Topic covered:

• Mole Concept (Session - 1) - JEE

Worksheet

1.	Calcula a. 6.0 c. 2.4	ate the number of NO ₂ molecules in 4 mole 22×10^{23} 208×10^{23}	es of b. d.	f a pure sample of NO ₂ molecules. 24.088×10^{23} 12.044×10^{23}		
2.	Calcula Na ₂ SO	ate the number of formula units of Na ₂ SO ₄	in 4	4/9 millimoles of a pure sample of		
	a 24	0.88×10^{23}	h	2.41×10^{20}		
	c. 2.6	58×10^{20}	d.	2.68×10^{23}		
3.	Calcula CuSO4	ate the number of formula units of CuSO4.5 .5H2O.	5H2(D present in 10 ⁻¹³ moles of pure		
	a. 6.0	22×10^{10}	b.	6.022×10^{13}		
	c. 6.0	22×10^{12}	d.	6.022×10^{9}		
4.	Find th molect	ind the number of moles of NO ₂ molecules in a sample containing 3.011×10^{23} tolecules of NO ₂ .				
	a. 0.0	15 moles	b.	0.5 moles		
	c. 2 n	noles	d.	0.25 moles		
5.	Find the number of moles of HNO ₃ molecules in a sample containing 10 ⁶ molecul HNO ₃ .					
	a. 2.6	16×10^{-18} moles	b.	2.66×10^{-20} moles		
	c. 1.6	6×10^{-20} moles	d.	1.66×10^{-18} moles		
6.	Find th	he number of millimoles of KOH in a sampl	e co	ontaining 30 KOH molecules.		
	a. 4.9	98×10^{-23}	b.	0.498×10^{-23}		
	c. 4.9	8×10^{23}	d.	4.98×10^{-20}		
7.	Find th	he total number of oxygen atoms in 200 for	umber of oxygen atoms in 200 formula units of Na ₂ SO ₄ .			
	a. 80	0	b.	600		
	c. 12	00	d.	1600		
8.	Find th	he total number of oxygen atoms in $3 imes 10$	³ fo	rmula units of [Ni(H ₂ O) ₆]Cl ₂ .		
	a. 6×	< 10 ³	b.	18×10^{3}		
	c. 24	× 10 ³	d.	0.6×10^3		

	9.	If we have a pure CH_3OH sample and it contains a total of 6000 hydrogen atoms, then						
		find the number of CH ₃ OH molecules present in 1	the	sample.				
		a. 1200	D. d	1000				
		C. 1500	a.	800				
	10.	We have a pure H_2SO_4 sample and it contains a t number of H_2SO_4 molecules present in the sampl a. 560	ota e. b.	l of 1120 hydrogen atoms. Find the 2240				
		C. 1120	u.	1000				
	11.	If we have a FeSO ₄ .7H ₂ O sample and it contains a the number of formula units of FeSO ₄ .7H ₂ O press a. 210 c. 103	a tol ent b. d.	tal of 2233 oxygen atoms, then find in the sample. 203 233				
	12.	Find the number of Ω -atoms in 2/3 moles of N Ω_2						
		a. 4.014×10^{23}	b.	4.014×10^{20}				
		c. 8.029×10^{23}	d.	8.029×10^{20}				
	13.	How many C-atoms are present in 2.6 micromole	es o	f C6H12O6?				
		a. 3.13×10^{16}	b.	6.26×10^{16}				
		c. 1.56×10^{16}	d.	9.39×10^{16}				
	14.	How many O-atoms are present in 3/8 millimole	s of	$f[Co(H_2O)_4Cl_2]Cl?$				
		a. 9.033×10^{24}	b.	2.26×10^{24}				
		c. 9.033×10^{20}	d.	2.26×10^{20}				
	15	Find the number of males of N-O-in a nume completible to static 1 and the f						
	15.	• Find the number of moles of N2O5 in a pure sample that contains 1 nanomole of						
		a. 2×10^{-10} moles	h.	0.2×10^{-10} moles				
		c. 4×10^{-10} moles	d.	0.4×10^{-10} moles				
			••••					
16	16.	. Find the number of moles of CuSO4.5H2O in a pure sample that contains 0.045 moles of O-atoms.						
		a. 0.5 moles	b.	0.005 moles				
		c. 50 moles	d.	5 moles				
	17.	. Find the number of moles of BaCl ₂ .2H ₂ O in a pure sample that contains 3/8 kilomoles of oxygen atoms.						
18	18	Find the total number of moles of electrons press	ent	in 24.088 x 10^{23} SO ₂ molecules				
	10.	a 132 moles	h	128 moles				
		c 232 moles	д.	328 moles				
			u.	520 110165				

19.	Find the total number of moles of electrons pres a. 0.5 moles c. 0.005 moles	ent b. d.	in 6.022×10^{18} H ₃ PO ₄ molecules. 0.05 moles 0.0005 moles
20.	Find the total number of moles of electrons pres	ent	in $12.044 \times 10^{14} \text{ PO}_4^{3-}$ ions.
21.	If we have a pure Na ₂ SO ₄ sample that contains a number of moles of Na ₂ SO ₄ present in the sampl	tota e.	al of 7 billion electrons, then find the
	a. 1.66×10^{-16} moles c. 3.66×10^{-16} moles	b. d.	1.66×10^{-14} moles 3.66×10^{-14} mole
22.	If we have a pure Ca(NO3) ₂ sample that contains then find the number of moles of Ca(NO3) ₂ pres	otal of 1.64 kilomoles of electrons in the sample.	
	a. 10 moles c. 30 moles	b. d.	20 moles 40 moles
23.	If we have a pure MgCO ₃ sample that contains a find the number of moles of MgCO ₃ present in th	tota e sa	l of 1.26 millimoles of electrons, mple.
24.	Find the total number of electrons present in 40 Ba=56)	mil	limoles of BaSO4. (atomic number of
	a. 2.89×10^{24} c. 2.51×10^{24}	b. d.	3.89×10^{24} 3.51×10^{24}
25	If we have a nure Na_2CO_2 cample that contains a	tota	a) of 7.8286 x 10^{24} electrons then

- 25. If we have a pure Na₂CO₃ sample that contains a total of 7.8286×10^{24} electrons, then find the number of moles of Na₂CO₃ present in the sample.
 - a. 0.5 moles
 - c. 0.7 moles

- b. 0.3 moles
- d. 0.25 moles

Answer Key

Question Number	1	2	3	4	5		
Answer Key	(b)	(c)	(a)	(b)	(d)		
Question Number	6	7	8	9	10		
Answer Key	(d)	(a)	(b)	(c)	(a)		
Question Number	11	12	13	14	15		
Answer Key	(b)	(c)	(d)	(c)	(a)		
Question Number	16	17	18	19	20		
Answer Key	(b)	187.50 mol	(b)	(d)	10 ⁻⁷ mol		
Question Number	21	22	23	24	25		
Answer Key	(a)	(b)	3×10^{-5} mol	(c)	(d)		

Solutions

1. (b)

We know, 1 mole of NO₂ = 6.022×10^{23} NO₂ molecules So, 4 moles of NO₂ = $6.022 \times 10^{23} \times 4$ molecules = 24.088×10^{23} NO₂ molecules

2. (c)

We know,

1 mole of Na₂SO₄ = 6.022×10^{23} formula units of Na₂SO₄ So, 1 millimole of Na₂SO₄ = 6.022×10^{20} formula units of Na₂SO₄ Therefore 4/9 millimoles of Na₂SO₄ = $6.022 \times 10^{20} \times \frac{4}{9}$ formula units = 2.68×10^{20} formula units of Na₂SO₄

3. (a)

We know,

1 mole of CuSO₄.5H₂O = 6.022×10^{23} formula units of CuSO₄.5H₂O So, 10^{-13} moles of pure CuSO₄.5H₂O = $6.022 \times 10^{23} \times 10^{-13}$ formula units = 6.022×10^{10} formula units of CuSO₄.5H₂O

4. (b)

We know, 6.022×10^{23} molecules of NO₂ = 1 mole of NO₂ So, 3.011×10^{23} molecules of NO₂ $= \frac{3.011 \times 10^{23}}{6.022 \times 10^{23}}$ moles = 0.5 moles of NO₂

5. (d)

We know, 6.022×10^{23} molecules of HNO₃ = 1 mole of HNO₃ So, 10⁶ molecules of HNO₃ = $\frac{10^6}{6.022 \times 10^{23}}$ moles = 1.66 × 10⁻¹⁸ moles of HNO₃

6. (d)

We know, 6.022×10^{23} molecules of KOH= 1 mole of KOH So, 30 molecules of KOH = $\frac{30}{6.022 \times 10^{23}}$ mole of KOH = $(\frac{30}{6.022 \times 10^{23}}) \times 10^3$ millimoles of KOH= 4.98×10^{-20} millimoles of KOH

7. (a)

Number of O-atoms in one formula unit of $Na_2SO_4 = 4$ So, number of O-atoms in 200 formula unit of $Na_2SO_4 = 200 \times 4 = 800$

8. (b)

Number of O-atoms in one formula unit of $[Ni(H_2O)_6]Cl_2 = 6$ So, number of O-atoms in 3×10^3 formula units of $[Ni(H_2O)_6]Cl_2 = 6 \times 3 \times 10^3$ $= 18 \times 10^3$

9. (c)

From the molecular formula of CH₃OH, 1 mole CH₃OH contains 4 moles of H atoms So, we can say that 4 moles of H-atoms are present in 1 mole of CH₃OH. Again, 6.022×10^{23} H-atoms = 1 mole of H-atoms Therefore, 6000 H-atoms = $\frac{6000}{6.022 \times 10^{23}}$ moles of H-atoms Hence number of CH₃OH molecules present in the sample = $\frac{6000}{6.022 \times 10^{23}} \times \frac{1}{4} \times 6.022 \times 10^{23} = 1500$

10. (a)

From the molecular formula of H₂SO₄, 1 mole of H₂SO₄ contains 2 moles of H atoms So, 2 moles of H-atoms are present in 1 mole of H₂SO₄ Again, 6.022 × 10²³ H-atoms = 1 mole of H-atoms Therefore, 1120 H-atoms = $\frac{1120}{6.022 \times 10^{23}}$ moles of H-atoms Hence, number of H₂SO₄ molecules present in the sample = $\frac{1120}{6.022 \times 10^{23}} \times \frac{1}{2} \times 6.022 \times 10^{23} = 560$

11. (b)

From the molecular formula of FeSO₄.7H₂O, 1 mole of FeSO₄.7H₂O contains 11 moles of O-atoms So, 11 moles of O-atoms are present in 1 mole of FeSO₄.7H₂O Again, 6.022 × 10²³ O-atoms = 1 mole of O-atoms Therefore, 2233 O-atoms = $\frac{2233}{6.022 \times 10^{23}}$ moles of O-atoms Hence, number of formula units of FeSO₄.7H₂O present in the sample: = $\frac{2233}{6.022 \times 10^{23}} \times \frac{1}{11} \times 6.022 \times 10^{23} = 203$

12. (c)

From the molecular formula of NO₂, 1 mole of NO₂ molecules contains 2 moles of O-atoms So, 2/3 moles of NO₂ molecules contain 4/3 moles of 0 atoms Again, 1 mole of O-atoms = 6.022×10^{23} O-atoms Therefore, 4/3 moles of O-atoms = $\frac{4}{3} \times 6.022 \times 10^{23}$ = 8.029×10^{23} O-atoms

13. (d)

From the formula of C₆H₁₂O₆,

1 mole of $C_6H_{12}O_6$ molecules contains 6 moles of C atoms.

So, 2.6 micromoles of C₆H₁₂O₆ molecules contain 2.6 \times 6 = 15.6 micromoles of C-atoms Again, 1 mole of C-atoms = 6.022 \times 10²³ C-atoms

Therefore, 15.6 micromoles of C-atoms = $15.6 \times 10^{-6} \times 6.022 \times 10^{23}$ C-atoms

 $= 9.39 \times 10^{16}$ C-atoms

14. (c)

From the formula of [Co(H2O)4Cl2]Cl, 1 mole of [Co(H2O)4Cl2]Cl formula unit contains 4 moles of 0-atoms So, 3/8 millimoles of [Co(H2O)4Cl2]Cl contain $\frac{3}{8} \times 4 = \frac{3}{2}$ millimoles of 0-atom Again, 1 mole of 0-atoms = 6.022×10^{23} 0-atoms Therefore, $\frac{3}{2}$ millimoles of 0-atoms = $\frac{3}{2} \times 10^{-3} \times 6.022 \times 10^{23}$ 0-atoms = 9.033 × 10²⁰ 0-atoms

15. (a)

From the molecular formula of N₂O₅, 5 moles of O-atoms are contained in 1 mole of N₂O₅ So, 1 nanomole of O-atoms will be contained in $=\frac{1}{5} \times 10^{-9}$ moles of N₂O₅ $= 2 \times 10^{-10}$ moles of N₂O₅

16. (b)

From the molecular formula unit of CuSO₄.5H₂O, 9 moles of O-atoms are contained in 1 mole of CuSO₄.5H₂O So, 0.045 moles of O-atoms will be contained in $=\frac{1}{9} \times 0.045$ moles = 0.005 moles of CuSO₄.5H₂O

17. (187.50 mol)

From the molecular formula unit of BaCl₂.2H₂O, 2 moles of O-atoms are contained in 1 mole of BaCl₂.2H₂O So, 3/8 kilomoles of O-atoms will be contained in $=\frac{1}{2} \times \frac{3}{8} \times 1000$ moles of BaCl₂.2H₂O = 187.50 moles of BaCl₂.2H₂O

18. (b)

 24.088×10^{23} SO₂ molecules = $\frac{24.088 \times 10^{23}}{6.022 \times 10^{23}}$ moles = 4 moles of SO₂ The number of electrons in one molecule of SO₂ = 16 + 8 × 2 = 32 eletrons So, the number of moles of electrons in one mole of SO₂ = 32 moles Therefore, total number of moles of electrons in 4 moles of SO₂ = 128 moles

19. (d)

 6.022×10^{18} H₃PO₄ molecules = $\frac{6.022 \times 10^{18}}{6.022 \times 10^{23}}$ moles = 10^{-5} moles H₃PO₄ The number of electrons in one molecule of H₃PO₄ = $3 + 15 + 8 \times 4 = 50$ electrons So, the number of moles of electrons in one mole of H₃PO₄ = 50 moles Therefore, the total number of moles of electrons in 10^{-5} moles of H₃PO₄ would be: = 50×10^{-5} moles = 0.0005 moles

20. (10⁻⁷ mol)

We know,

 $12.044 \times 10^{14} \text{ PO}_4^{3-} \text{ ions} = \frac{12.044 \times 10^{14}}{6.022 \times 10^{23}} \text{ moles} = 2 \times 10^{-9} \text{ moles PO}_4^{3-} \text{ ions}$ The number of electrons in one PO₄³⁻ ion = 15 + 8 × 4 + 3 = 50 electrons So, the number of moles of electrons in one mole of PO₄³⁻ ion = 50 moles Therefore, the total number of moles of electrons in 2 × 10⁻⁹ moles of PO₄³⁻ ions: = 50 × 2 × 10⁻⁹ moles = 10⁻⁷ moles

21. (a)

One molecule of Na₂SO₄ contains = $(11 \times 2 + 16 + 8 \times 4) = 70$ electrons So, number of electrons in 1 mole of Na₂SO₄ = $70 \times 6.022 \times 10^{23}$ Therefore 7 × 10⁹ electrons will be contained in

 $= \frac{7 \times 10^9}{70 \times 6.022 \times 10^{23}}$ moles of Na₂SO₄ = 1.66 × 10⁻¹⁶ moles of Na₂SO₄

22. (b)

One molecule of Ca(NO₃)₂ contains = $(20 + 2 \times 7 + 6 \times 8) = 82$ electrons So, number of electrons in 1 mole of Ca(NO₃)₂ = $82 \times 6.022 \times 10^{23}$ Therefore 1.64 kilomoles of electrons will be contained in

 $=\frac{1.64\times1000\times6.02210^{23}}{82\times6.022\times10^{23}}$ moles of Ca(NO₃)₂

= 20 moles of Ca(NO₃)₂

23. $(3 \times 10^{-5} \text{ mol})$

One molecule of MgCO₃ contains = $(12 + 6 + 8 \times 3) = 42$ electrons So, number of electrons in 1 mole of MgCO₃ = $42 \times 6.022 \times 10^{23}$ Therefore, 1.26 millimoles of electrons will contained in

 $=\frac{1.26\times10^{-3}\times6.02210^{23}}{42\times6.022\times10^{23}}$ moles = 3 × 10⁻⁵ moles of MgCO₃

24. (c)

The total number of electrons present in one molecule of $BaSO_4 = 56 + 16 + 32 = 104$ Therefore, total number of electrons present in one mole of $BaSO_4 = 104 \times 6.022 \times 10^{23}$ Hence, total number of electrons present in 40 millimoles of $BaSO_4$ $= 104 \times 6.022 \times 10^{23} \times 40 \times 10^{-3} = 2.51 \times 10^{24}$

25. (d)

Total number of electrons present in one molecule of Na₂CO₃ =11 × 2 + 6 + 3 × 8 = 52 So, $52 \times 6.022 \times 10^{23}$ electrons are present in 1 mole of Na₂CO₃ Therefore, 7.8286 × 10²⁴ electrons will be present in

 $=\frac{7.8286\times10^{24}}{52\times6.022\times10^{23}}$ moles of Na₂CO₃

= 0.25 moles of Na₂CO₃