Topic covered:

• Mole Concept (Session - 1) - JEE

Daily Practice Problems

1.	Calculate the number of FeSO ₄ .7H ₂ O formula units in 0.5 millimoles of pure FeSO ₄ .7H ₂ O. b 0.0005 N ₄				
	c. 0.005 NA	d. 5000 NA			
2.	Find the number of millimoles of CH ₄ in a sample containing 1.2044×10^{21} CH ₄ molecules.				
	a. 2	b. 0.002			
	c. 20	d. 0.02			
3.	Find the total number of oxygen atoms in 6×1 [Co(H ₂ O) ₆]Cl ₂ .	0 ⁶ formula units of the complex			
	a. 42×10^6	b. 6×10^{6}			
	c. 3.6×10^7	d. 1.8×10^7			
4.	If we have a CuSO ₄ .5H ₂ O sample and it contains a total of 1116 oxygen atoms, find the number of formula units of CuSO ₄ .5H ₂ O present in the sample.				
	a. 124	b. 9 NA			
	c. 0.124 NA	d. 279			
5.	Find the number of oxygen atoms in 10 millimoles of [Fe(H2O)5NO]SO4.				
	a. 0.01 NA	b. 0.1 NA			
	c. NA	d. 10 NA			
6.	Find the number of moles of MgSO $_{4.7H_2O}$ in a pure sample that contains 0.0022 moles of oxygen atoms.				
	a. 2 moles	b. 0.2 moles			
	c. 0.002 moles	d. 0.2 millimoles			
7.	Find the total number of moles of electrons in 6	$.023 \times 10^{23} \text{ NO}_3^-$ ions.			
	a. 32	b. 31			
	c. 28	d. 30			
8.	Find the total number of electrons present in 20 millimoles of K ₂ SO ₄ .				
	a. 2.03×10^{24}	b. 6.02×10^{23}			
	c. 1.04×10^{24}	d. 1.20×10^{23}			

- 9. If we have a have a pure NaNO₃ sample that contains a total of 8.4 kilomoles of electrons, find the number of moles of NaNO₃ present in the sample.
 - a. 200 moles

b. 2 moles

c. 0.2 moles

- d. 400 moles
- 10. If we have a pure CaCO₃ sample that contains a total of 1.5055×10^{22} electrons, then the number of millimoles of CaCO₃ present in the sample is:
 - a. 0.2
 - c. 0.03

b. 0.3 d. 0.5

Mole concept (Session -1)

Answer	Key
--------	-----

Question Number	1	2	3	4	5			
Answer Key	(b)	(a)	(c)	(a)	(b)			
Question Number	6	7	8	9	10			
Answer Key	(d)	(a)	(c)	(a)	(d)			

Solutions

1. (b)

1 millimole = 10^{-3} moles 1 mole of pure FeSO4 .7H2O contains NA number of formula units of FeSO4 .7H2O The number of formula units in 0.5 millimoles of pure FeSO4.7H2O will be: = 0.5×10^{-3} N_A 0.0005 NA

2. (a)

1 mole CH₄ contains 6.022×10^{23} molecules of CH₄ So, the number of moles that have 1.2044×10^{21} molecules of CH₄: $=\frac{1.2044 \times 10^{21}}{6.022 \times 10^{23}}$ = 0.002= 2 millimoles

3. (c)

Number of O-atoms present in one formula unit of $[Co(H_2O)_6]Cl_2 = 6$ Number of O-atoms present in 6×10^6 formula units of $[Co(H_2O)_6]Cl_2$ are, $= 6 \times 6 \times 10^6$ $= 3.6 \times 10^7$ atoms

4. (a)

One formula unit of CuSO₄.5H₂O has 9 O-atoms. So, 1116 O-atoms will be present in:

 $=\frac{1116}{9}$ formula units of CuSO₄.5H₂O

- = 124 formula unit of CuSO₄.5H₂O
- 5. (b)

Number of O-atoms in one formula unit of $[Fe(H_2O)_5NO]SO_4 = 10$ Therefore, number of O-atoms in one mole of $[Fe(H_2O)_5NO]SO_4 = 10 N_A$ So, number of O-atoms in 10 millimoles of $[Fe(H_2O)_5NO]SO_4$ $= 10 \times 10^{-3} \times 10 N_A$ $= 0.1 N_A$

 $= 0.1 N_A$

Mole concept (Session -1)

6. (d)

11 O-atoms are present in one formula unit of MgSO₄.7H₂O So, 11 moles of O-atoms are present in 1 mole of MgSO₄.7H₂O The number of moles of MgSO₄.7H₂O that would have 0.0022 moles of O-atoms: $=\frac{0.0022}{11}$ = 0.0002= 0.2 millimoles

7. (a)

Total number of electrons in one NO_3^- ion= 7+(8×3) +1 = 32 So, the number of electrons in 6.023×10^{23} NO₃⁻ ions: $= 6.023 \times 10^{23} \times 32$ = 32 moles

8. (c)

Total number of electrons in one formula unit of $K_2SO_4 = 19 \times 2 + 16 + 8 \times 4 = 86$ So, total number of electrons present in one mole of $K_2SO_4 = 86 \times 6.022 \times 10^{23}$ Hence, total number of electrons in 20 millimoles K₂SO₄: $= 20 \times 10^{-3} \times 86 \times 6.022 \times 10^{23}$

 $= 1.04 \times 10^{24}$

9. (a)

Total number of electrons present in 1 formula unit of $NaNO_3 = 11+7+24=42$ So, total number of electrons present in one mole of NaNO₃ = $42 \times 6.022 \times 10^{23}$ The moles of NaNO₃ that would have 8.4 kilomoles of electrons will moles of CaCO₃ moles

of CaCO₃ be:

 $=\frac{8.4\times1000\times6.022\times10^{23}}{42\times6.022\times10^{23}}$

= 200 moles

10. (d)

Total number of electrons present in 1 formula unit of $CaCO_3 = 20 + 6 + 8 \times 3 = 50$ So, $50 \times 6.022 \times 10^{23}$ electrons are present in 1 mol of CaCO₃

Hence, the number of moles of CaCO3 that would have 1.5055×10^{22} electrons will be:

 1.5055×10^{22} 50×6.022×10²³

= 0.0005

= 0.5 millimoles