

Topic covered:

• Mathematical Tools (Session - 2) - NEET

Daily Practice Problems

- 1. If the value of $\log_{10} 2 = 0.3$ and $\log_{10} 3 = 0.5$, then find the value of $\log_{10} 6$.
- 2. Given that $y = 4 \times 10^{2x}$, express x in terms of y, giving an exact simplified answer in terms of logarithmic base 10.
- 3. Find the derivative of function $y = x \cos x$.
- 4. If $y = \sin x$ and x = 3t, then $\frac{dy}{dt}$ will be

a.
$$9\cos(x)$$

c.
$$3\cos(3t)$$

b.
$$cos(x)$$

d.
$$-\cos x$$

5. If $y = \sin(\ln x)$, then $\frac{dy}{dx}$ will be

a.
$$\frac{\cos(\ln x)}{x}$$

c.
$$\cos(\ln x)$$

b.
$$-\sin(\ln x)$$

d.
$$\sin \frac{\ln x}{x}$$

6. If $y = x^3$, then $\frac{d^2y}{dx^2}$ is

a.
$$6x^2$$

c.
$$3x^2$$

7. If $y = \sin x$, then $\frac{d^2y}{dx^2}$ will be

a.
$$\cos x$$

c.
$$-\sin x$$

b.
$$\sin x$$

d.
$$2 \sin x$$

8. If $S = ut + \frac{1}{2}at^2$, where S is displacement, u is initial velocity (constant), a is acceleration (constant) and t is time taken, then differentiation of S w.r.t. t will be

a.
$$u + \frac{at}{2}$$

b.
$$u + at$$

c.
$$u + 2at$$

d.
$$\frac{ut^2}{2} + \frac{at^3}{6}$$

9. If velocity of particle is given by $v=2t^4$, then its acceleration $\left(\frac{dv}{dt}\right)$ at any time t will be given by

a.
$$8t^3$$

c.
$$-8t^3$$

d.
$$t^2$$

10. Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

<u>Answer Key</u>

Question Number	1	2	3	4	5
Answer Key	0.8	$x = \frac{1}{2}\log_{10}\frac{y}{4}$	$\cos x - x \sin x$	(c)	(a)

Question Number	6	7	8	9	10
Answer Key	(b)	(c)	(b)	(a)	$5x^4 + 3x^2 + 6x$

Solutions

1.
$$\log_{10} 6 = \log_{10} (2 \times 3) = \log_{10} 2 + \log_{10} 3 = 0.8$$

2.
$$y = 4 \times 10^{2x}$$

$$\frac{y}{4} = 10^{2x}$$
We know,
If $y = a^x$, then $x = \log_a y$
So, $2x = \log_{10} \frac{y}{4}$

$$x = \frac{1}{2} \log_{10} \frac{y}{4}$$

3.
$$y = x \cos x$$
$$\frac{dy}{dx} = \cos x + x (-\sin x) = \cos x - x \sin x$$

4. (c)

$$y = \sin x, \qquad x = 3t$$

$$\frac{dy}{dx} = \cos x, \qquad \frac{dx}{dt} = 3$$

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = 3\cos x = 3\cos(3t)$$

Alternative:

Replace the value of x in $\sin x$ by 3t

$$y = \sin(3t)$$

$$\frac{dy}{dt} = 3\cos(3t)$$

5. (a)

$$y = \sin(\ln x)$$

$$\frac{dy}{dx} = \frac{\cos(\ln x)}{x}$$

6. (b)

$$y = x^{3}$$

$$\frac{dy}{dx} = 3x^{2}$$

$$\frac{d^{2}y}{dx^{2}} = 6x$$

7. (c)

$$y = \sin x$$

$$\frac{dy}{dx} = \cos x$$

$$\frac{d^2y}{dx^2} = -\sin x$$

$$S = ut + \frac{1}{2}at^{2}$$

$$\frac{dS}{dt} = u + \frac{1}{2}a \times 2t = u + at \quad \text{(This is the velocity of particle at any time } t\text{)}$$

9. (a)

$$v = 2t^4$$

 $a = \frac{dv}{dt} = 2 \times 4t^3 = 8t^3$

10. From the product rule with
$$u = x^2 + 1$$
 and $v = x^3 + 3$, we find

$$\frac{d}{dx}[(x^2+1)(x^3+3)] = (x^2+1)(3x^2) + (x^3+3)(2x)$$

$$= 3x^4 + 3x^2 + 2x^4 + 6x$$

$$= 5x^4 + 3x^2 + 6x$$

Alternative:

$$y = (x^{2} + 1)(x^{3} + 3) = x^{5} + x^{3} + 3x^{2} + 3$$

$$\frac{dy}{dx} = 5x^{4} + 3x^{2} + 6x$$

