

Topic covered:

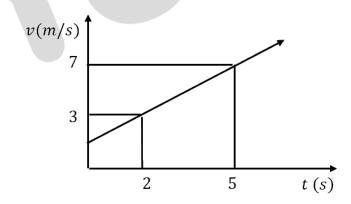
• Mathematical Tools (Session - 1) - NEET

Daily Practice Problems

- 1. If a man travels 10 km towards north, after that he turns towards east and travels 5 km and again he turns toward south and travels 3 km, then what is the coordinate of man with respect to its initial position.
- 2. For a quadratic equation $ax^2 + bx + c = 0$, if sum of root is 1 and product of root is 1, then which of the following hold true?

a.
$$a^2 = bc$$

b.
$$b^2 = ac$$


c.
$$c^2 = ab$$

d.
$$abc = 1$$

- 3. In the quadratic equation, $pqx^2 (p^2 + q^2)x + pq = 0$, then find the value of x.
- 4. The inclination of the line x y + 3 = 0 with the positive direction of x-axis is

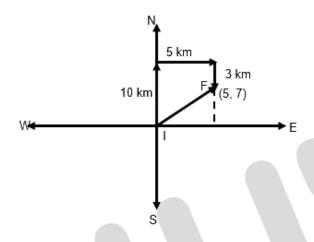
a.
$$45^{\circ}$$

5. Variation of velocity with time of particle is straight line as shown below. Find the slope of this straight line

- 6. Given two points, P = (0, -1) and Q = (4,1) on the line, find the equation of the line.
- 7. An inclined plane rises 1 in 10. If length of the inclined plane is 5 m, find the height of the raised end above the horizontal.
- 8. If a particle moves with velocity $v(t) = 2t^2 t \, m/s$, then find the velocity of particle at t=3 s.

- 9. An expression is given by $\alpha = \frac{\theta}{t^2}$, find α in rad/s^2 if an angle of 600° is covered in 10 second?
- 10. What will be the value of z, if $(z 2)^2 36 = 0$.

Answer Key


Question Number	1	2	3	4	5
Answer Key	(5, 7)	(a)	$x = \frac{p}{q}$ and $\frac{q}{p}$	(a)	1.33

Question Number	6	7	8	9	10
Answer Key	$y = \frac{1}{2}x - 1$	$\frac{5}{\sqrt{101}} m$	15 m/s	$\frac{\pi}{30}$	8 or -4

Solutions

1. (5, 7)

2. (a)

Quadratic equation $ax^2 + bx + c = 0$

Sum of roots, $-\frac{b}{a} = 1 \implies b = -a$

Product of roots $\frac{c}{a} = 1 \implies c = a$

On comparing, we get $a^2 = bc$

3. In the given equation a = pq, b = -(p2 + q2), c = pq

Finding the roots using formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Substituting and simplifying we get $x = \frac{p}{q}$ and $\frac{q}{p}$

4. (a)

The equation of the line x - y + 3 = 0 can be rewritten as

$$y = x + 3 \Rightarrow m = \tan \theta = 1$$
 and hence $\theta = 45^{\circ}$.

5. (1.33)

$$t_1 = 2 s$$
, $t_2 = 5 s$

 $v_1 = 3 \ m/s, \ v_2 = 7 \ m/s$

slope =
$$\frac{(v_2 - v_1)}{(t_2 - t_1)} = \frac{(7 - 3)}{(5 - 2)} = \frac{4}{3} = 1.33$$

6. Slope $=\frac{y_2-y_1}{x_2-x_1} = \frac{1}{2} = m$

Substitute $m = \frac{1}{2}$, into the equation, y = mx + b, to get the equation $y = \frac{1}{2}x + b$ Select one of the given points, for example (4, 1), and substitute the x and y values into the equation $y = \frac{1}{2}x + b$

We, then, get that b = -1, which is the *y*-intercept.

Substitute b = -1 to get the equation.

$$y = \frac{1}{2}x - 1$$

7.

Let h be the horizontal raise

$$\tan\theta = \frac{1}{10}$$

$$tan\theta = \frac{1}{10}
sin\theta = \frac{1}{\sqrt{10^2 + 1^2}} = \frac{1}{\sqrt{101}} = \frac{h}{5}$$

Therefore, $h = \frac{5}{\sqrt{101}} m$

8. $v(t) = 2t^2 - t$

$$t = 3 s$$

$$v(3) = 2 \times (3)^2 - (3) = 15 \frac{m}{s}$$

9. Given $\alpha = \frac{\theta}{t^2}$

Angle covered = 600°

Time duration (t) = 10 sec

Since, $180^{\circ} = \pi \ radian$

So,
$$600^{\circ} = 600^{\circ} \frac{\pi}{180} = \frac{10\pi}{3} radian$$

$$\alpha = \frac{\theta}{t^2} = \frac{10\pi}{300} = \frac{\pi}{30} \ rad/s^2$$

10. $(z-2)^2-36=0$

$$(z-2)^2 = 36$$

$$(z-2) = \pm 6$$

$$z = 2 + 6$$
 or $2 - 6$

$$z = 8 \text{ or } -4$$