BYJU'S Home Learning Program

Topic covered:

- Mathematical Tools (Session - 1) - JEE

Worksheet

1. Find the equation of the line whose slope is 3 and y intercept is -4 .
a. $y=2 x-3$
b. $y=3 x+4$
c. $y=3 x-4$
d. $y=\sqrt{3 x}-0$
2. Find the equation of the line parallel to the line passing through $(5,7)$ and $(2,3)$ and having x intercept as -4 .
a. $3 y=4 x-16$
b. $4 y=3 x-16$
c. $3 y=4 x+16$
d. $4 y-3 x+16$
3. What is the slope of the line passing through the points $(-2,3)$ and $(2,7)$?
a. 1
b. -1
c. 2
d. -2
4. In which quadrant does the point $(-3,4)$ lie?
a. $1^{\text {st }}$
b. $2^{\text {nd }}$
c. $3^{\text {rd }}$
d. $4^{\text {th }}$
5. Find the co-ordinate of the point(s) on x-axis, which is/are at a distance of 5 units from the point $(6,-3)$.
a. $(2,0)$ and $(10,0)$
b. $(0,2)$ and $(0,10)$
c. $(2,10)$ and $(0,0)$
d. None of these
6. The quadrants where abscissa and ordinate have different signs are?
a. $1^{\text {st }} \& 2^{\text {nd }}$
b. $2^{\text {nd }} \& 3^{r d}$
c. $1^{\text {st }} \& 3^{\text {rd }}$
d. $2^{n d} \& 4^{\text {th }}$
7. What is equation of a line passing through the points $(4,2)$ and $(15,-4)$?
8. Find the exact value of $\cos 15^{\circ}$.
9. $f(x)=x^{2}+32 x-12$. What is $f(4)$?
10. Show that $\left(1-\cos ^{2} \theta\right) \operatorname{cosec}^{2} \theta=1$
11. Show that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$

Mathematical Tools (Session -1)

BYJU'S Home Learning Program

12. Find the value of $\cos \left(24^{\circ}\right)+\cos \left(5^{\circ}\right)+\cos \left(175^{\circ}\right)+\cos \left(204^{\circ}\right)+\cos \left(300^{\circ}\right)$
13. Function f is defined by $f(x)=2 x^{2}+6 x-3$. Find the value of $f(-2)$.
14. How many unique solutions does the equation $4 x^{2}+4 x+1=0$ have?
15. What is the degree of the polynomial $x^{2}\left(x^{3}\right)^{2}$?
16. Solve: $x^{2}-5 x-14=0$
17. Find: $\cos \alpha, \cot \alpha, \tan \alpha$ respectively if $\sin \alpha=\frac{5}{13}$ and $\frac{\pi}{2}<\alpha<\pi$
18. Calculate $\sin 15^{\circ} \cos 15^{\circ}$.
19. Height of a body in meters is given by $h(t)=10 \sin (2 \pi t)+5$. Find its height at $t=0.25 \mathrm{~s}$.
20. Find the nature of roots for the equation $x^{2}+x+12=0$

BYJU'S Home Learning Program

Answer Key

Question Number	1	2	3	4	5	6
Answer Key	(c)	(c)	(a)	(b)	(a)	(d)

Question Number	7	8	9	12	13	14
Answer Key	$6 x+11 y=46$	$\frac{\sqrt{3}+1}{2 \sqrt{2}}$	132	$\frac{1}{2}$	-7	One

Question Number	15	16	17	18	19	20
Answer Key	8	$(7,-2)$	$-\frac{12}{13},-\frac{12}{5},-\frac{5}{12}$	$\frac{1}{4}$	15	Complex roots

BYJU'S Home Learning Program

Solutions

1. (c)

Given $m=3$ and $c=-4$, substituting values in $y=m x+c$, we get $y=3 x-4$.
2. (c)

Slope of the given line $=\frac{7-3}{5-2}=\frac{4}{3}$
So the slope of the required line is also $\frac{4}{3}$. One point on this line is $(-4,0)$. Hence the equation of the line is

$$
y-0=\frac{4}{3}(x+4) \Rightarrow 3 y=4 x+16
$$

3. (a)

$$
\frac{7-3}{2-(-2)}=1
$$

4. (b)

The point is negative in the x axis and positive for the y-axis, thus the point must lie in the $2^{\text {nd }}$ quadrant.
5. (a)

Let the co-ordinate of the point on the x -axis be $(x, 0)$.
$d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$,
So $5^{2}=(x-6)^{2}+(0-(-3))^{2}$
$\Rightarrow 25=x^{2}-12 x+36+9$
$\Rightarrow x=2$ or $x=10$
So the required points are $(2,0)$ and $(10,0)$
6. (d)

The signs are different for $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants.
7. $\frac{2+4}{4-15}=\frac{y-2}{x-4}$
$6 x+11 y=46$
8. $\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
9. $f(x)=x^{2}+32 x-12$
$f(4)=4^{2}+32(4)-12$
$=16+128-12$
$=132$
10. Let $\mathrm{A}=\left(1-\cos ^{2} \theta\right) \operatorname{cosec}^{2} \theta$ and $\mathrm{B}=1$.

$$
A=\left(1-\cos ^{2} \theta\right) \operatorname{cosec}^{2} \theta
$$

Because $\sin ^{2} \theta+\cos ^{2} \theta=1$, we have

$$
\sin ^{2} \theta=1-\cos ^{2} \theta
$$

Then,

$$
\begin{aligned}
& A=\sin ^{2} \theta \cdot \cos ^{2} \theta \\
& A=\sin ^{2} \theta \cdot\left(1 / \sin ^{2} \theta\right) \\
& A=\sin ^{2} \theta / \sin ^{2} \theta
\end{aligned}
$$

BYJU'S Home Learning Program

$$
\begin{aligned}
& A=1 \\
& A=B \text { (Proved) }
\end{aligned}
$$

11. Let $\mathrm{A}=\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$

$$
\begin{aligned}
& A=\tan ^{4} \theta+\tan ^{2} \theta \\
& \mathrm{~A}=\tan ^{2} \theta \times\left(\tan ^{2} \theta+1\right)
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& \tan ^{2} \theta=\sec ^{2} \theta-1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta
\end{aligned}
$$

Then,

$$
\begin{gathered}
A=\left(\sec ^{2} \theta-1\right)\left(\sec ^{2} \theta\right) \\
A=\sec ^{4} \theta-\sec ^{2} \theta \\
A=B \quad \text { Proved }
\end{gathered}
$$

12. $\cos \left(175^{\circ}\right)=\cos (180-5)^{0}=-\cos (5)^{0}$
$\cos \left(204^{\circ}\right)=\cos (180+24)^{0}=-\cos (24)^{0}$
$\cos \left(300^{\circ}\right)=\cos (360-60)^{0}=\cos (60)^{0}$
So result would be $\cos (60)^{0}$ that is $\frac{1}{2}$
13. $f(-2)=2(-2)^{2}+6(-2)-3$
$f(-2)=-7$
14. $D=4^{2}-4 \times 1 \times 4=0$. So equation has only one root.
15.8
15. $x^{2}-7 x+2 x-14=0$
$(x-7)(x+2)=0$
$x=7,-2$
16. $\cos \alpha=-\sqrt{1-\sin ^{2} \alpha}=-\frac{12}{13}$
$\tan \alpha=\frac{-5}{12}$
$\cot \alpha=\frac{-12}{5}$
17. $\frac{2 \sin 15^{\circ} \cos 15^{\circ}}{2}=\frac{\sin 30^{\circ}}{2}=\frac{1}{4}$
18. $h(t)=10 \sin (2 \pi \times 0.25)+5=15$
19. $b^{2}-4 a c=(1)^{2}-4(1)(12)=-47$

So roots are complex.

