BYJU'S Home Learning Program

Topic covered:

- Electrostatics (Session - 1)

Daily Practice Problems

1. When 10^{19} electrons are removed from a neutral metal plate, the electric charge on it is
a. -1.6 C
b. +1.6 C
c. $10^{+19} \mathrm{C}$
d. $10^{-19} \mathrm{C}$
2. A metal disk with a charge $Q_{1}=-1 e$ sits near a metal sphere that has a charge $Q_{2}=$ $-4 e$. If the disk touched the sphere, what is the possible final charge on each object?

a. $Q_{1}=-2 e, Q_{2}=-3 e$
b. $Q_{1}=-3 e, Q_{2}=-3 e$
c. $Q_{1}=-1 e, Q_{2}=+7 e$
d. $Q_{1}=-2 e, Q_{2}=-2 e$
3. Three identical point charges, each of mass m and charge q, hang from three strings as shown in the given figure. The value of q in terms of m, L and θ is

a. $q=\sqrt{\left(\frac{16}{5}\right) \pi \varepsilon_{o} m g L^{2} \sin ^{2} \theta \tan \theta}$
b. $q=\sqrt{\left(\frac{16}{15}\right) \pi \varepsilon_{o} m g L^{2} \sin ^{2} \theta \tan \theta}$
c. $q=\sqrt{\left(\frac{15}{16}\right) \pi \varepsilon_{o} m g L^{2} \sin ^{2} \theta \tan \theta}$
d. none of these

BYJU'S Home Learning Program

4. A polythene piece rubbed with wool is found to have a negative charge of $3 \times 10^{-7} \mathrm{C}$.
(a)Estimate the number of electrons transferred (from which to which)
(b)Is there a transfer of mass from wool to polythene?
5. A charge Q is placed at each of the two opposite corners of a square. A charge q is placed at the each of the other two corners. If the resulatant force on each charge q is zero, then:
a. $q=\sqrt{2} Q$
b. $q=-\sqrt{2} Q$
c. $q=2 \sqrt{2} Q$
d. $q=-2 \sqrt{2} Q$
6. F_{g} and F_{e} represents gravitational and electrostatic force respectively on electrons situated at a distance of 10 cm . The ratio of $\frac{F_{g}}{F_{e}}$ is of the order of
a. 10^{42}
b. 10
c. 1
d. 10^{-43}
7. Three charges $4 q, Q$ and q are in a straight line in the position of $0, \frac{l}{2}$ and l respectively. The resultant force on q will be zero, if $Q=$
a. $-q$
b. $-2 q$
c. $-\frac{q}{2}$
d. $4 q$
8. Two charges each having a charge of $1 C$ are at a distance 1 km apart. The force between them is
a. $9 \times 10^{3} \mathrm{~N}$
b. $9 \times 10^{-3} \mathrm{~N}$
c. $\quad 1.1 \times 10^{-4} \mathrm{~N}$
d. $10^{4} \mathrm{~N}$
9. Suppose the charge of a proton and an electron differ slightly. One of them is $-e$, the other is $(e+\Delta e)$. If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then Δe is of the order of [Given: mass of hydrogen $m_{h}=1.67 \times 10^{-27} \mathrm{~kg}$]
a. $10^{-23} \mathrm{C}$
b. $10^{-37} \mathrm{C}$
c. $10^{-47} \mathrm{C}$
d. $10^{-20} C$
10. Two identical charged spheres suspended from a common point by two massless strings of length l, are initially at a distance $d(d \ll l)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of the distance x between the spheres, as
a. $v \propto x^{-\frac{1}{2}}$
b. $v \propto x^{-1}$
c. $v \propto x^{\frac{1}{2}}$
d. $v \propto x^{\frac{1}{3}}$

BYJU'S Home Learning Program

Answer Key

Question Number	1	2	3	4	5
Answer Key	(b)	(a)	(a)	a. 1.875×10^{12} b. 17×10^{-19}	(d)

Question Number	6	7	8	9	10
Answer Key	(d)	(a)	(a)	(b)	(a)

BYJU'S Home Learning Program

Solutions

1. (b)

Charge on an electron is a constant i.e., $-1.6 \times 10^{-19} \mathrm{C}$. So, if we remove an electron from a substance, we remove a charge of $-1.6 \times 10^{-19} \mathrm{C}$. Therefore, by quantization of charge, the charge gained by the substance is equal to $+1.6 \times 10^{-19} \mathrm{C}$ and if 10^{19} electrons are removed then the charge gain by the metal plate is

$$
Q=n e
$$

$$
\begin{gathered}
Q=10^{19} \times 1.6 \times 10^{-19} C \\
Q=1.6 C
\end{gathered}
$$

2. (a)

Total charge initially $=-1 e+(-4 e)=-5 e$
Using the quantization of charges, the only possibility is option (a)
Total charge finally $=-2 e+(-3 e)=-5 e$
3. (a)

$$
\begin{align*}
F & =F_{2}+F_{3}=\frac{k q^{2}}{(L \sin \theta)^{2}}+\frac{k q^{2}}{(2 L \sin \theta)^{2}} \\
& =\frac{5}{4} \frac{k q^{2}}{L^{2} \sin ^{2} \theta} \ldots . \tag{1}
\end{align*}
$$

$T \sin \theta=F e$
$T \cos \theta=m g$
From (1), (2) and (3), $\quad q=\sqrt{\left(\frac{16}{5}\right) \pi \varepsilon_{o} m g L^{2} \sin ^{2} \theta \tan \theta}$

BYJU'S Home Learning Program

4.

Given,

$$
q=3 \times 10^{-7} C, e=1.6 \times 10^{-19} C
$$

(a) To estimate the number of the electron transferred,

$$
\begin{aligned}
& q=n e \\
& n=\frac{3 \times 10^{-7}}{1.6 \times 10^{-19}}=1.875 \times 10^{12} \text { electrons }
\end{aligned}
$$

(b) Yes, mass is transferred from wool to polythene.

We know that the mass of electron, $m=9.1 \times 10^{-31} \mathrm{~kg}$
The mass transferred is $M=n m$

$$
M=1.875 \times 10^{12} \times 9.1 \times 10^{-31}=17 \times 10^{-19} \mathrm{~kg}
$$

5. (d)

The net force on q at one corner is zero if $\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}=0$
Or $F_{1} \cos 45^{\circ} \hat{\imath}-F_{1} \sin 45^{\circ} \hat{\jmath}-F_{2} \hat{\jmath}+F_{3} \hat{\imath}$
So, $F_{1} \cos 45^{\circ}=-F_{3} \ldots$ (1) and $F_{1} \sin 45^{\circ}=-F_{2} \ldots$ (2)
Using (1), $\frac{k q^{2}}{(\sqrt{2} a)^{2}} \times \frac{1}{2}=-\frac{k q Q}{a^{2}}$
Or $q=-2 \sqrt{2} Q$
6. (d)

Gravitational force between electrons $F_{g}=\frac{G\left(m_{e}\right)^{2}}{r^{2}}$
Electrostatic force between electrons $F_{e}=\frac{k(e)^{2}}{r^{2}}$

$$
\frac{F_{g}}{F_{e}}=\frac{G\left(m_{e}\right)^{2}}{k(e)^{2}}=\frac{6.67 \times 10^{-11} \times\left(9.1 \times 10^{-31}\right)^{2}}{9 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)^{2}}=2.39 \times 10^{-43}
$$

BYJU'S Home Learning Program

7. (a)

The force between $4 q$ and $q: F_{1}=\frac{1}{4 \pi \varepsilon_{o}} \frac{4 q \times q}{l^{2}}$
The force between Q and $q: F_{2}=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q \times q}{\left(\frac{l}{2}\right)^{2}}$
Given $F_{1}+F_{2}=0$

$$
\frac{4 q^{2}}{l^{2}}=\frac{4 Q q}{l^{2}} \Rightarrow Q=-q
$$

8. (a)

$$
F=\frac{k Q^{2}}{r^{2}}=9 \times 10^{9} \times 1^{2} \times \frac{1}{(1000)^{2}}=9 \times 10^{3} \mathrm{~N}
$$

9. (b)

A hydrogen atom consists of an electron and a proton
\therefore Charge on one hydrogen atom $=q_{e}+q_{p}=-e+(e+\Delta e)=\Delta e$
Since a hydrogen atom carry a net charge Δe,
Electrostatic force, $F_{e}=\frac{1}{4 \pi \varepsilon_{o}} \frac{(\Delta e)^{2}}{d^{2}}$ will act between the two hydrogen atoms.
The gravitational force between them is given as $F_{g}=\frac{G m_{h} m_{h}}{d^{2}}$
Since the net force on the system is zero, $F_{e}=F_{g}$

$$
\begin{gathered}
\frac{1}{4 \pi \varepsilon_{o}} \frac{(\Delta e)^{2}}{d^{2}}=\frac{G m_{h} m_{h}}{d^{2}} \\
(\Delta e)^{2}=4 \pi \varepsilon_{o} G m_{h}{ }^{2}
\end{gathered}
$$

$$
=9 \times 10^{9} \times 6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2}=10^{-37} C
$$

10. (a)

From the figure, $T \cos \theta=m g \ldots$....(i)
and $T \sin \theta=\frac{k q^{2}}{x^{2}}$
From equations (i) and (ii), $\tan \theta=\frac{k q^{2}}{x^{2} m g}$
Since θ is small, $\tan \theta \cong \sin \theta=\frac{x}{2 l}$

$$
\therefore \frac{x}{2 l}=\frac{k q^{2}}{x^{2} m g}
$$

$q^{2}=x^{3} \frac{m g}{2 l k} \Rightarrow \frac{d q}{d t} \propto \frac{3}{2} \sqrt{x} \frac{d x}{d t}=\frac{3 \sqrt{x} v}{2}$
Since, $\frac{d q}{d t}=$ constant
From the above equation, $v \propto \frac{1}{\sqrt{x}}$

