Topic covered:
- Mole Concept (Session - 1) - JEE

Daily Practice Problems

1. Calculate the number of FeSO$_4$.7H$_2$O formula units in 0.5 millimoles of pure FeSO$_4$.7H$_2$O.
 a. 0.5 N_A
 b. 0.0005 N_A
 c. 0.005 N_A
 d. 5000 N_A

2. Find the number of millimoles of CH$_4$ in a sample containing 1.2044×10^{21} CH$_4$ molecules.
 a. 2
 b. 0.002
 c. 20
 d. 0.02

3. Find the total number of oxygen atoms in 6×10^6 formula units of the complex [Co(H$_2$O)$_6$]Cl$_2$.
 a. 42×10^6
 b. 6×10^6
 c. 3.6×10^7
 d. 1.8×10^7

4. If we have a CuSO$_4$.5H$_2$O sample and it contains a total of 1116 oxygen atoms, find the number of formula units of CuSO$_4$.5H$_2$O present in the sample.
 a. 124
 b. 9 N_A
 c. 0.124 N_A
 d. 279

5. Find the number of oxygen atoms in 10 millimoles of [Fe(H$_2$O)$_5$NO]SO$_4$.
 a. 0.01 N_A
 b. 0.1 N_A
 c. N_A
 d. 10 N_A

6. Find the number of moles of MgSO$_4$.7H$_2$O in a pure sample that contains 0.0022 moles of oxygen atoms.
 a. 2 moles
 b. 0.2 moles
 c. 0.002 moles
 d. 0.2 millimoles

7. Find the total number of moles of electrons in 6.023×10^{23} NO$_3^-$ ions.
 a. 32
 b. 31
 c. 28
 d. 30

8. Find the total number of electrons present in 20 millimoles of K$_2$SO$_4$.
 a. 2.03×10^{24}
 b. 6.02×10^{23}
 c. 1.04×10^{24}
 d. 1.20×10^{23}
9. If we have a pure NaNO₃ sample that contains a total of 8.4 kilomoles of electrons, find the number of moles of NaNO₃ present in the sample.
 a. 200 moles
 b. 2 moles
 c. 0.2 moles
 d. 400 moles

10. If we have a pure CaCO₃ sample that contains a total of 1.5055×10^{22} electrons, then the number of millimoles of CaCO₃ present in the sample is:
 a. 0.2
 b. 0.3
 c. 0.03
 d. 0.5
Answer Key

<table>
<thead>
<tr>
<th>Question Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(d)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(d)</td>
</tr>
</tbody>
</table>
1. (b)
 1 millimole = 10^{-3} moles
 1 mole of pure FeSO\(_4\).7H\(_2\)O contains \(N_A\) number of formula units of FeSO\(_4\).7H\(_2\)O
 The number of formula units in 0.5 millimoles of pure FeSO\(_4\).7H\(_2\)O will be:
 = 0.5 \times 10^{-3} \times N_A
 = 0.0005 N_A

2. (a)
 1 mole CH\(_4\) contains \(6.022 \times 10^{23}\) molecules of CH\(_4\)
 So, the number of moles that have \(1.2044 \times 10^{21}\) molecules of CH\(_4\):
 = \frac{1.2044 \times 10^{21}}{6.022 \times 10^{23}}
 = 0.002
 = 2 millimoles

3. (c)
 Number of O-atoms present in one formula unit of [Co(H\(_2\)O)\(_6\)]Cl\(_2\) = 6
 Number of O-atoms present in \(6 \times 10^6\) formula units of [Co(H\(_2\)O)\(_6\)]Cl\(_2\) are,
 = 6 \times 6 \times 10^6
 = 3.6 \times 10^7\) atoms

4. (a)
 One formula unit of CuSO\(_4\).5H\(_2\)O has 9 O-atoms.
 So, \(1116\) O-atoms will be present in:
 = \frac{1116}{9}\) formula units of CuSO\(_4\).5H\(_2\)O
 = 124 formula unit of CuSO\(_4\).5H\(_2\)O

5. (b)
 Number of O-atoms in one formula unit of [Fe(H\(_2\)O)\(_5\)NO]SO\(_4\) = 10
 Therefore, number of O-atoms in one mole of [Fe(H\(_2\)O)\(_5\)NO]SO\(_4\) = 10 \(N_A\)
 So, number of O-atoms in 10 millimoles of [Fe(H\(_2\)O)\(_5\)NO]SO\(_4\)
 = 10 \times 10^{-3} \times 10 \(N_A\)
 = 0.1 \(N_A\)
6. (d)
11 O-atoms are present in one formula unit of MgSO$_4$.7H$_2$O
So, 11 moles of O-atoms are present in 1 mole of MgSO$_4$.7H$_2$O
The number of moles of MgSO$_4$.7H$_2$O that would have 0.0022 moles of O-atoms:
 \[\frac{0.0022}{11} = 0.0002 \]
 = 0.2 millimoles

7. (a)
Total number of electrons in one NO$_3^-$ ion = 7 + (8×3) + 1 = 32
So, the number of electrons in 6.023 × 1023 NO$_3^-$ ions:
 \[= 6.023 \times 10^{23} \times 32 \]
 = 32 moles

8. (c)
Total number of electrons in one formula unit of K$_2$SO$_4$ = 19 × 2 + 16 + 8 × 4 = 86
So, total number of electrons present in one mole of K$_2$SO$_4$ = 86 × 6.022 × 1023
Hence, total number of electrons in 20 millimoles K$_2$SO$_4$:
 \[= 20 \times 10^{-3} \times 86 \times 6.022 \times 10^{23} \]
 = 1.04 × 1024

9. (a)
Total number of electrons present in 1 formula unit of NaNO$_3$ = 11 + 7 + 24 = 42
So, total number of electrons present in one mole of NaNO$_3$ = 42 × 6.022 × 1023
The moles of NaNO$_3$ that would have 8.4 kilomoles of electrons will moles of CaCO$_3$ moles of CaCO$_3$ be:
 \[= \frac{8.4 \times 10^8 \times 6.022 \times 10^{23}}{42 \times 6.022 \times 10^{23}} \]
 = 200 moles

10. (d)
Total number of electrons present in 1 formula unit of CaCO$_3$ = 20 + 6 + 8 × 3 = 50
So, 50 × 6.022 × 1023 electrons are present in 1 mol of CaCO$_3$
Hence, the number of moles of CaCO$_3$ that would have 1.5055 × 1022 electrons will be:
 \[= \frac{1.5055 \times 10^{22}}{50 \times 6.022 \times 10^{23}} \]
 = 0.0005
 = 0.5 millimoles