3) \times (-2/3)$

On further calculation

- $= 9/25 \times (-8/27)$
- = -8/75

5. Which is greater:

- (i) 2^3 or 3^2
- (ii) 2^5 or 5^2
- (iii) 4³ or 3⁴ (iv) 5⁴ or 4⁵

Solution:

(i) 2^3 or 3^2

It can be written as

$$2^3 = 2 \times 2 \times 2 = 8$$

$$3^2 = 3 \times 3 = 9$$

Hence, 9 is greater than 8 i.e. $3^2 > 2^3$.

(ii) 2^5 or 5^2

It can be written as

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

$$5^2 = 5 \times 5 = 25$$

Hence, 32 is greater than 25 i.e. $2^5 > 5^2$.

(iii) 4^3 or 3^4

It can be written as

$$4^3 = 4 \times 4 \times 4 = 64$$

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

Hence, 81 is greater than 64 i.e. $3^4 > 4^3$.

(iv) 5^4 or 4^5

It can be written as

$$5^4 = 5 \times 5 \times 5 \times 5 = 625$$

$$4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$$

Hence, 1024 is greater than 625 i.e. $4^5 > 5^4$.

6. Express each of the following in exponential form:

- (i) 512
- (ii) 1250
- (iii) 1458
- (iv) 3600
- (v) 1350
- (vi) 1176

Solution:

(i) 512

It can be written as

- 2 512
- 2 256
- 2 128
- 2 64
- 2 32
- 2 16
- 2 8 2 4
- 2 2
 - 1

So we get

(ii) 1250

It can be written as

2	1250
5	625
5	125
5	25
5	5
	1

So we get

 $1250 = 2 \times 5 \times 5 \times 5 \times 5 = 2 \times 5^4$

(iii) 1458

It can be written as

2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

So we get

 $1458 = 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 2 \times 3^{6}$

(iv) 3600

It can be written as

	can be write
2	3600
2	1800
2	900
2 2 3	450
3	225
3	75
5	25
5	5
	1

So we get

 $3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 = 2^4 \times 3^2 \times 5^2$

(v) 1350

It can be written as

2	1350
2 3	675
3	225
3	75
5	25
5	5
	1

So we get

 $1350 = 2 \times 3 \times 3 \times 3 \times 5 \times 5 = 2 \times 3^{3} \times 5^{2}$

(vi) 1176

It can be written as

2	1176
2	588
	294
3	147
7	49
7	7
·	1

So we get

$$1176 = 2 \times 2 \times 2 \times 3 \times 7 \times 7 = 2^3 \times 3 \times 7^2$$

7. If a = 2 and b = 3, find the value of:

$$(i) (a + b)^2$$

$$(ii)(b-a)^3$$

(iii)
$$(\mathbf{a} \times \mathbf{b})^{\mathbf{a}}$$

(iv)
$$(\mathbf{a} \times \mathbf{b})^{\mathbf{b}}$$

Solution:

$$(i) (a + b)^2$$

By substituting the values of a and b

$$=(2+3)^2$$

On further calculation

$$=5^{2}$$

$$=5\times5$$

$$= 25$$

(ii)
$$(b - a)^3$$

By substituting the values of a and b

$$=(3-2)^3$$

On further calculation

$$=1^{3}$$

$$= 1 \times 1 \times 1$$

$$= 1$$

(iii)
$$(a \times b)^a$$

By substituting the values of a and b

$$=(2 \times 3)^2$$

On further calculation

$$=6^{2}$$

$$=6\times6$$

(iv)
$$(a \times b)^b$$

By substituting the values of a and b

$$=(2 \times 3)^3$$

On further calculation

$$=6^{3}$$

$$=6\times6\times6$$

$$= 216$$

8. Express:

- (i) 1024 as a power of 2.
- (ii) 343 as a power of 7.
- (iii) 729 as a power of 3.

Solution:

(i) 1024 as a power of 2.

It can be written as

2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2 2 2	4
2	2
	1

So we get

(ii) 343 as a power of 7.

It can be written as

7	343
7	49
7	7
	1

So we get

$$343 = 7 \times 7 \times 7 = 7^3$$

(iii) 729 as a power of 3.

It can be written as

3	729
3	243
3	81
3	27
3	9
3	3
	1

So we get

$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

9. If $27 \times 32 = 3^x \times 2^y$; find the values of x and y. Solution:

It is given that

$$27 \times 32 = 3^{x} \times 2^{y}$$

So we get

$$27 = 3^{x}$$

3	27	
3	9	

1

Here

$$27 = 3 \times 3 \times 3 = 3^3 = 3^x$$

We get

$$x = 3^x$$

Similarly

$$32 = 2^{y}$$

Here

$$32 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 2^9$$

We get

$$y = 5$$

10. If $64 \times 625 = 2^a \times 5^b$; find: (i) the values of a and b. (ii) $2^b \times 5^a$. Solution:

(i) the values of a and b

It is given that

$$64 \times 625 = 2^{a} \times 5^{b}$$

We know that

$$64 = 2^{a}$$

2	64
2	32
2	16

1

We can write it as

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

So we get $64 = 2^6$

a = 6

Similarly $625 = 5^b$

$$625 = 5^{t}$$

023 - 3		
5	625	
5	125	
5	25	
5	5	
	1	

We can write it as

$$625 = 5 \times 5 \times 5 \times 5$$

So we get $625 = 5^4$

$$625 = 5$$

$$b = 4$$

(ii) $2^b \times 5^a$

Substituting the values of a and b $= 2^4 \times 5^6$

$$= 2^4 \times 5^6$$

It can be written as

$$=2\times2\times2\times2\times5\times5\times5\times5\times5\times5$$

So we get

$$= 16 \times 15625$$

= 250000

EXERCISE 5B

PAGE: 75

1. Fill in the blanks:

- (i) In $5^2 = 25$, base = and index =
- (ii) If index = 3x and base = 2y, the number =

- (i) In $5^2 = 25$, base = 5 and index = 2.
- (ii) If index = 3x and base = 2y, the number = $2y^{3x}$.

2. Evaluate:

- (i) $2^8 \div 2^3$ (ii) $2^{3\div} 2^8$
- (iii) $(2^6)^0$
- $(iv) (3^0)^6$
- $(v) 8^3 \times 8^{-5} \times 8^4$
- (vi) $5^4 \times 5^3 \div 5^5$
- (vii) $5^4 \div 5^3 \times 5^5$
- (viii) $4^4 \div 4^3 \times 4^0$ (ix) $(3^5 \times 4^7 \times 5^8)^0$

Solution:

- (i) $2^8 \div 2^3$
- It can be written as
- $=2^8/2^3$
- On further calculation
- $=2^{8-3}$
- $=2^{5}$
- (ii) $2^{3\div} 2^8$
- It can be written as
- $=2^3/2^8$
- On further calculation
- $=2^{3-8}$

So we get $= 2^{-5}$

- $=1/2^5$

 $(iii) (2^6)^0$

It can be written as $= 2^{6 \times 0}$

On further calculation

 $=2^{0}$

So we get

- = 1
- (iv) $(3^{\circ})^{6}$

It can be written as $= 3^{0 \times 6}$

On further calculation $=3^{0}$

So we get

= 1

(v) $8^3 \times 8^{-5} \times 8^4$

It can be written as $= 8^{3+4-5}$

On further calculation = 8 ⁷⁻⁵

So we get $= 8^2$

(vi) $5^4 \times 5^3 \div 5^5$

It can be written as

 $= (5^4 \times 5^3)/5^5$

On further calculation $= 5^{4+3-5}$

So we get $= 5^{7-5}$

$$=5^{7-5}$$

 $=5^{2}$

(vii) $5^4 \div 5^3 \times 5^5$

It can be written as

 $= 5^4/5^3 \times 5^5$

On further calculation $= 5^{4-3+5}$

So we get

 $=5^{6}$

(viii) $4^4 \div 4^3 \times 4^0$

It can be written as

 $=4^4/(4^3 \times 4^0)$

On further calculation

 $=4^4/(4^3 \times 1)$

So we get

$$=4^4/4^3$$

$$=4^{4-3}$$

$$=4^{1}$$

(ix) $(3^5 \times 4^7 \times 5^8)^0$

It can be written as $= 3^{5 \times 0} \times 4^{7 \times 0} \times 5^{8 \times 0}$

$$-3^{5\times0} \times 4^{7\times0} \times 5^{8\times0}$$

On further calculation

 $=3^0\times4^0\times5^0$

So we get

 $= 1 \times 1 \times 1$

= 1

3. Simplify, giving answers with positive index:

(i) $2b^6$. b^3 . $5b^4$

(ii)
$$x^2y^3$$
. $6x^5y$. $9x^3y^4$

(iii) $(-a)^5 (a^2)$

$$(iv) (-y)^2 (-y)^3$$

$$(v)(-3)^2(3)^3$$

(vi)
$$(-4x)(-5x^2)$$

$$(vii) (5a^2b) (2ab^2) (a^3b)$$

(viii)
$$x^{2a+7}$$
. x^{2a-8}

$$(ix)$$
 3^{y} . 3^{2} . 3^{-4}

$$(x) 2^{4a} 2^{3a} 2^{-3}$$

(x)
$$2^{4a}$$
. 2^{3a} . 2^{-a}
(xi) $4x^2y^2 \div 9x^3y^3$

(xii)
$$(10^2)^3 (x^8)^{12}$$

(xii)
$$(a^{10})^{10} (1^6)^{10}$$

(xiii) $(a^{10})^{10} (1^6)^{10}$

$$(xiv) (n^2)^2 (-n^2)^3$$

$$(xv) - (3ab)^{2} (-5a^{2}bc^{4})^{2}$$

 $(xvi) (-2)^{2} \times (0)^{3} \times (3)^{3}$
 $(xvii) (2a^{3})^{4} (4a^{2})^{2}$

$$(xvi) (-2)^2 \times (0)^3 \times (3)^3$$

$$(xvii) (2a^3)^4 (4a^2)^2$$

$$(xviii) (4x^2y^3)^3 \div (3x^2y^3)^3$$

$$(xix)\left(\frac{1}{2x}\right)^3 \times (6x)^2$$

$$(xx)\left(\frac{1}{4ab^2c}\right)^2 \div \left(\frac{3}{2a^2bc^2}\right)^2$$

(xxi)
$$\frac{(5x^7)^3 (10x^2)^2}{(2x^5)^7}$$

(xxii)
$$\frac{(7p^2q^9r^5)^2(4pqr)^3}{(14p^6q^{10}r^4)^2}$$

Solution:

(i)
$$2b^6$$
, b^3 , $5b^4$

It can be written as

$$= 2 \times 5 \times b^{6+3+4}$$

On further calculation

$$= 10 b^{13}$$

(ii)
$$x^2y^3$$
. $6x^5y$. $9x^3y^4$

It can be written as
=
$$6 \times 9 \times x^{2+5+3} \times y^{3+1+4}$$

On further calculation

$$= 54 x^{10} y^8$$

$$(iii) (-a)^5 (a^2)$$

It can be written as

$$= (-1 \times a)^5 \times a^2$$

On further calculation

=
$$(-1)^5 \times a^{5+2}$$

So we get
= $-1 \times a^7$
= $-a^7$

(iv)
$$(-y)^2 (-y)^3$$

It can be written as $= (-1 \times y)^2 \cdot (-1 \times y)^3$
On further calculation $= (-1)^2 \cdot y^2 \cdot (-1)^3 \times y^3$
So we get $= 1^{2+3} \cdot y^{2+3}$
 $= 1^5 y^5$
 $= y^5$

(v)
$$(-3)^2$$
 (3)³
It can be written as $= (-1 \times 3)^2$. (3)³
On further calculation $= (-1)^2 \times 3^2$. 3³
So we get $= (-1)^2$. 3^{2+3}
 $= 1$. 3^5
 $= 3^5$

(vi)
$$(-4x) (-5x^2)$$

It can be written as $= (-1 \times 4 \times x). (-1 \times 5 \times x^2)^1$
On further calculation $= (-1 \times 4 \times x). (-1 \times 5 \times x^2)$
So we get $= -1 \times -1 \times 4 \times 5 \times x^{1+2}$
Here $= -1^{1+1}.4^1.5^1x^3$
 $= 20x^3$

(vii)
$$(5a^2b) (2ab^2) (a^3b)$$

It can be written as
$$= 5 \times 2 \times a^{2+1+3} \times b^{1+2+1}$$
On further calculation
$$= 10 a^6b^4$$

(viii)
$$x^{2a+7}$$
. x^{2a-8}
It can be written as
$$= x^{2a+7+2a-8}$$
On further calculation
$$= x^{4a-1}$$

 $=3^{y}.3^{2}/3^{4}$

On further calculation

 $= 3^{y}$. $(3 \times 3)/(3 \times 3 \times 3 \times 3)$

So we get

 $=3^{y}\times 1/3^{2}$

 $=3^{y-2}$

 $(x) 2^{4a}. 2^{3a}. 2^{-a}$

It can be written as

 $=2^{4a+3a-a}$

On further calculation

 $=2^{7a-a}$

So we get

 $=2^{6a}$

 $(xi) \ 4x^2y^2 \div 9x^3y^3$

It can be written as

 $=4x^2y^2/9x^3y^3$

On further calculation $= 4x^{2-3}y^{2-3}/9$

So we get

 $=4x^{-1}y^{-1}/9$

=4/9xy

 $(xii) (10^2)^3 (x^8)^{12}$

It can be written as $= 10^{2 \times 3}$. $x^{8 \times 12}$

On further calculation

 $=10^6 x^{96}$

 $(xiii) (a^{10})^{10} (1^6)^{10}$

It can be written as $= a^{10 \times 10}$. $1^{6 \times 10}$

On further calculation $= a^{100}$. 1^{60}

So we get $= a^{100}$

 $(xiv) (n^2)^2 (-n^2)^3$

It can be written as $= n^{2 \times 2}$. $(-n)^{2 \times 3}$

On further calculation

 $= n^4 \cdot (-n)^6$

So we get

 $= - n^4 - 1^6 n^6$

 $= -n^{4+6}$

 $(xv) - (3ab)^2 (-5a^2bc^4)^2$

It can be written as

= -
$$(3^2a^2b^2) \times (-1)^2 \times 5^2a^{2\times 2}b^2c^{4\times 2}$$

On further calculation

$$= - (3^2 a^2 b^2) (5^2 a^4 b^2 c^8)$$

So we get

$$= -3^2.5^2. a^{2+4} b^{2+2} c^8$$

$$= -225a^6b^4c^8$$

 $(xvi) (-2)^2 \times (0)^3 \times (3)^3$

It can be written as

$$=4\times0\times27$$

On further calculation

$$=0$$

 $(xvii) (2a^3)^4 (4a^2)^2$

It can be written as

$$= (2a^3)^4 (2^2a^2)^2$$

On further calculation $= 2^4 a^{3 \times 4}$. $2^{2 \times 2}$. $a^{2 \times 2}$

$$=2^4 a^{3\times 4}. 2^{2\times 2}. a^{2\times 2}$$

So we get
$$= 2^4 a^{12} \cdot 2^4 a^4$$

$$=2^{4+4}$$
. a^{12+4}

$$=2^{8} a^{16}$$

We get

$$= 2 \times a^{16}$$

= 256 a^{16}

$$= 256 a^{1}$$

 $(xviii) (4x^2y^3)^3 \div (3x^2y^3)^3$

It can be written as
$$= \frac{4^3 x^{2 \times 3} y^{3 \times 3}}{3^3 x^{2 \times 3} y^{3 \times 3}}$$

On further calculation

$$=\frac{4^3x^6y^9}{3^3x^6y^9}$$

By further simplification

$$=\frac{4^3}{3^3}$$

$$=\frac{64}{27}$$

$$(xix)\left(\frac{1}{2x}\right)^3 \times (6x)^2$$

It can be written as
$$= \frac{1^3}{2^3 \times x^3} \times 6^2 \times x^2$$

On further calculation

$$= \frac{1^3 \times 6^2}{2^3 \times x^{3-2}}$$

By further simplification

$$=\frac{6^2}{2^3x}$$

So we get

$$= \frac{6 \times 6}{2 \times 2 \times 2 \times x}$$
$$= \frac{9}{2x}$$

$$(xx)\left(\frac{1}{4ab^2c}\right)^2 \div \left(\frac{3}{2a^2bc^2}\right)^4$$

It can be written as

$$= (\frac{1}{4ab^2c})^2 \times (\frac{2a^2bc^2}{3})^4$$

On further calculation

$$=\frac{1^2}{4^2a^2b^{2\times 2}c^2}\times\frac{2^4a^{2\times 4}b^4c^{2\times 4}}{3^4}$$

By further simplification

$$=\frac{1^2}{3^4}\times a^{8-2}b^{4-4}c^{8-2}$$

So we get

$$= \frac{1}{3 \times 3 \times 3 \times 3} a^{6} b^{0} c^{6}$$
$$= \frac{1}{81} a^{6} c^{6}$$

(xxi)
$$\frac{(5x^7)^3 (10x^2)^2}{(2x^6)^7}$$

It can be written as
$$=\frac{5^3x^{7\times3}10^2x^{2\times2}}{2^7x^{6\times7}}$$

On further calculation

$$=5^3 10^2 2^{-7} x^{21+4-42}$$

 $By\ further\ simplification$

$$=\frac{5^3\times 10^2}{2^7x^{17}}$$

So we get

$$= \frac{5 \times 5 \times 5 \times 2 \times 5 \times 2 \times 5}{2 \times 2 \times 2^{17}}$$

$$= \frac{5^5}{2^5 x^{17}}$$

$$= \frac{3125}{32x^{17}}$$

(xxii)
$$\frac{(7p^2q^9r^5)^2(4pqr)^3}{(14p^6q^{10}r^4)^2}$$

It can be written as

$$= \frac{(7^2 p^{2 \times 2} q^{9 \times 2} r^{5 \times 2})(4^3 p^3 q^3 r^3)}{14^2 p^{6 \times 2} q^{10 \times 2} r^{4 \times 2}}$$

 $On\ further\ calculation$

$$=\frac{7\times 7p^4q^{18}r^{10}4\times 4\times 4p^3q^3r^3}{2\times 7\times 2\times 7\times p^{12}q^{20}r^8}$$

 $By\ further\ simplification$

$$= p^{4-12+3}q^{18-20+3}r^{10-8+3}4\times 4$$

So we get

$$=16p^{-5}qr^{5}$$

$$=\frac{16qr^5}{p^5}$$

4. Simplify and express the answer in the positive exponent form:

(i)
$$\frac{(-3)^3 \times 2^6}{6 \times 2^3}$$

(ii)
$$\frac{(2^3)^5 \times 5^4}{4^3 \times 5^2}$$

(iii)
$$\frac{36 \times (-6)^2 \times 3^6}{12^3 \times 3^5}$$

$$(iv) - \frac{128}{2187}$$

(v)
$$\frac{a^{-7} \times b^{-7} \times c^5 \times d^4}{a^3 \times b^{-5} \times c^{-3} \times d^8}$$

(vi)
$$(a^3b^{-5})^{-2}$$

Solution:

$$(i)\frac{(-3)^3 \times 2^6}{6 \times 2^3}$$

It can be written as

$$=\frac{(-3)^3\times 2^6}{2\times 3\times 2^3}$$

On further calculation

$$=\frac{(-3)^3\times 2^6}{3\times 2^{3+1}}$$

So we get
=
$$-(3)^{3-1} 2^{6-4}$$

= $-(3)^2 2^2$
= $-3^2 2^2$

$$(ii)\frac{(2^3)^5 \times 5^4}{4^3 \times 5^2}$$

It can be written as

$$=\frac{2^{3\times5}\times5^4}{2^3\times2^2\times5^2}$$

On further calculation

$$= \frac{2^{15} \times 5^4}{2^6 \times 5^2}$$

So we get

$$=2^{15-6}\times 5^{4-2}$$

$$=2^{9} \times 5^{2}$$

$$(iii) \frac{36 \times (-6)^2 \times 3^6}{12^3 \times 3^5}$$

It can be written as

$$= \frac{6 \times 6 \times (-6)^2 \times 3^6}{3^3 \times 4^3 \times 3^5}$$

 $On\ further\ calculation$

$$=\frac{6^2\times (-6)^2\times 3^{6-3-5}}{4^3}$$

So we get

$$=\frac{6^2\times(-6)^23^{-2}}{4^3}$$

$$=\frac{6^2(-6)^2}{3^2\times 4^3}$$

 $We\ can\ write\ it\ as$

$$= \frac{6 \times 6 \times -6 \times -6}{3 \times 3 \times 4 \times 4 \times 4}$$

$$= \frac{9}{4}$$
$$= (\frac{3}{2})^2$$

(iv) - 128/2187

So we get

2	128	3	218
2	64	3	72
2	32	3	24
2	16	3	8:
2	8	3	2
2	4	3	9
2	2	3	3
	1		1

It can be written as
$$= -\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

$$= -\frac{2^{7}}{3^{7}}$$

$$(v)\frac{a^{-7}\times b^{-7}\times c^5\times d^4}{a^3\times b^{-5}\times c^{-3}\times d^8}$$

It can be written as

$$= a^{-7-3} \times b^{-7+5} \times c^{5-(-3)} \times d^{4-8}$$

So we get

$$=a^{-10} \times b^{-2} \times c^8 \times d^{-4}$$

$$=\frac{c^8}{a^{10}\times b^2\times d^4}$$

(vi) $(a^3b^{-5})^{-2}$

It can be written as $= a^{3 \times -2} b^{-5 \times -2}$

So we get
=
$$a^{-6} b^{10}$$

= b^{10}/a^{6}

$$= a^{-6} b^{10}$$

$$= b^{10}/a^6$$

5. Evaluate:

(i)
$$6^{-2} \div (4^{-2} \times 3^{-2})$$

$$(ii)[(\frac{5}{6})^2 \times \frac{9}{4}] \div [(-\frac{3}{2})^2 \times \frac{125}{216}]$$

(iii)
$$5^3 \times 3^2 + (17)^0 \times 7^3$$

(iii)
$$5^3 \times 3^2 + (17)^0 \times 7^3$$

(iv) $2^5 \times 15^0 + (-3)^3 - (2/7)^{-2}$
(v) $(2^2)^0 + 2^{-4} \div 2^{-6} + (1/2)^{-3}$
(vi) $5^n \times 25^{n-1} \div (5^{n-1} \times 25^{n-1})$

$$(v) (2^2)^0 + 2^{-4} \div 2^{-6} + (1/2)^{-3}$$

(vi)
$$5^{n} \times 25^{n-1} \div (5^{n-1} \times 25^{n-1})$$

Solution:

(i)
$$6^{-2} \div (4^{-2} \times 3^{-2})$$

It can be written as

$$= (1/6)^2 \div (1/4)^2 \times (1/3)^2$$

On further calculation

$$= 1/36 \div 1/16 \times 1/9$$

So we get

$$= 1/36 \div 1/144$$

$$= 1/36 \times 144/1$$

$$(ii)[(\frac{5}{6})^2 \times \frac{9}{4}] \div [(-\frac{3}{2})^2 \times \frac{125}{216}]$$

$$= [(\frac{5 \times 5}{6 \times 6}) \times \frac{9}{4}] \div [(\frac{-3 \times -3}{2 \times 2}) \times \frac{125}{216}]$$

On further calculation

$$=\left[\frac{25}{36}\times\frac{9}{4}\right]\div\left[\frac{9}{4}\times\frac{125}{216}\right]$$

So we get

$$= [\frac{25}{4} \times \frac{1}{4}] \div [\frac{1}{4} \times \frac{125}{24}]$$

By multiplication

$$= [\frac{25}{16}] \div [\frac{125}{96}]$$

We qet

$$=\frac{25}{16}\times\frac{96}{125}$$

$By \ simplification$

$$=\frac{1}{1}\times\frac{6}{5}$$

$$=1\frac{1}{5}$$

(iii)
$$5^3 \times 3^2 + (17)^0 \times 7^3$$

It can be written as

$$= 5 \times 5 \times 5 \times 3 \times 3 + (17)^{0} \times 7 \times 7 \times 7$$

On further calculation

$$= 125 \times 9 + 1 \times 343$$

So we get

$$= 1125 + 343$$

$$= 1468$$

(iv)
$$2^5 \times 15^0 + (-3)^3 - (2/7)^{-2}$$

It can be written as

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 1 + (-3) \times (-3) \times (-3) - (7/2) \times (7/2)$$

By further calculation

$$=32 \times 1 - 27 - 49/4$$

Here we get LCM = 4

$$= (32 \times 4)/(1 \times 4) - (27 \times 4)/(1 \times 4) - 49/(4 \times 1)$$

So we get

$$=(128-108-49)/4$$

By subtraction

$$= -29/4$$

$$= -71/4$$

(v)
$$(2^2)^0 + 2^{-4} \div 2^{-6} + (1/2)^{-3}$$

It can be written as

$$= (4)^0 + (1/2)^4 \div (1/2)^6 + (2/1)^3$$

By further calculation

$$= 1 + (1/2 \times 1/2 \times 1/2 \times 1/2) \div (1/2 \times 1/2 \times 1/2 \times 1/2 \times 1/2 \times 1/2) + (2/1 \times 2/1 \times 2/1)$$

So we get

$$= 1 + (1/2 \times 1/2 \times 1/2 \times 1/2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2) + 8$$

On further simplification

$$= 1 + 4 + 8$$

(vi)
$$5^n \times 25^{n-1} \div (5^{n-1} \times 25^{n-1})$$

It can be written as

$$= 5^{n} \times 25^{n-1} \times 1/(5^{n-1} \times 25^{n-1})$$

By further calculation

$$=5^{n} \times 1/5^{n-1}$$

So we get $=5^{n-n+1}$ $=5^{1}$

6. If m = -2 and n = 2; find the value of:

(i)
$$m^2 + n^2 - 2mn$$

(ii) $m^n + n^m$

(ii)
$$m^n + n^m$$

(iii)
$$6m^{-3} + 4n^2$$

(iv)
$$2n^3 - 3m$$

Solution:

(i) $m^2 + n^2 - 2mn$

It is given that

m = -2 and n = 2

Substituting the values we get

$$= (-2)^2 + 2^2 - 2 (-2) (2)$$

By further calculation

$$=4+4-(-8)$$

So we get

$$= 8 + 8$$

$$= 2^4$$

2	16
2	8
2	4
2	2
	1

(ii) $m^n + n^m$

It is given that m = -2 and n = 2

Substituting the values we get

$$=(-2)^2+(2)^{-2}$$

We can write it as

$$=4+1/2\times 1/2$$

We get the LCM = 4

$$= (4 \times 4)/(1 \times 4) + 1/4$$

So we get

$$=(16+1)/4$$

$$= 17/4$$

$$=4 \frac{1}{4}$$

(iii) $6m^{-3} + 4n^2$

It is given that

$$m = -2$$
 and $n = 2$

Substituting the values

$$=6(-2)^{-3}+4(2)^{2}$$

It can be written as

$$= 6 \times 1/-2 \times 1/-2 \times 1/-2 + 4 \times 2 \times 2$$

So we get = -3/4 + 16Here the LCM = 4= $(-3 + 16 \times 4)/4$ By calculation = (-3 + 64)/4= -61/4= $15 \frac{1}{4}$

(iv) $2n^3 - 3m$ It is given that m = -2 and n = 2By substituting the values $= 2(2)^3 - 3(-2)$ It can be written as $= 2 \times (2 \times 2 \times 2) - 3 \times (-2)$ By further calculation $= 16 - 3 \times (-2)$ So we get = 16 + 6= 22

