Topic covered:
- Mole Concept (Session - 1) - JEE

Worksheet

1. Calculate the number of NO₂ molecules in 4 moles of a pure sample of NO₂ molecules.
 a. \(6.022 \times 10^{23}\)
 b. \(24.088 \times 10^{23}\)
 c. \(2.408 \times 10^{23}\)
 d. \(12.044 \times 10^{23}\)

2. Calculate the number of formula units of Na₂SO₄ in 4/9 millimoles of a pure sample of Na₂SO₄.
 a. \(24.088 \times 10^{23}\)
 b. \(2.41 \times 10^{20}\)
 c. \(2.68 \times 10^{20}\)
 d. \(2.68 \times 10^{23}\)

3. Calculate the number of formula units of CuSO₄.₅H₂O present in \(10^{-13}\) moles of pure CuSO₄.₅H₂O.
 a. \(6.022 \times 10^{10}\)
 b. \(6.022 \times 10^{13}\)
 c. \(6.022 \times 10^{12}\)
 d. \(6.022 \times 10^{9}\)

4. Find the number of moles of NO₂ molecules in a sample containing \(3.011 \times 10^{23}\) molecules of NO₂.
 a. 0.05 moles
 b. 0.5 moles
 c. 2 moles
 d. 0.25 moles

5. Find the number of moles of HNO₃ molecules in a sample containing \(10^6\) molecules of HNO₃.
 a. \(2.66 \times 10^{-18}\) moles
 b. \(2.66 \times 10^{-20}\) moles
 c. \(1.66 \times 10^{-20}\) moles
 d. \(1.66 \times 10^{-18}\) moles

6. Find the number of millimoles of KOH in a sample containing 30 KOH molecules.
 a. \(4.98 \times 10^{-23}\)
 b. \(0.498 \times 10^{-23}\)
 c. \(4.98 \times 10^{23}\)
 d. \(4.98 \times 10^{-20}\)

7. Find the total number of oxygen atoms in 200 formula units of Na₂SO₄.
 a. 800
 b. 600
 c. 1200
 d. 1600

8. Find the total number of oxygen atoms in \(3 \times 10^3\) formula units of \([\text{Ni(H}_2\text{O)}_6]\)Cl₂.
 a. \(6 \times 10^3\)
 b. \(18 \times 10^3\)
 c. \(24 \times 10^3\)
 d. \(0.6 \times 10^3\)
9. If we have a pure CH₃OH sample and it contains a total of 6000 hydrogen atoms, then find the number of CH₃OH molecules present in the sample.
 a. 1200
 b. 1000
 c. 1500
 d. 800

10. We have a pure H₂SO₄ sample and it contains a total of 1120 hydrogen atoms. Find the number of H₂SO₄ molecules present in the sample.
 a. 560
 b. 2240
 c. 1120
 d. 1000

11. If we have a FeSO₄.7H₂O sample and it contains a total of 2233 oxygen atoms, then find the number of formula units of FeSO₄.7H₂O present in the sample.
 a. 210
 b. 203
 c. 103
 d. 233

12. Find the number of O-atoms in 2/3 moles of NO₂.
 a. 4.014 × 10²³
 b. 4.014 × 10²⁰
 c. 8.029 × 10²³
 d. 8.029 × 10²⁰

13. How many C-atoms are present in 2.6 micromoles of C₆H₁₂O₆?
 a. 3.13 × 10¹⁶
 b. 6.26 × 10¹⁶
 c. 1.56 × 10¹⁶
 d. 9.39 × 10¹⁶

14. How many O-atoms are present in 3/8 millimoles of [Co(H₂O)₄Cl₂]Cl?
 a. 9.033 × 10²⁴
 b. 2.26 × 10²⁴
 c. 9.033 × 10²⁰
 d. 2.26 × 10²⁰

15. Find the number of moles of N₂O₅ in a pure sample that contains 1 nanomole of O-atoms.
 a. 2 × 10⁻¹⁰ moles
 b. 0.2 × 10⁻¹⁰ moles
 c. 4 × 10⁻¹⁰ moles
 d. 0.4 × 10⁻¹⁰ moles

16. Find the number of moles of CuSO₄.5H₂O in a pure sample that contains 0.045 moles of O-atoms.
 a. 0.5 moles
 b. 0.005 moles
 c. 50 moles
 d. 5 moles

17. Find the number of moles of BaCl₂.2H₂O in a pure sample that contains 3/8 kilomoles of oxygen atoms.

18. Find the total number of moles of electrons present in 24.088 × 10²³ SO₂ molecules.
 a. 132 moles
 b. 128 moles
 c. 232 moles
 d. 328 moles
19. Find the total number of moles of electrons present in 6.022×10^{18} H$_3$PO$_4$ molecules.
 a. 0.5 moles b. 0.05 moles c. 0.005 moles d. 0.0005 moles

20. Find the total number of moles of electrons present in 12.044×10^{14} PO$_4^{3-}$ ions.

21. If we have a pure Na$_2$SO$_4$ sample that contains a total of 7 billion electrons, then find the number of moles of Na$_2$SO$_4$ present in the sample.
 a. 1.66×10^{-16} moles b. 1.66×10^{-14} moles c. 3.66×10^{-16} moles d. 3.66×10^{-14} mole

22. If we have a pure Ca(NO$_3$)$_2$ sample that contains a total of 1.64 kilomoles of electrons then find the number of moles of Ca(NO$_3$)$_2$ present in the sample.
 a. 10 moles b. 20 moles c. 30 moles d. 40 moles

23. If we have a pure MgCO$_3$ sample that contains a total of 1.26 millimoles of electrons, find the number of moles of MgCO$_3$ present in the sample.

24. Find the total number of electrons present in 40 millimoles of BaSO$_4$. (atomic number of Ba=56)
 a. 2.89×10^{24} b. 3.89×10^{24} c. 2.51×10^{24} d. 3.51×10^{24}

25. If we have a pure Na$_2$CO$_3$ sample that contains a total of 7.8286×10^{24} electrons, then find the number of moles of Na$_2$CO$_3$ present in the sample.
 a. 0.5 moles b. 0.3 moles c. 0.7 moles d. 0.25 moles
Answer Key

<table>
<thead>
<tr>
<th>Question Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
<td>(b)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(d)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(b)</td>
<td>187.50 mol</td>
<td>(b)</td>
<td>(d)</td>
<td>10^{-7} mol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Key</td>
<td>(a)</td>
<td>(b)</td>
<td>3×10^{-5} mol</td>
<td>(c)</td>
<td>(d)</td>
</tr>
</tbody>
</table>
1. (b)
We know,
1 mole of NO₂ = 6.022 × 10²³ NO₂ molecules
So, 4 moles of NO₂ = 6.022 × 10²³ × 4 molecules = 24.088 × 10²³ NO₂ molecules

2. (c)
We know,
1 mole of Na₂SO₄ = 6.022 × 10²³ formula units of Na₂SO₄
So, 1 millimole of Na₂SO₄ = 6.022 × 10²⁰ formula units of Na₂SO₄
Therefore 4/9 millimoles of Na₂SO₄
= 6.022 × 10²⁰ × \(\frac{4}{9}\) formula units = 2.68 × 10²⁰ formula units of Na₂SO₄

3. (a)
We know,
1 mole of CuSO₄.5H₂O = 6.022 × 10²³ formula units of CuSO₄.5H₂O
So, 10⁻¹³ moles of pure CuSO₄.5H₂O
= 6.022 × 10²³ × 10⁻¹³ formula units = 6.022 × 10¹⁰ formula units of CuSO₄.5H₂O

4. (b)
We know,
6.022 × 10²³ molecules of NO₂ = 1 mole of NO₂
So, 3.011 × 10²³ molecules of NO₂
= \(\frac{3.011 \times 10²³}{6.022 \times 10²³}\) moles = 0.5 moles of NO₂

5. (d)
We know,
6.022 × 10²³ molecules of HNO₃ = 1 mole of HNO₃
So, 10⁶ molecules of HNO₃ = \(\frac{10⁶}{6.022 \times 10²³}\) moles = 1.66 × 10⁻¹⁸ moles of HNO₃

6. (d)
We know,
6.022 × 10²³ molecules of KOH = 1 mole of KOH
So, 30 molecules of KOH = \(\frac{30}{6.022 \times 10²³}\) mole of KOH
= \(\frac{30}{6.022 \times 10²³}\) × 10³ millimoles of KOH = 4.98 × 10⁻²⁰ millimoles of KOH
7. (a)
Number of O-atoms in one formula unit of Na$_2$SO$_4$ = 4
So, number of O-atoms in 200 formula unit of Na$_2$SO$_4$ = 200 × 4 = 800

8. (b)
Number of O-atoms in one formula unit of [Ni(H$_2$O)$_6$]Cl$_2$ = 6
So, number of O-atoms in 3 × 103 formula units of [Ni(H$_2$O)$_6$]Cl$_2$ = 6 × 3 × 103
= 18 × 103

9. (c)
From the molecular formula of CH$_3$OH,
1 mole CH$_3$OH contains 4 moles of H atoms
So, we can say that 4 moles of H-atoms are present in 1 mole of CH$_3$OH.
Again, 6.022 × 1023 H-atoms = 1 mole of H-atoms
Therefore, 6000 H-atoms = $\frac{6000}{6.022 \times 10^{23}}$ moles of H-atoms
Hence number of CH$_3$OH molecules present in the sample
= $\frac{6000}{6.022 \times 10^{23}} \times \frac{1}{4} \times 6.022 \times 10^{23}$ = 1500

10. (a)
From the molecular formula of H$_2$SO$_4$,
1 mole of H$_2$SO$_4$ contains 2 moles of H atoms
So, 2 moles of H-atoms are present in 1 mole of H$_2$SO$_4$
Again, 6.022 × 1023 H-atoms = 1 mole of H-atoms
Therefore, 1120 H-atoms = $\frac{1120}{6.022 \times 10^{23}}$ moles of H-atoms
Hence, number of H$_2$SO$_4$ molecules present in the sample
= $\frac{1120}{6.022 \times 10^{23}} \times \frac{1}{2} \times 6.022 \times 10^{23}$ = 560

11. (b)
From the molecular formula of FeSO$_4$.7H$_2$O,
1 mole of FeSO$_4$.7H$_2$O contains 11 moles of O-atoms
So, 11 moles of O-atoms are present in 1 mole of FeSO$_4$.7H$_2$O
Again, 6.022 × 1023 O-atoms = 1 mole of O-atoms
Therefore, 2233 O-atoms = $\frac{2233}{6.022 \times 10^{23}}$ moles of O-atoms
Hence, number of formula units of FeSO$_4$.7H$_2$O present in the sample:
= $\frac{2233}{6.022 \times 10^{23}} \times \frac{1}{11} \times 6.022 \times 10^{23}$ = 203
12. (c)
From the molecular formula of NO$_2$,
1 mole of NO$_2$ molecules contains 2 moles of O-atoms
So, 2/3 moles of NO$_2$ molecules contain 4/3 moles of O atoms
Again, 1 mole of O-atoms = 6.022×10^{23} O-atoms
Therefore, 4/3 moles of O-atoms = $\frac{4}{3} \times 6.022 \times 10^{23} = 8.029 \times 10^{23}$ O-atoms

13. (d)
From the formula of C$_6$H$_{12}$O$_6$,
1 mole of C$_6$H$_{12}$O$_6$ molecules contains 6 moles of C atoms.
So, 2.6 micromoles of C$_6$H$_{12}$O$_6$ molecules contain 2.6 \times 6 = 15.6 micromoles of C-atoms
Again, 1 mole of C-atoms = 6.022×10^{23} C-atoms
Therefore, 15.6 micromoles of C-atoms = $15.6 \times 10^{-6} \times 6.022 \times 10^{23}$ C-atoms
= 9.39 \times 1016 C-atoms

14. (c)
From the formula of [Co(H$_2$O)$_4$Cl$_2$]Cl,
1 mole of [Co(H$_2$O)$_4$Cl$_2$]Cl formula unit contains 4 moles of O-atoms
So, 3/8 millimoles of [Co(H$_2$O)$_4$Cl$_2$]Cl contain $\frac{3}{8} \times 4 = \frac{3}{2}$ millimoles of O-atom
Again, 1 mole of O-atoms = 6.022×10^{23} O-atoms
Therefore, $\frac{3}{2}$ millimoles of O-atoms = $\frac{3}{2} \times 10^{-3} \times 6.022 \times 10^{23}$ O-atoms
= 9.033 \times 1020 O-atoms

15. (a)
From the molecular formula of N$_2$O$_5$,
5 moles of O-atoms are contained in 1 mole of N$_2$O$_5$
So, 1 nanomole of O-atoms will be contained in
= $\frac{1}{5} \times 10^{-9}$ moles of N$_2$O$_5$
= 2×10^{-10} moles of N$_2$O$_5$
16. (b)
From the molecular formula unit of CuSO$_4$.5H$_2$O,
9 moles of O-atoms are contained in 1 mole of CuSO$_4$.5H$_2$O
So, 0.045 moles of O-atoms will be contained in
\[\frac{1}{9} \times 0.045 \text{ moles} = 0.005 \text{ moles of CuSO}_4.5\text{H}_2\text{O}\]

17. (187.50 mol)
From the molecular formula unit of BaCl$_2$.2H$_2$O,
2 moles of O-atoms are contained in 1 mole of BaCl$_2$.2H$_2$O
So, \(\frac{3}{8}\) kilomoles of O-atoms will be contained in
\[\frac{1}{2} \times \frac{3}{8} \times 1000 \text{ moles of BaCl}_2.2\text{H}_2\text{O} = 187.50 \text{ moles of BaCl}_2.2\text{H}_2\text{O}\]

18. (b)
24.088 \times 10^{23} \text{ SO}_2 \text{ molecules} = \frac{24.088 \times 10^{23}}{6.022 \times 10^{23}} \text{ moles} = 4 \text{ moles of SO}_2
The number of electrons in one molecule of SO$_2$ = 16 + 8 \times 2 = 32 electrons
So, the number of moles of electrons in one mole of SO$_2$ = 32 moles
Therefore, total number of moles of electrons in 4 moles of SO$_2$ would be:
\[= 50 \times 10^{-5} \text{ moles} = 0.0005 \text{ moles}\]

19. (d)
6.022 \times 10^{18} \text{ H}_3\text{PO}_4 \text{ molecules} = \frac{6.022 \times 10^{18}}{6.022 \times 10^{23}} \text{ moles} = 10^{-5} \text{ moles H}_3\text{PO}_4
The number of electrons in one molecule of H$_3$PO$_4$ = 3 + 15 + 8 \times 4 = 50 electrons
So, the number of moles of electrons in one mole of H$_3$PO$_4$ = 50 moles
Therefore, the total number of moles of electrons in 10^{-5} moles of H$_3$PO$_4$ would be:
\[= 50 \times 10^{-5} \text{ moles} = 0.0005 \text{ moles}\]

20. (10^{-7} mol)
We know,
12.044 \times 10^{14} \text{ PO}_4^{3-} \text{ ions} = \frac{12.044 \times 10^{14}}{6.022 \times 10^{23}} \text{ moles} = 2 \times 10^{-9} \text{ moles PO}_4^{3-} \text{ ions}
The number of electrons in one PO$_4^{3-}$ ion = 15 + 8 \times 4 + 3 = 50 electrons
So, the number of moles of electrons in one mole of PO$_4^{3-}$ ion = 50 moles
Therefore, the total number of moles of electrons in 2×10^{-9} moles of PO$_4^{3-}$ ions:
\[= 50 \times 2 \times 10^{-9} \text{ moles} = 10^{-7} \text{ moles}\]
21. (a)

One molecule of Na₂SO₄ contains = (11 × 2 + 16 + 8 × 4) = 70 electrons
So, number of electrons in 1 mole of Na₂SO₄ = 70 × 6.022 × 10²³
Therefore 7 × 10⁹ electrons will be contained in
= \(\frac{7 \times 10^9}{70 \times 6.022 \times 10^{23}} \) moles of Na₂SO₄
= 1.66 × 10⁻¹⁶ moles of Na₂SO₄

22. (b)

One molecule of Ca(NO₃)₂ contains = (20 + 2 × 7 + 6 × 8) = 82 electrons
So, number of electrons in 1 mole of Ca(NO₃)₂ = 82 × 6.022 × 10²³
Therefore 1.64 kilomoles of electrons will be contained in
= \(\frac{1.64 \times 1000 \times 6.022 \times 10^{23}}{82 \times 6.022 \times 10^{23}} \) moles of Ca(NO₃)₂
= 20 moles of Ca(NO₃)₂

23. (3 × 10⁻⁵ mol)

One molecule of MgCO₃ contains = (12 + 6 + 8 × 3) = 42 electrons
So, number of electrons in 1 mole of MgCO₃ = 42 × 6.022 × 10²³
Therefore, 1.26 millimoles of electrons will contained in
= \(\frac{1.26 \times 10^{-3} \times 6.022 \times 10^{23}}{42 \times 6.022 \times 10^{23}} \) moles = 3 × 10⁻⁵ moles of MgCO₃

24. (c)

The total number of electrons present in one molecule of BaSO₄ = 56 + 16 + 32 = 104
Therefore, total number of electrons present in one mole of BaSO₄ = 104 × 6.022 × 10²³
Hence, total number of electrons present in 40 millimoles of BaSO₄
= 104 × 6.022 × 10²³ × 40 × 10⁻³ = 2.51 × 10²⁴

25. (d)

Total number of electrons present in one molecule of Na₂CO₃ = 11 × 2 + 6 + 3 × 8 = 52
So, 52 × 6.022 × 10²³ electrons are present in 1 mole of Na₂CO₃
Therefore, 7.8286 × 10²⁴ electrons will be present in
= \(\frac{7.8286 \times 10^{24}}{52 \times 6.022 \times 10^{23}} \) moles of Na₂CO₃
= 0.25 moles of Na₂CO₃