Book a FREE class

BYJU'S Home Learning Program

Topic covered:

- Mole Concept (Session - 1) - JEE

Worksheet

1. Calculate the number of NO_{2} molecules in 4 moles of a pure sample of NO_{2} molecules.
a. 6.022×10^{23}
b. 24.088×10^{23}
c. $\quad 2.408 \times 10^{23}$
d. 12.044×10^{23}
2. Calculate the number of formula units of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in $4 / 9$ millimoles of a pure sample of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
a. 24.088×10^{23}
b. 2.41×10^{20}
c. 2.68×10^{20}
d. 2.68×10^{23}
3. Calculate the number of formula units of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ present in 10^{-13} moles of pure $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$.
a. $\quad 6.022 \times 10^{10}$
b. 6.022×10^{13}
c. $\quad 6.022 \times 10^{12}$
d. 6.022×10^{9}
4. Find the number of moles of NO_{2} molecules in a sample containing 3.011×10^{23} molecules of NO_{2}.
a. $\quad 0.05$ moles
b. 0.5 moles
c. 2 moles
d. 0.25 moles
5. Find the number of moles of HNO_{3} molecules in a sample containing 10^{6} molecules of HNO_{3}.
a. 2.66×10^{-18} moles
b. 2.66×10^{-20} moles
c. 1.66×10^{-20} moles
d. 1.66×10^{-18} moles
6. Find the number of millimoles of KOH in a sample containing 30 KOH molecules.
a. 4.98×10^{-23}
b. 0.498×10^{-23}
c. 4.98×10^{23}
d. 4.98×10^{-20}
7. Find the total number of oxygen atoms in 200 formula units of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
a. 800
b. 600
c. 1200
d. 1600
8. Find the total number of oxygen atoms in 3×10^{3} formula units of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$.
a. 6×10^{3}
b. 18×10^{3}
c. 24×10^{3}
d. 0.6×10^{3}

BYJU'S Home Learning Program

9. If we have a pure $\mathrm{CH}_{3} \mathrm{OH}$ sample and it contains a total of 6000 hydrogen atoms, then find the number of $\mathrm{CH}_{3} \mathrm{OH}$ molecules present in the sample.
a. 1200
b. 1000
c. 1500
d. 800
10. We have a pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample and it contains a total of 1120 hydrogen atoms. Find the number of $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecules present in the sample.
a. 560
b. 2240
c. 1120
d. 1000
11. If we have a $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ sample and it contains a total of 2233 oxygen atoms, then find the number of formula units of $\mathrm{FeSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}$ present in the sample.
a. 210
b. 203
c. 103
d. 233
12. Find the number of O -atoms in $2 / 3$ moles of NO_{2}.
a. 4.014×10^{23}
b. 4.014×10^{20}
c. 8.029×10^{23}
d. 8.029×10^{20}
13. How many C-atoms are present in 2.6 micromoles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
a. 3.13×10^{16}
b. 6.26×10^{16}
c. 1.56×10^{16}
d. 9.39×10^{16}
14. How many 0 -atoms are present in $3 / 8$ millimoles of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$?
a. 9.033×10^{24}
b. 2.26×10^{24}
c. $\quad 9.033 \times 10^{20}$
d. 2.26×10^{20}
15. Find the number of moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ in a pure sample that contains 1 nanomole of 0 -atoms.
a. 2×10^{-10} moles
b. 0.2×10^{-10} moles
c. 4×10^{-10} moles
d. 0.4×10^{-10} moles
16. Find the number of moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in a pure sample that contains 0.045 moles of 0 -atoms.
a. 0.5 moles
b. 0.005 moles
c. 50 moles
d. 5 moles
17. Find the number of moles of $\mathrm{BaCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ in a pure sample that contains $3 / 8$ kilomoles of oxygen atoms.
18. Find the total number of moles of electrons present in $24.088 \times 10^{23} \mathrm{SO}_{2}$ molecules.
a. 132 moles
b. 128 moles
c. 232 moles
d. 328 moles

BYJU'S Home Learning Program

19. Find the total number of moles of electrons present in $6.022 \times 10^{18} \mathrm{H}_{3} \mathrm{PO}_{4}$ molecules.
a. 0.5 moles
b. 0.05 moles
c. 0.005 moles
d. 0.0005 moles
20. Find the total number of moles of electrons present in $12.044 \times 10^{14} \mathrm{PO}_{4}^{3-}$ ions.
21. If we have a pure $\mathrm{Na}_{2} \mathrm{SO}_{4}$ sample that contains a total of 7 billion electrons, then find the number of moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ present in the sample.
a. 1.66×10^{-16} moles
b. 1.66×10^{-14} moles
c. 3.66×10^{-16} moles
d. 3.66×10^{-14} mole
22. If we have a pure $\mathrm{Ca}(\mathrm{NO} 3)_{2}$ sample that contains a total of 1.64 kilomoles of electrons then find the number of moles of $\mathrm{Ca}(\mathrm{NO})_{2}$ present in the sample.
a. 10 moles
b. 20 moles
c. 30 moles
d. 40 moles
23. If we have a pure MgCO_{3} sample that contains a total of 1.26 millimoles of electrons, find the number of moles of MgCO_{3} present in the sample.
24. Find the total number of electrons present in 40 millimoles of BaSO_{4}. (atomic number of $\mathrm{Ba}=56$)
a. 2.89×10^{24}
b. 3.89×10^{24}
c. 2.51×10^{24}
d. 3.51×10^{24}
25. If we have a pure $\mathrm{Na}_{2} \mathrm{CO}_{3}$ sample that contains a total of 7.8286×10^{24} electrons, then find the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in the sample.
a. 0.5 moles
b. 0.3 moles
c. $\quad 0.7$ moles
d. $\quad 0.25$ moles

BYJU'S Home Learning Program

Answer Key

Question Number	1	2	3	4	5
Answer Key	(b)	(c)	(a)	(b)	(d)

Question Number	6	7	8	9	10
Answer Key	(d)	(a)	(b)	(c)	(a)

Question Number	11	12	13	14	15
Answer Key	(b)	(c)	(d)	(c)	(a)

Question Number	16	17	18	19	20
Answer Key	(b)	187.50 mol	(b)	(d)	$10^{-7} \mathrm{~mol}$

Question Number	21	22	23	24	25
Answer Key	(a)	(b)	$3 \times 10^{-5} \mathrm{~mol}$	(c)	(d)

BYJU'S Home Learning Program

Solutions

1. (b)

We know,
1 mole of $\mathrm{NO}_{2}=6.022 \times 10^{23} \mathrm{NO}_{2}$ molecules
So, 4 moles of $\mathrm{NO}_{2}=6.022 \times 10^{23} \times 4$ molecules $=24.088 \times 10^{23} \mathrm{NO}_{2}$ molecules
2. (c)

We know,
1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}=6.022 \times 10^{23}$ formula units of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
So, 1 millimole of $\mathrm{Na}_{2} \mathrm{SO}_{4}=6.022 \times 10^{20}$ formula units of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
Therefore $4 / 9$ millimoles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$=6.022 \times 10^{20} \times \frac{4}{9}$ formula units $=2.68 \times 10^{20}$ formula units of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
3. (a)

We know,
1 mole of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}=6.022 \times 10^{23}$ formula units of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
So, 10^{-13} moles of pure $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
$=6.022 \times 10^{23} \times 10^{-13}$ formula units $=6.022 \times 10^{10}$ formula units of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
4. (b)

We know,
6.022×10^{23} molecules of $\mathrm{NO}_{2}=1$ mole of NO_{2}
So, 3.011×10^{23} molecules of NO_{2}
$=\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}}$ moles $=0.5$ moles of NO_{2}
5. (d)

We know,
6.022×10^{23} molecules of $\mathrm{HNO}_{3}=1$ mole of HNO_{3}
So, 10^{6} molecules of $\mathrm{HNO}_{3}=\frac{10^{6}}{6.022 \times 10^{23}}$ moles $=1.66 \times 10^{-18}$ moles of HNO_{3}
6. (d)

We know,
6.022×10^{23} molecules of $\mathrm{KOH}=1$ mole of KOH
So, 30 molecules of $\mathrm{KOH}=\frac{30}{6.022 \times 10^{23}}$ mole of KOH
$=\left(\frac{30}{6.022 \times 10^{23}}\right) \times 10^{3}$ millimoles of $\mathrm{KOH}=4.98 \times 10^{-20}$ millimoles of KOH

BYJU'S Home Learning Program

7. (a)

Number of O-atoms in one formula unit of $\mathrm{Na}_{2} \mathrm{SO}_{4}=4$
So, number of O-atoms in 200 formula unit of $\mathrm{Na}_{2} \mathrm{SO}_{4}=200 \times 4=800$
8. (b)

Number of O -atoms in one formula unit of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}=6$
So, number of 0 -atoms in 3×10^{3} formula units of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}=6 \times 3 \times 10^{3}$
$=18 \times 10^{3}$
9. (c)

From the molecular formula of $\mathrm{CH}_{3} \mathrm{OH}$,
1 mole $\mathrm{CH}_{3} \mathrm{OH}$ contains 4 moles of H atoms
So, we can say that 4 moles of H -atoms are present in 1 mole of $\mathrm{CH}_{3} \mathrm{OH}$.
Again, $6.022 \times 10^{23} \mathrm{H}$-atoms $=1$ mole of H -atoms
Therefore, 6000 H -atoms $=\frac{6000}{6.022 \times 10^{23}}$ moles of H -atoms
Hence number of $\mathrm{CH}_{3} \mathrm{OH}$ molecules present in the sample
$=\frac{6000}{6.022 \times 10^{23}} \times \frac{1}{4} \times 6.022 \times 10^{23}=1500$
10. (a)

From the molecular formula of $\mathrm{H}_{2} \mathrm{SO}_{4}$,
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 2 moles of H atoms
So, 2 moles of H -atoms are present in 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Again, $6.022 \times 10^{23} \mathrm{H}$-atoms $=1$ mole of H -atoms
Therefore, 1120 H -atoms $=\frac{1120}{6.022 \times 10^{23}}$ moles of H -atoms
Hence, number of $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecules present in the sample
$=\frac{1120}{6.022 \times 10^{23}} \times \frac{1}{2} \times 6.022 \times 10^{23}=560$
11. (b)

From the molecular formula of $\mathrm{FeSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}$,
1 mole of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ contains 11 moles of O -atoms
So, 11 moles of 0 -atoms are present in 1 mole of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Again, $6.022 \times 10^{23} 0$-atoms $=1$ mole of 0 -atoms
Therefore, 22330 -atoms $=\frac{2233}{6.022 \times 10^{23}}$ moles of 0 -atoms
Hence, number of formula units of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ present in the sample:
$=\frac{2233}{6.022 \times 10^{23}} \times \frac{1}{11} \times 6.022 \times 10^{23}=203$

BYJU'S Home Learning Program

12. (c)

From the molecular formula of NO_{2},
1 mole of NO_{2} molecules contains 2 moles of O -atoms
So, $2 / 3$ moles of NO_{2} molecules contain $4 / 3$ moles of O atoms
Again, 1 mole of 0 -atoms $=6.022 \times 10^{23} 0$-atoms
Therefore, $4 / 3$ moles of 0 -atoms $=\frac{4}{3} \times 6.022 \times 10^{23}$
$=8.029 \times 10^{23} 0$-atoms
13. (d)

From the formula of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$,
1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ molecules contains 6 moles of C atoms.
So, 2.6 micromoles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ molecules contain $2.6 \times 6=15.6$ micromoles of C -atoms Again, 1 mole of C -atoms $=6.022 \times 10^{23} \mathrm{C}$-atoms
Therefore, 15.6 micromoles of C-atoms $=15.6 \times 10^{-6} \times 6.022 \times 10^{23} \mathrm{C}$-atoms $=9.39 \times 10^{16} \mathrm{C}$-atoms
14. (c)

From the formula of $[\mathrm{Co}(\mathrm{H} 2 \mathrm{O}) 4 \mathrm{Cl} 2] \mathrm{Cl}$,
1 mole of [$\mathrm{Co}(\mathrm{H} 2 \mathrm{O}) 4 \mathrm{Cl} 2] \mathrm{Cl}$ formula unit contains 4 moles of O -atoms
So, $3 / 8$ millimoles of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ contain $\frac{3}{8} \times 4=\frac{3}{2}$ millimoles of O -atom
Again, 1 mole of O -atoms $=6.022 \times 10^{23} 0$-atoms
Therefore, $\frac{3}{2}$ millimoles of 0 -atoms $=\frac{3}{2} \times 10^{-3} \times 6.022 \times 10^{23} 0$-atoms
$=9.033 \times 10^{20} 0$-atoms
15. (a)

From the molecular formula of $\mathrm{N}_{2} \mathrm{O}_{5}$, 5 moles of O -atoms are contained in 1 mole of $\mathrm{N}_{2} \mathrm{O}_{5}$
So, 1 nanomole of 0 -atoms will be contained in
$=\frac{1}{5} \times 10^{-9}$ moles of $\mathrm{N}_{2} \mathrm{O}_{5}$
$=2 \times 10^{-10}$ moles of $\mathrm{N}_{2} \mathrm{O}_{5}$

BYJU'S Home Learning Program

16. (b)

From the molecular formula unit of $\mathrm{CuSO}_{4.5} .5 \mathrm{H}_{2} \mathrm{O}$,
9 moles of O -atoms are contained in 1 mole of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
So, 0.045 moles of 0 -atoms will be contained in
$=\frac{1}{9} \times 0.045$ moles $=0.005$ moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
17. (187.50 mol)

From the molecular formula unit of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, 2 moles of O -atoms are contained in 1 mole of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
So, $3 / 8$ kilomoles of 0 -atoms will be contained in
$=\frac{1}{2} \times \frac{3}{8} \times 1000$ moles of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
$=187.50$ moles of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
18. (b)
$24.088 \times 10^{23} \mathrm{SO}_{2}$ molecules $=\frac{24.088 \times 10^{23}}{6.022 \times 10^{23}}$ moles $=4$ moles of SO_{2}
The number of electrons in one molecule of $\mathrm{SO}_{2}=16+8 \times 2=32$ eletrons
So, the number of moles of electrons in one mole of $\mathrm{SO}_{2}=32$ moles
Therefore, total number of moles of electrons in 4 moles of $\mathrm{SO}_{2}=128$ moles
19. (d)
$6.022 \times 10^{18} \mathrm{H}_{3} \mathrm{PO}_{4}$ molecules $=\frac{6.022 \times 10^{18}}{6.022 \times 10^{23}}$ moles $=10^{-5}$ moles $\mathrm{H}_{3} \mathrm{PO}_{4}$
The number of electrons in one molecule of $\mathrm{H}_{3} \mathrm{PO}_{4}=3+15+8 \times 4=50$ electrons
So, the number of moles of electrons in one mole of $\mathrm{H}_{3} \mathrm{PO}_{4}=50$ moles
Therefore, the total number of moles of electrons in 10^{-5} moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ would be:
$=50 \times 10^{-5}$ moles $=0.0005 \mathrm{moles}$
20. $\left(10^{-7} \mathrm{~mol}\right)$

We know,
$12.044 \times 10^{14} \mathrm{PO}_{4}^{3-}$ ions $=\frac{12.044 \times 10^{14}}{6.022 \times 10^{23}}$ moles $=2 \times 10^{-9}$ moles PO_{4}^{3-} ions
The number of electrons in one PO_{4}^{3-} ion $=15+8 \times 4+3=50$ electrons
So, the number of moles of electrons in one mole of PO_{4}^{3-} ion $=50$ moles
Therefore, the total number of moles of electrons in 2×10^{-9} moles of PO_{4}^{3-} ions:
$=50 \times 2 \times 10^{-9}$ moles $=10^{-7}$ moles

BYJU'S Home Learning Program

21. (a)

One molecule of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ contains $=(11 \times 2+16+8 \times 4)=70$ electrons
So, number of electrons in 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}=70 \times 6.022 \times 10^{23}$
Therefore 7×10^{9} electrons will be contained in
$=\frac{7 \times 10^{9}}{70 \times 6.022 \times 10^{23}}$ moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$=1.66 \times 10^{-16}$ moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
22. (b)

One molecule of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ contains $=(20+2 \times 7+6 \times 8)=82$ electrons
So, number of electrons in 1 mole of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=82 \times 6.022 \times 10^{23}$
Therefore 1.64 kilomoles of electrons will be contained in
$=\frac{1.64 \times 1000 \times 6.02210^{23}}{82 \times 6.022 \times 10^{23}}$ moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$=20$ moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
23. $\left(3 \times 10^{-5} \mathrm{~mol}\right)$

One molecule of MgCO_{3} contains $=(12+6+8 \times 3)=42$ electrons
So, number of electrons in 1 mole of $\mathrm{MgCO}_{3}=42 \times 6.022 \times 10^{23}$
Therefore, 1.26 millimoles of electrons will contained in
$=\frac{1.26 \times 10^{-3} \times 6.02210^{23}}{42 \times 6.022 \times 10^{23}}$ moles $=3 \times 10^{-5}$ moles of MgCO_{3}
24. (c)

The total number of electrons present in one molecule of $\mathrm{BaSO}_{4}=56+16+32=104$
Therefore, total number of electrons present in one mole of $\mathrm{BaSO}_{4}=104 \times 6.022 \times 10^{23}$
Hence, total number of electrons present in 40 millimoles of BaSO_{4}
$=104 \times 6.022 \times 10^{23} \times 40 \times 10^{-3}=2.51 \times 10^{24}$
25. (d)

Total number of electrons present in one molecule of $\mathrm{Na}_{2} \mathrm{CO}_{3}=11 \times 2+6+3 \times 8=52$ So, $52 \times 6.022 \times 10^{23}$ electrons are present in 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Therefore, 7.8286×10^{24} electrons will be present in
$=\frac{7.8286 \times 10^{24}}{52 \times 6.022 \times 10^{23}}$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=0.25$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

