Topic covered:

• Electrostatics (Session - 2) - NEET

Daily Practice Problems

- 1. A charged oil drop is suspended in a uniform field of $3 \times 10^4 V/m$ so that it neither falls nor rises. The charge on the drop will be (Take the mass of the charge = $9.9 \times 10^{-15} kg$ and $g = 10 m/s^2$) a. $1.6 \times 10^{-18} C$ b. $4.0 \times 10^{-18} C$
 - a. $1.0 \times 10^{-18}C$ c. $3.3 \times 10^{-18}C$

- b. $4.0 \times 10^{-18}C$ d. $4.8 \times 10^{-18}C$
- 2. Some electric lines of force are shown in figure. For points A and B

- 3. A simple pendulum of time period T is suspended from roof. An uniform electric field exist in region as shown. If the bob is given some negative charge and displaced slightly, its time period of oscillation will be
 - a. >T
 - с. Т

- b. <T
- d. Proportional to its amplitude

4. A few electric field lines for a system of two charges Q_1 and Q_2 fixed at two different points on the x-axis are shown in the figure. Then $\frac{Q_1}{Q_2}$ might be

5. In the basic *CsCl* crystal structure, Cs^+ and Cl^- ions are arranged in a BCC configuration as shown in figure. The net electrostatic force exerted by the eight Cs^+ ions on the Cl^- ion is

6. Two equal point charges of 1μ C each are located at points $(\hat{i} + \hat{j} - \hat{k})$ m and $(2\hat{i} + 3\hat{j} + \hat{k})$ m. What is the magnitude of electrostatic force between them?

a.	10^{-3} N	b.	10 ⁻⁶ N
c.	10 ⁻⁹ N	d.	10 ⁻¹² N

7. The magnitude of electric field at a distance x from a charge q is E. An identical charge is placed at a distance 2x from it. Then the magnitude of the electric force it experiences due to charge q is

a.	qE	-			b).	2 qE
c.	<u>qE</u> 2				d	l.	$\frac{qE}{4}$

a.

8. Two-point charges $q_1 = +9\mu$ C and $q_2 = (-1)\mu$ C are held 10 cm apart. Where should at third charge +Q be placed from q_2 on the line joining them so that charge Q does not experience any net force?

a.	4 cm	b.	5 cm
	<i>(</i>	,	_

c. 6 cm

d. 7 cm

- 9. Two-point charges $q_1 = 2\mu C$ and $q_2 = 1\mu C$ are placed at distances b = 1 cm and a = 2 cm from the origin on the y and x axes as shown in figure. The electric field vector at point P (a, b) will subtend an angle θ with the x axis given by
 - a. $\tan \theta = 1$
 - c. $\tan \theta = 3$

b. $\tan \theta = 2$ d. $\tan \theta = 4$

- p_{q_1} $p_{(a, b)}$ $p_{(a,$
- 10. Two equal negative charges -q are fixed at points (0, a) and (0, -a) on the y-axis. A positive charge Q is released from rest at a point (2a, 0) on the x-axis. The charge q will
 - a. execute simple harmonic motion about the origin
 - b. move to the origin and remain at rest there
 - c. move to infinity
 - d. may execute oscillatory but not simple harmonic motion.

Answer Key

Question Number	1	2	3	4	5	6
Answer Key	(c)	(a)	(b)	(a)	(d)	(a)

Question Number	7	8	9	10
Answer Key	(d)	(b)	(b)	(d)

Solutions

1. (c)

$$\Rightarrow q = \frac{mg}{E} = \frac{9.9 \times 10^{-15} \times 10}{3 \times 10^4} = 3.3 \times 10^{-18}C$$

2. (a)

Lines are denser at A. So, $E_A > E_B$ in the direction of electric field.

3. (b)

Effective acceleration due to gravity, $g' = g + \frac{F_e}{m}$, $F_e \rightarrow$ electrostatic force \Rightarrow there is an increase in the value of effective acceleration due to gravity. \Rightarrow T will be reduced as $T\alpha \frac{1}{\sqrt{q}}$. Hence option (b) is correct.

4. (a)

As, $Q \propto \text{No. of electric field line going out or coming in.}$ So, $\frac{Q_1}{Q_2} = \frac{\{\text{no.of electric field line going out at } Q_1\}}{\{\text{no.of electric field line coming in at } Q_2\}} = \frac{13}{9}$

5. (d)

The electrostatic force is F= $\frac{1}{4\pi\varepsilon_0}$. $\frac{q_1q_2}{r^2}$

One Cs^+ ion is balanced by diagonally opposite Cs^+ ion. Hence net electrostatic on Cl^- ion due to eight ions is zero.

6. (a)

Position vector of one charge particle w.r.t. other is given by, $r = (2\hat{i} + 3\hat{j} + \hat{k}) - (\hat{i} + \hat{j} - \hat{k}) = (\hat{i} + 2\hat{j} + 2\hat{k}) m.$ The magnitude of **r** is $r = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = 3 m$ $F = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1q_2}{r^2} = \frac{9 \times 10^9 \times 10^{-6} \times 10^{-6}}{(3)^2} = 10^{-3} N$

7. (d)

Given, $E = \frac{q}{4\pi\varepsilon_0 x^2}$.

Hence the magnitude of the electric field at a distance 2x from charge q is $E' = \frac{q}{4\pi\varepsilon_0(2x)^2} = \frac{q}{4\pi\varepsilon_0 x^2} \times \frac{1}{4} = \frac{E}{4}$

Therefore, the force experienced by a similar charge q at a distance 2x is

$$F = qE' = \frac{qE}{4}$$

8. (b)

Charge Q will not experience any net force if the force exerted on it by charges q_1 and q_2 are equal and opposite in directions.

It follows from figure, that charge Q will not experience forces in opposite direction if it lies at any point between AB. Let x be the distance of Q from q_2 . Then forces exerted on Q by q_1 and q_2 respectively are

$$F_1 = \frac{q_1 \, Q i}{4\pi\varepsilon_0 (0.1+x)^2} = \frac{9 \times 10^{-6} Q i}{4\pi\varepsilon_0 (0.1+x)^2}$$

and

$$F_2 = -\frac{q_2 Q\hat{\iota}}{4\pi\varepsilon_0 x^2} = -\frac{1 \times 10^{-6} Q\hat{\iota}}{4\pi\varepsilon_0 x^2}$$

Net force on $Q = F_1 + F_2$ Net force on Q is zero if $F_1 + F_2 = 0$

$$\Rightarrow \frac{9 \times 10^{-6} Ql}{4\pi\varepsilon_0 (0.1+x)^2} - \frac{1 \times 10^{-6} Ql}{4\pi\varepsilon_0 x^2} = 0$$

$$\Rightarrow 9 = \frac{(0.1+x)^2}{x^2}$$

$$\Rightarrow 3 = \frac{0.1+x}{x} \text{ (ignore negative sign, as we get negative value of } x\text{)}$$

$$\Rightarrow x = 0.05 \text{ m} = 5 \text{ cm}$$

9. (b)

The electric field E_1 at P due to q_1 has a magnitude

$$E_1 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1}{a^2}$$

and is directed along + x-axis.

The electric field E_2 at P due to q_2 has a magnitude.

$$E_2 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_2}{b^2}$$

and is directed along + y-axis.

The angle $\boldsymbol{\theta}$ subtended by the resultant field \boldsymbol{E} with the x-axis is given by

$$\tan \theta = \frac{E_2}{E_1} = \frac{q_2}{q_1} \cdot \frac{a^2}{b^2} = \frac{1}{2} \times \left(\frac{2}{1}\right)^2 = 2$$

Hence the correct choice is (b).

10. (d)

Let the charge Q be at P, with OP = x. The resultant force F is along the x-axis directed towards the origin. The charge Q moves to 0, and acquires kinetic energy. It will cross 0 and move to – ve x-axis until it comes to rest. It is again attracted towards 0 and crosses it and this process continues. Therefore, charge Q executes oscillatory motion.

Let

AP = BP = r. Then

$$F_1 = F_2 = \frac{1}{4\pi\varepsilon_0 r^2}$$

The resultant force on Q is

$$F = F_1 \cos \theta + F_2 \cos \theta = \frac{2qQ}{4\pi\varepsilon_0 r^2} \cos \theta$$
$$F = \frac{2qQ}{4\pi\varepsilon_0 r^2} = \frac{2qQ}{4\pi\varepsilon_0} \frac{x}{(a^2 + x^2)^2}$$

Thus, F is not of the form F = kx (where k = constant) and hence the motion is not simple harmonic.

Hence the correct choice is (d).