EXERCISE 1

1. Find the amount and the compound interest on ₹ 8000 at 5% per annum for 2 years. Solution:-
From the question it is given that,
Principal = ₹ 8000
Rate $=5 \%$ per annum
Time $=2$ years
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Simple Interest for the first year $=(8000 \times 5 \times 1) / 100$

$$
\text { = ₹ } 400
$$

Then, amount after the first year $=₹ 8000+₹ 400$

$$
\text { = ₹ } 8400
$$

So, principal for the second year $=₹ 8400$
Simple Interest for the second year $=(8400 \times 5 \times 1) / 100$

$$
\text { = ₹ } 420
$$

Then, amount after the second year $=₹ 8400+₹ 420$

$$
\text { = ₹ } 8820
$$

Therefore, compound interest for 2 years $=$ Final amount - principal (original)

$$
\begin{aligned}
& =₹ 8820-₹ 8000 \\
& =₹ 820
\end{aligned}
$$

2. A person invests ₹ 5600 at 14% p.a. compound interest for $\mathbf{2}$ years. Calculate:
(i) the interest for the first year.
(ii) the amount at the end of the first year.
(iii) the interest for the $2^{\text {nd }}$ year, correct to the nearest Re.

Solution:-

From the question it is given that,
Principal = ₹ 5600
Rate $=14 \%$ per annum
Time $=2$ years
(i) The interest for the first year $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& =(5600 \times 14 \times 1) / 100 \\
& =₹ 784
\end{aligned}
$$

(ii) The amount at the end of the first year = ₹ $5600+₹ 784$
= ₹ 6,384

So, principal for the second year $=₹ 6,384$
(iii) The interest for the $2^{\text {nd }}$ year $=(6,384 \times 14 \times 1) / 100$
= ₹ 893.76
The interest for the $2^{\text {nd }}$ year, correct to the nearest $R e=₹ 894$
3. A man invests ₹ 46875 at 4% per annum compound interest for $\mathbf{3}$ years. Calculate:
(i) the interest for the first year.
(ii) the amount standing to his credit at the end of the second year.
(iii) the interest for the third year.

Solution:-

From the question it is given that,
Principal = ₹ 46875
Rate $=4$ \% per annum
Time $=3$ years
(i) The interest for the first year $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& =(46875 \times 4 \times 1) / 100 \\
& =₹ 1,875
\end{aligned}
$$

So, principal for the second year $=₹ 46,875+₹ 1,875$

$$
=₹ 48,750
$$

Then, interest for the second year $=(48,750 \times 4 \times 1) / 100$
= ₹ 1,950
(ii) The amount standing to his credit at the end of the second year,

$$
\begin{aligned}
& =₹ 48,750+₹ 1,950 \\
& =₹ 50,700
\end{aligned}
$$

(iii) Therefore, the interest for the third year $=(50,700 \times 4 \times 1) / 100$
= ₹ 2,028
4. Calculate the compound interest for the second year on ₹ 8000 invested for 3 years at 10\% p.a.
Also find the sum due at the end of third year.

Solution:-

From the question it is given that,
Principal = ₹ 8000
Rate $=10$ \% per annum
Time $=3$ years
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Simple Interest for the first year $=(8000 \times 10 \times 1) / 100$

$$
\text { = ₹ } 800
$$

Then, amount after the first year $=₹ 8000+₹ 800$

$$
\text { = ₹ } 8800
$$

So, principal for the second year $=₹ 8800$
Simple Interest for the second year $=(8800 \times 10 \times 1) / 100$

$$
\text { = ₹ } 880
$$

Then, amount after the second year $=₹ 8800+₹ 880$
= ₹ 9,680

So, principal for the third year $=₹ 9,680$
Simple Interest for the third year $=(9,680 \times 10 \times 1) / 100$

$$
\text { = ₹ } 968
$$

Therefore, amount after the third year $=₹ 9680+₹ 968$

$$
\text { = ₹ } 10,648
$$

5. Ramesh invests ₹ $\mathbf{1 2 8 0 0}$ for three years at the rate of $\mathbf{1 0 \%}$ per annum compound interest. Find:
(i) the sum due to Ramesh at the end of the first year.
(ii) the interest he earns for the second year.
(iii) the total amount due to him at the end of three years.

Solution:-

From the question it is given that,
Principal = ₹ 12,800
Rate $=10 \%$ per annum
Time $=3$ years
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Simple Interest for the first year $=(12800 \times 10 \times 1) / 100$

$$
=₹ 1,280
$$

(i) Then, the sum due to Ramesh at the end of the first year $=₹ 12,800+₹ 1,280$
= ₹ 14,080

So, principal for the second year = ₹ 14,080
(ii) The interest he earns for the second year.

Simple Interest for the second year $=(14,080 \times 10 \times 1) / 100$
= ₹ 1,408

Then, amount after the second year $=₹ 14,080+₹ 1,480$

$$
\text { = ₹ } 15,488
$$

So, principal for the third year $=₹ 15,488$
(iii) The total amount due to him at the end of three years.

Simple Interest for the third year $=(15,488 \times 10 \times 1) / 100$

$$
\text { = ₹ } 1548.8
$$

Therefore, amount after the third year = ₹ $15,488+₹ 1548.8$
= ₹ 17,036.8

6. The simple interest on a sum of money for 2 years at $\mathbf{1 2 \%}$ per annum is ₹ 1380 .

Find
(i) the sum of money

Solution:-

From the question it is given that,
Simple interest for 2 years = ₹ 1,380
Rate = 12 \% per annum
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& 1,380=(P \times 12 \times 2) / 100 \\
& (1,380 \times 100) /(12 \times 2)=P \\
& P=(138000) / 24 \\
& P=₹ 5,750
\end{aligned}
$$

7. A person invests ₹ 10000 for two years at a certain rate of interest, compounded annually. At the end of one year this sum amounts to ₹ $\mathbf{1 1 2 0 0}$. Calculate :
(i) the rate of interest per annum.
(ii) the amount at the end of second year.

Solution:-

From the question it is given that,
Principal = ₹ 10,000
Time $=2$ years
Amount = ₹ 11200
So, Interest for one year $=11,200-10,000$

$$
=₹ 1,200
$$

(i) the rate of interest per annum.

We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Simple Interest for the first year,

$$
\begin{aligned}
& 1,200=(10,000 \times R \times 1) / 100 \\
& R=(1,200 \times 100) /(10,000) \\
& R=12 \%
\end{aligned}
$$

So, principal for the second year $=₹ 11,200$
Simple Interest for the second year $=(11,200 \times 12 \times 1) / 100$
= ₹ 1,344
(ii) Therefore, amount at the end of second year $=₹ 11,200+₹ 1,344$

$$
\text { = ₹ } 12,544
$$

8. A man invests ₹ $\mathbf{5 0 0 0}$ for three years at a certain rate of interest, compounded annually. At the end of one year it amounts to ₹ $\mathbf{5 6 0 0}$ calculate:
(i) the rate of interest per annum.
(ii) the interest accursed in the second year.
(iii) the amount at the end of the third year.

Solution:-

From the question it is given that,
Principal = ₹ 5,000
Time $=3$ years
At the end of one year it amounts to ₹ 5600
So, Interest for one year $=5000-5,600$

$$
\text { = ₹ } 600
$$

(i) the rate of interest per annum.

We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Simple Interest for the first year,

$$
\begin{aligned}
& 600=(5,000 \times R \times 1) / 100 \\
& R=(600 \times 100) /(5,000) \\
& R=12 \%
\end{aligned}
$$

(ii) the interest accursed in the second year.

Given, At the end of one year it amounts to ₹ 5600
So, principal for the second year $=₹ 5,600$
Simple Interest for the second year $=(5,600 \times 12 \times 1) / 100$

$$
\text { = ₹ } 672
$$

Therefore, amount after the third year $=₹ 5600+₹ 672$
= ₹ 6,272

So, principal for the third year $=$ ₹ 6,272
(iii) the amount at the end of the third year.

Simple Interest for the third year $=(6,272 \times 12 \times 1) / 100$

$$
\text { = ₹ } 752.64
$$

Therefore, the amount at the end of the third year = ₹ $6,272+₹ 752.64$
= ₹ 7,024.64
9. Find the amount and the compound interest on ₹ 2000 at $\mathbf{1 0 \%}$ p.a. for $\mathbf{2}^{1 ⁄ 2}$ years. Solution:-
Given, principal $(P)=$ ₹ 2000

Rate od interest $=10$ \%
Time $=2 \frac{1}{2}$ years
We know that, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years

$$
\begin{aligned}
& =2000 \times 11 / 10 \times 11 / 10 \times 21 / 20 \\
& =₹ 2541
\end{aligned}
$$

So, interest = ₹ 2541 - ₹2000

$$
\text { = ₹ } 541
$$

10. Find the amount and the compound interest on ₹ 50000 for $11 / 2$ years at 8% per annum, the interest being compounded semi - annually.

Solution:-

Since the rate of interest is 8% per annum,
Therefore, the rate of interest half yearly $=4 \%$
Principal for the first half - year $=₹ 50000$
Interest for the first half - year $=(50000 \times 4 \times 1) / 100$

$$
\text { = ₹ } 2000
$$

Therefore, amount after the first half - year $=₹ 50000+₹ 2000$

$$
\text { = ₹ } 52000
$$

Principal for the $2^{\text {nd }}$ half-year $=₹ 52000$
Interest for the $2^{\text {nd }}$ half - year $=(52000 \times 4 \times 1) / 100$

$$
\text { = ₹ } 2,080
$$

Therefore, amount after the $2^{\text {nd }}$ half - year $=₹ 52000+₹ 2,080$

$$
\text { = ₹ } 54,080
$$

Principal for the $3^{\text {rd }}$ half-year $=₹ 54,080$
Interest for the $3^{\text {rd }}$ half - year $=(54,080 \times 4 \times 1) / 100$

$$
=₹ 2,163.2
$$

Therefore, amount after the 1 ½ half - year $=₹ 54,080+₹ 2,163.2$
= ₹ 56,243.2

Compound interest for $11 / 2=$ final amount - principal (original)

$$
\begin{aligned}
& =56243.20-5000 \\
& =₹ 6243.20
\end{aligned}
$$

11. Calculate the amount and the compound interest on ₹ 5000 in $\mathbf{2}$ years when the rate of interest for successive years is 6% and 8% respectively.

Solution: -

From the question it is given that,
Principal = ₹ 5000

Rate of interest for first year = 6\%
Rate of interest for second year $=8 \%$
Then,

$$
\begin{aligned}
\text { Amount for } 2 \text { years } & =P(1+(R / 100))^{n} \\
& =5000(1+(6 / 100))(1+(8 / 100)) \\
& =5000(100+(6 / 100))(100+(8 / 100)) \\
& =5000 \times(106 / 100) \times(108 / 100) \\
& =₹ 5724
\end{aligned}
$$

Therefore, interest $=$ Amount - Principal

$$
\begin{aligned}
& =5724-5000 \\
& =₹ 724
\end{aligned}
$$

12. Calculate the amount and the compound interest on ₹ 17,000 in 3 years when the rate of interest for successive years is $10 \%, 10 \%$ and 14% respectively.
Solution:-
From the question it is given that,
Principal = ₹ 17,000
Time $=3$ years
Rate of interest for successive years is $10 \%, 10 \%$ and 14% respectively
We know that, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years

$$
\begin{aligned}
& =17,000(1+(10 / 100))(1+(10 / 100))(1+(14 / 100)) \\
& =17,000 \times(110 / 100) \times(110 / 100) \times(114 / 100) \\
& =17,000 \times(11 / 10) \times(11 / 10) \times(57 / 50) \\
& =117249 / 5
\end{aligned}
$$

Amount after 3 years = ₹ 23449.80
Then, amount of compound interest = Amount - Principal

$$
\begin{aligned}
& =23449.80-17000 \\
& =₹ 6449.80
\end{aligned}
$$

13. A sum of $₹ 9600$ is invested for $\mathbf{3}$ years at 10% per annum at compound interest.
(i) What is the sum due at the end of the first year?
(ii) What is the sum due at the end of the second year?
(iii) Find the compound interest earned in 2 years.
(iv) Find the difference between the answer in (ii) and (i) and find the interest on this sum for one year.
(v) Hence, write down the compound interest for the third year.

Solution:-

From the question it is given that,
Principal = ₹ 9,600
Time $=3$ years
Rate of interest $=10 \%$
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Interest for the first year $=(9,600 \times 10 \times 1) / 100$

$$
\text { = ₹ } 960
$$

(i) The sum due at the end of the first year $=9,600+960$
= ₹ 10,560

So, principal for the $2^{\text {nd }}$ year $=₹ 10,560$
Then, interest for the $2^{\text {nd }}$ year $=(10560 \times 10 \times 1) / 100$

$$
\text { = ₹ } 1056
$$

(ii) The sum due at the end of the second year $=10,560+1,056$

$$
\text { = ₹ } 11,616
$$

(iii) Therefore, compound interest in 2 years $=960+1056$

$$
\text { = ₹ } 2016
$$

(iv) The difference between the answer in (ii) and (i) = ₹ 11,616 - ₹ 10,560
= ₹ 1,056

So, interest on 1056 for 1 year at the rate of 10% per annum $=(1056 \times 10 \times 1) / 100$ $=$ ₹ 105.60
(v) So, principal for the $3^{\text {rd }}$ year $=₹ 11616$

Then, interest for $3^{\text {rd }}$ year $=(11616 \times 10 \times 1) / 100$

$$
\text { = ₹ } 1161.60
$$

14. The simple interest on a certain sum of money for 2 years at 10% per annum is $₹$ 1600. Find the amount due and the compound interest on this sum of money at the same rate after 3 years, interest being reckoned annually.

Solution:-

From the question it is given that,
Simple interest = ₹ 1600
Rate $=10 \%$ per annum
Time $=3$ years
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& 1600=(P \times 10 \times 2) / 100 \\
& P=(1600 \times 100) /(10 \times 2) \\
& P=(160000) / 20
\end{aligned}
$$

$$
\begin{aligned}
& P=16000 / 2 \\
& P=₹ 8000
\end{aligned}
$$

So, amount after 3 years $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years

$$
\begin{aligned}
& =8000 \times(1+(10 / 100))^{3} \\
& =8000 \times(11 / 10) \times(11 / 10) \times(11 / 10) \\
& =₹ 10,648
\end{aligned}
$$

Therefore, compound interest = amount - principal

$$
\begin{aligned}
& =10,648-8000 \\
& =₹ 2648
\end{aligned}
$$

15. A man invests ₹ 4000 for three years at compound interest. After one year the money amounts to ₹ 4320 . Find the amount (to the nearest rupee) due at the end of 3 years.
Solution:-
From the question it is given that,
Principal $(P)=₹ 4000$
Amount (A) = ₹ 4320
So, interest = Amount - Principal

$$
\begin{aligned}
& =4320-4000 \\
& =₹ 320
\end{aligned}
$$

Then, rate of interest $=($ interest $\times 100) /($ principal \times time $)$

$$
\begin{aligned}
& =(320 \times 100) /(4000 \times 1) \\
& =(32000 / 4000) \\
& =32 / 4 \\
& =8 \%
\end{aligned}
$$

So, amount after 3 years $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years

$$
\begin{aligned}
& =4000(1+(8 / 100))^{3} \\
& =4000 \times(27 / 25) \times(27 / 25) \times(27 / 25) \\
& =5038.85 \\
& =₹ 5039
\end{aligned}
$$

16. A man borrows ₹ 6000 at 5% compound interest. If he repays $₹ 1200$ at the end of each year, find the amount outstanding at the beginning of the third year.

Solution:-

From the question it is given that,

Principal = ₹ 6000
Rate $=5 \%$ per annum
We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
So, interest for the first year $=(6000 \times 5 \times 1) / 100$

$$
\text { = ₹ } 300
$$

Then, amount after the first year $=₹ 6000+₹ 300$

$$
\text { = ₹ } 6300
$$

Given, Amount paid = ₹ 1200
Balance $=6300-1200$

$$
\text { = ₹ } 5100
$$

So, principal for the second year $=₹ 5100$
Interest for $2^{\text {nd }}$ year $=(5100 \times 5 \times 1) / 100$

$$
\text { = ₹ } 255
$$

Then, amount after the second year =₹ $5100+₹ 255$
= ₹ 5,355

So, amount paid = ₹ 1200
Balance $=5355-1200$

$$
\text { = ₹ } 4155
$$

17. Mr. Dubey borrows $₹ 1,00,000$ from State Bank of India at 11% per annum compound interest. He repays ₹ 41000 at the end of first year and ₹ 47700 at the end of second year. Find the amount outstanding at the beginning of the third year.

Solution:-

From the question it is given that,
Principal (p) = ₹ 15000
Rate $=11 \%$
Interest after $1^{\text {st }}$ year $=($ Principal \times rate \times time $) / 100$

$$
\begin{aligned}
& =(1,00,000 \times 11 \times 1) / 100 \\
& =₹ 11,000
\end{aligned}
$$

So, total amount after one year $=1,00,000+11,000$
= ₹ 1,11,000

Given, amount paid at the end of first year = ₹ 41,000
So, total outstanding after 2 year $=1,11,000-41,000$
= ₹ 70,000

Then, interest after 2 year $=(70,000 \times 11) / 100$

$$
\begin{aligned}
& =(7,70,000 / 100) \\
& =₹ 7,700
\end{aligned}
$$

So, total amount after 2 year $=70,000+7,700$

$$
\text { = ₹ } 77,700
$$

Given, amount paid at the end of the second year $=₹ 47,700$
Therefore, outstanding at the starting of 3 year $=77,700-47,700$

$$
\text { = ₹ } 30,000
$$

18. Vikram borrowed ₹ $\mathbf{2 0 , 0 0 0}$ from a bank at $\mathbf{1 0 \%}$ per annum simple interest. He lent it to his friend venkat at the same rate but compounded annually. Find his gain after 21/2 years.

Solution:-

From the question it is given that,
Principal = ₹ 20000
Rate $=10 \%$ per annum
Time $=21 / 2$
We know that, Simple interest and compound interest for $1^{\text {st }}$ year = equal
So, simple interest $=(20,000 \times 10 \times 1) / 100$

$$
\text { = ₹ } 2000
$$

Then, principal in the second year $=₹ 20,000+₹ 2000$
= ₹ 22,000

Simple interest for the second year $=(22,000 \times 10 \times 1) /(100)$

$$
=₹ 2,200
$$

So, additional compound interest = ₹ 200
In the third year only 6 months i.e. $6 / 12=1 / 2=0.5$ year
Then, simple interest for half-year $=(20,000 \times 10 \times 0.5) / 100$

$$
\text { = ₹ } 1000
$$

Then, principal for $1 / 2$ year $=20,000+2000+2200=₹ 24,200$
So, compound interest $=(24,200 \times 10 \times 0.5) / 100$
= ₹ 1,210

Extra interest in 6 months for $3^{\text {rd }}$ year $=1210-1000$

$$
\text { = ₹ } 210
$$

Therefore, total extra interest = ₹ $200+₹ 210=₹ 410$
So, gain = ₹ 410
19. Sachin invests ₹ $\mathbf{2 , 0 0 , 0 0 0}$ for 2 years at $\mathbf{1 2 \%}$ per annum compounded annually. If the interest accrued is subject to income tax at 25% at the end of each year, find the amount he received at the end of 2 years.

Solution:-

From the question it is given that,
Principal = ₹ 2,00,000
Rate $=12 \%$ per annum
Time $=2$ years
Interest for $1^{\text {st }}$ year $=(2,00,000 \times 12 \times 1) / 100$
= ₹ 24,000

Then, amount after the first year $=₹ 2,00,000+₹ 24,000$

$$
=₹ 2,24,000
$$

Then, Income tax at $25 \%=24,000 \times(25 / 100)$

$$
\text { = ₹ } 6000
$$

Balance sum $=2,24,000-6000$
= ₹ 2,18,000

Simple Interest for the second year $=(2,18,000 \times 12 \times 1) / 100$
= ₹ 26,160

Income tax at $25 \%=26160 \times(25 / 100)$
= ₹ 6,540

Therefore, amount after the second year = ₹ 2,18,000 + ₹ 26160 - ₹ 6540

EXERCISE 2

1. Find the amount and the compound interest on ₹ $\mathbf{5 0 0 0}$ for $\mathbf{2}$ years at $\mathbf{6 \%}$ per annum, interest payable yearly.

Solution:-

From the question it is given that,
Principal (P) = ₹ 5000
Rate (R) $=6 \%$ per annum
Time $=2$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $A=5000(1+(6 / 100))^{2}$

$$
\begin{aligned}
& =5000 \times(106 / 100)^{2} \\
& =5000 \times(53 / 50)^{2} \\
& =5000 \times(53 / 50) \times(53 / 50) \\
& =₹ 5618
\end{aligned}
$$

Therefore, compound interest $=$ Amount - principal

$$
\begin{aligned}
& =5618-5000 \\
& =₹ 618
\end{aligned}
$$

2. Find the amount and the compound interest on ₹ 8000 for 4 years at $\mathbf{1 0 \%}$ per annum, interest reckoned yearly.

Solution:-

From the question it is given that,
Principal (P) = ₹ 8000
Rate $(R)=10 \%$ per annum
Time $=4$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $A=8000(1+(10 / 100))^{4}$

$$
\begin{aligned}
& =8000 \times(110 / 100)^{4} \\
& =8000 \times(11 / 10)^{4} \\
& =8000 \times(11 / 10) \times(11 / 10) \times(11 / 10) \times(11 / 10) \\
& =₹ 11712.80
\end{aligned}
$$

Therefore, compound interest $=$ Amount - principal

$$
\begin{aligned}
& =11712.80-8000 \\
& =₹ 3712.80
\end{aligned}
$$

3. If the interest is compounded half yearly, calculate the amount when the principal is ₹ 7400 , the rate of interest is 5% and the duration is one year.

Solution:-

From the question it is given that,
Principal (P) =₹ 7400
Rate $(R)=5 \%$ per annum, for half year $=5 / 2 \%=2.5 \%$
Time $=1$ years
We know that, half year $=6$ months
So, 1 year $=2$ half years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $A=7400(1+(2.5 / 100))^{2}$
$=7400 \times(102.5 / 100)^{2}$
$=7400 \times(102.5 / 100) \times(102.5 / 100)$
= ₹ 77744.625
Therefore, amount is ₹ 77744.625 .
4. Find the amount and the compound interest on ₹ 5000 at 10% per annum for $11 / 2$ years, compound interest reckoned semi-annually.

Solution:-

From the question it is given that,
Principal (P) = ₹ 5000
Rate $(R)=10 \%$ per annum, for half year $=10 / 2 \%=5 \%$
Time $=11 / 2$ years
We know that, half year $=6$ months
So, 1 year $=2$ half years
For $1 \frac{1}{2}$ year $=3$ half
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $A=5000(1+(5 / 100))^{3}$

$$
\begin{aligned}
& =5000 \times(105 / 100)^{3} \\
& =5000 \times(21 / 20)^{3} \\
& =5000 \times(21 / 20) \times(21 / 20) \times(21 / 20) \\
& =₹ 5788.12
\end{aligned}
$$

Therefore, compound interest $=$ Amount - principal

$$
=5788.12-5000
$$

5. Find the amount and the compound interest on ₹ $1,00,000$ compounded quarterly for 9 months at the rate of 4% p.a.
Hint
$r=1 / 4$ of $4 \%=1 \%$ and $n=9 / 3=3$
Solution:-
From the question it is given that,
Principal $(P)=₹ 1,00,000$
Rate $(R)=4 \%$ per annum, for 1 quarter $=1 \%$
Time $=9$ months
We know that, 1 quarter $=3$ months
So, 1 year = 4 quarters
For 9 months $=3$ quarters
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate $\%$ per year and $n=$ number of years
Then, $A=1,00,000(1+(1 / 100))^{3}$
$=1,00,000 \times(101 / 100)^{3}$
$=1,00,000 \times(101 / 100) \times(101 / 100) \times(101 / 100)$
= ₹ 103030.10
Therefore, compound interest $=$ Amount - principal

$$
\begin{aligned}
& =1,03,030.10-1,00,000 \\
& =₹ 3,030.10
\end{aligned}
$$

6. Find the difference between C.I. and S.I on sum of ₹ 4,800 for 2 years at 5% per annum payable yearly.

Solution:-

From the question it is given that,
Principal (P) = ₹ 4,800
Rate $(R)=5 \%$ per annum
Time $=2$ years
We know that, Simple Interest(S.I.) $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& =(4800 \times 5 \times 2) / 100 \\
& =₹ 480
\end{aligned}
$$

Then, compounded yearly,
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate \% per year and $n=$ number of years

Then, $A=4800(1+(5 / 100))^{2}$

$$
\begin{aligned}
& =4800 \times(105 / 100)^{2} \\
& =4800 \times(21 / 20)^{2} \\
& =4800 \times(21 / 20) \times(21 / 20) \\
& =₹ 5,292
\end{aligned}
$$

Therefore, compound interest (C.I.) = Amount - principal

$$
\begin{aligned}
& =5,292-4,800 \\
& =₹ 492
\end{aligned}
$$

So, the difference between C.I. and S.I = ₹ 492 - ₹ 480

$$
\text { = ₹ } 12
$$

7. Find the difference between the simple interest and compound interest on ₹ 2500 for 2 years at 4\% per annum, compound interest being reckoned semi-annually. Solution:-
From the question it is given that,
Principal (P) = ₹ 2500
Rate $(R)=4 \%$ per annum, for half year $=4 / 2 \%=2 \%$
Time $=2$ years
We know that, half year = 6 months
So, 1 year = 2 half years
For 2 year $=4$ half
We know that, Simple Interest(S.I.) $=($ Principal \times rate \times Time $) / 100$

$$
\begin{aligned}
& =(2500 \times 4 \times 2) / 100 \\
& =₹ 200
\end{aligned}
$$

Then, compounded semiannually,
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate \% per year and $n=$ number of years
Then, $A=2500(1+(2 / 100))^{4}$

$$
\begin{aligned}
& =2500 \times(102 / 100)^{4} \\
& =2500 \times(51 / 50)^{4} \\
& =2500 \times(51 / 50) \times(51 / 50) \times(51 / 50) \times(51 / 50) \\
& =₹ 2706.08
\end{aligned}
$$

Therefore, compound interest (C.I.) = Amount - principal

$$
\begin{aligned}
& =2,706.08-2,500 \\
& =₹ 206.08
\end{aligned}
$$

So, the difference between C.I. and S.I = ₹ 206.08 - ₹ 200

$$
=₹ 6.08
$$

8. Find the amount and the compound interest on ₹ 2000 in 2 years if the rate is $\mathbf{4 \%}$ for the first year and 3% for the second year.

Solution:-

From the question it is given that,
Principal (P) = ₹ 2000
Rate $(R)=4 \%$ per annum on $1^{\text {st }}$ year and 3% on $2^{\text {nd }}$ year
Time $=2$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate \% per year and $n=$ number of years
Then, $A=2000(1+(4 / 100))(1+(3 / 100))$

$$
\begin{aligned}
& \quad \begin{aligned}
& \quad=2000 \times(104 / 100)(103 / 100) \\
&=2000 \times(26 / 25) \times(103 / 100) \\
&= \\
& \text { Therefore, compound interest }=\text { Amount }- \text { principal } \\
&=2,142.40-2000 \\
&=₹ 142.40
\end{aligned}
\end{aligned}
$$

9. Find the compound interest on ₹ 3125 for $\mathbf{3}$ years if the rates of interest for the first, second and third year are respectively $4 \%, 5 \%$ and 6% per annum.

Solution:-

From the question it is given that,
Principal (P) = ₹ 3,125
Rate $(R)=4 \%$ per annum on $1^{\text {st }}$ year, 5% on $2^{\text {nd }}$ year and 6% per annum on $3^{\text {rd }}$ year.
Time $=3$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $A=3125(1+(4 / 100))(1+(5 / 100))(1+(6 / 100))$

$$
\begin{aligned}
& =3125 \times(104 / 100)(105 / 100)(106 / 100) \\
& =3125 \times(26 / 25) \times(21 / 20) \times(53 / 50) \\
& =₹ 3617.25
\end{aligned}
$$

Therefore, compound interest = Amount - principal

$$
\begin{aligned}
& =3617.25-3125 \\
& =₹ 492.25
\end{aligned}
$$

10. What sum of money will amount to ₹ 9261 in $\mathbf{3}$ years at 5% per annum compound interest?

Solution:-

From the question it is given that,
Amount (A) = ₹ 9,261
Rate (R) $=5 \%$ per annum
Time $=3$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $9,261=P(1+(5 / 100))^{3}$
$9,261=P \times(105 / 100)(105 / 100)(105 / 100)$
$9,261=P \times(21 / 20)(21 / 20)(21 / 20)$

$$
P=9,261 \times(20 / 21) \times(20 / 21) \times(20 / 21)
$$

P = ₹ 8,000
11. What sum invested at 4% per annum compounded semi-annually amounts to ₹7803 at the end of one year?

Solution:-

From the question it is given that,
Amount (A) = ₹ 7,803
Rate $(R)=4 \%$ per annum
Rate for semi annually $=2 \%$
Time $=1$ year
We know that, half year $=6$ months
So, 1 year $=2$ half years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate $\%$ per year and $n=$ number of years
Then, $7803=P(1+(2 / 100))^{2}$

$$
\begin{aligned}
& 7803=P \times(102 / 100)(102 / 100) \\
& 7803=P \times(51 / 50)(51 / 50) \\
& P=7,803 \times(50 / 51) \times(50 / 51) \\
& P=₹ 7,500
\end{aligned}
$$

Therefore, principal = ₹ 7,500
12. What sum invested for $1 \frac{1}{2}$ years compounded half-yearly at the rate of 4% p.a. will amount to ₹ $1,32,651$?

Solution:-

From the question it is given that,
Amount (A) = ₹ 1,32,651

Rate $(R)=4 \%$ per annum
Rate for half-yearly $=2 \%$
Time $=1 \frac{1}{2}$ year
We know that, half year = 6 months
So, $11 / 2$ year $=3$ half years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years
Then, $132651=P(1+(2 / 100))^{3}$

$$
132651=P \times(102 / 100)(102 / 100)(102 / 100)
$$

$$
132651=P \times(51 / 50)(51 / 50)(51 / 50)
$$

$$
P=132651 \times(50 / 51) \times(50 / 51) \times(50 / 51)
$$

$$
\text { P = ₹ } 125000
$$

Therefore, principal = ₹ 1,25,000

13. On what sum will the compound interest for 2 years at 4% per annum be ₹ 5,712 ?

Solution:-

From the question it is given that,
Compound interest $=₹ 5,712$
Rate (R) $=4 \%$ per annum
Time $=2$ years
From the formula, $A=P(1+(r / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate $\%$ per year and $n=$ number of years
Compound interest $=\mathrm{A}-\mathrm{P}$

$$
\begin{aligned}
&=P(1+(r / 100))^{n}-P \\
&=P\left((1+(r / 100))^{n}-1\right) \\
& 5,712=P\left((1+(4 / 100))^{2}-1\right) \\
& 5,712=P\left((104 / 100)^{2}-1\right) \\
& 5,712=P\left((26 / 25)^{2}-1\right) \\
& 5,712=P((676 / 625)-1) \\
& 5,712=P((676-625) / 625) \\
& 5,712=P((51) / 625) \\
& P=(5,712 \times 625) / 51 \\
& P=₹ 70,000
\end{aligned}
$$

Therefore, principal is ₹ 70,000
14. A man invests ₹ $\mathbf{1 2 0 0}$ for two years at compound interest. After one year the money amounts to ₹ $\mathbf{1 2 7 5}$. Find the interest for the second year correct to the nearest rupee.

Solution:-

From the question it is given that,
Principal = ₹ 1200
After one year the money amounts to ₹ 1275
So, interest for one year $=1275-1200$

$$
\text { = ₹ } 75
$$

We know that, Simple Interest $=($ Principal \times rate \times Time $) / 100$
Then, rate of interest $=($ Simple interest $\times 100) /($ Principal \times Time $)$

$$
\begin{aligned}
& =(75 \times 100) /(1200 \times 1) \\
& =75 / 12 \\
& =25 / 4 \% \text { per annum }
\end{aligned}
$$

Now, interest for the $2^{\text {nd }}$ year on ₹ 1275 at the rate of $25 / 4 \%$ per annum.

$$
\begin{aligned}
& =(\text { Principal } \times \text { rate } \times \text { Time }) / 100 \\
& =(1275 \times 25 \times 1) /(100 \times 4) \\
& =1275 / 16 \\
& =79.69 \\
& =₹ 80
\end{aligned}
$$

Therefore, the interest for the second year is ₹ 80 .
15. At what rate percent per annum compound interest will ₹ 2304 amount to ₹ 2500 in 2 years?

Solution:-

From the question it is given that,
Amount (A) = ₹ 2500
Principal (P) = ₹ 2304
Rate (R) = R \% per annum
Time $=2$ years
From the formula, $A=P(1+(R / 100))^{n}$
Where, $\mathrm{A}=$ amount, $\mathrm{P}=$ principal, $\mathrm{r}=$ rate $\%$ per year and $\mathrm{n}=$ number of years

$$
\begin{aligned}
& (A / P)=(1+(r / 100))^{n} \\
& (2500 / 2304)=(1+(R / 100))^{2} \\
& (1+(R / 100))^{2}=625 / 576 \\
& (1+(R / 100))^{2}=(25 / 24)^{2} \\
& 1+(R / 100)=25 / 24
\end{aligned}
$$

$$
\begin{aligned}
& R / 100=(25 / 24)-1 \\
& R / 100=(25-24) / 24 \\
& R / 100=1 / 24 \\
& R=100 / 24 \\
& R=25 / 6 \\
& R=4 \frac{1}{6}
\end{aligned}
$$

16. A sum compounded annually becomes $25 / 16$ times of itself in two years. Determine the rate of interest per annum.

Solution:-

From the question it is given that,
Time $=2$ years
A sum compounded annually becomes $25 / 16$ times of itself
So, let us assume the sum (P) = q
So, amount $=(25 / 16)$ q
From the formula, $A=P(1+(R / 100))^{n}$
Where, $A=$ amount, $P=$ principal, $r=$ rate $\%$ per year and $n=$ number of years

$$
\begin{aligned}
& (A / P)=(1+(r / 100))^{n} \\
& (25 q / 16 q)=(1+(R / 100))^{2} \\
& \left(5^{2} / 4^{2}\right)=(1+(R / 100))^{2} \\
& (5 / 4)^{2}=(1+(R / 100))^{2} \\
& (5 / 4)=(1+(R / 100)) \\
& R / 100=(5 / 4)-1 \\
& R / 100=1 / 4 \\
& R=25
\end{aligned}
$$

Therefore, rate of interest $=25 \%$ per annum

