Topic covered:

• Relations and Functions (Session- 1)

<u>Worksheet</u>

1. Let $X = \{1, 2, 3, 4, 5\}$. The number of different orders pairs (Y, Z) that can be formed such that $Y \subseteq X, Z \subseteq X, Y \cap Z$ empty is

a.	5 ²	b.	35
c.	2 ⁵	d.	5 ³

- 2. Let *R* be the set of real numbers
 Statement 1: A = {(x, y) R × R : y z is an integer} is an equivalence relation on *R*.
 Statement 2: B = {(x, y) R × R : x = y for some rational number} is an equivalence relation on *R*.
 - a. Statement 1, 2 are true, but statement 2 is not a correct explanation for statement 1.
 - b. Statement 1, 2 are true, statement 2 is a correct explanation for statement 1.
 - c. Statement 1 is true, statement 2 is false.
 - d. Statement 1 is false, statement 2 is true.
- 3. Consider the following relations:

 $R = \{(x, y) | x, y \text{ are real numbers and } x = wy \text{ for same rational number } \omega\}$

 $S = \left\{ \left\{ \frac{m}{n}, \frac{p}{+} \right\} \mid m, n, p, + \text{ are integers such that } n, + \neq 0 \text{ and } + m = pn \right\}.$ Then

- a. Neither *R* nor *S* is an equivalence relation
- b. *S* is an equivalence relation but *R* is not an equivalence relation.
- c. *R* and *S* both are equivalence relations.
- d. *R* is an equivalence relation and *S* is not an equivalence relation.
- 4. Let *W* denote the words in the English dictionary. Define the relation *R* by $R = \{(x, y) \in W \times W | \text{ the words } x \text{ and } y \text{ have atleast one letter in common.} \}$ Then *R* is
 - a. Symmetric, transitive and not reflexive.
 - b. Reflexive, symmetric and not transitive.
 - c. Reflexive, symmetry and not symmetric
 - d. Reflexive, transitive and not symmetric
- 5. Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. Then the relation is
 - a. Reflexive and transitive only b. Reflexive only
 - c. An equivalence relation d. Reflexive and symmetric only

6.	If $n(A) = 5, n(B) = 7$ be two sets having 3 elements in common then $n((A \times B) \cap (B \times A)) =$										
	a. 32	b.	15								
	c. 21	d.	9								
7.	Let <i>A</i> be a non-empty set such that $A \times A$ has 9 elements among which are found $(-1, 0)$ and $(0, 1)$. Then $A = (-1, 0)$										
	a. {-1,0}	b.	{-1,0,1}								
	c. {0,1}	d.	{-1,1}								
8.	If a relation R is defined on the set II of integers as for domain $(R) =$	ollov	ws: $(a, b) \in R \iff a^2 + b^2 = 25$. Then								
	a. {3,4,5}	b.	{0,3,4,5}								
	c. $\{0 \pm 3, \pm 4, \pm 5\}$	d.	$\{\pm 3, \pm 4, \pm 5\}$								
9.	Let $A = \{a, b, c\}$ and let $R = \{(a, a), (b, b), (c, c), (a, c), (a, c), (b, c), (b, c), (c, c), (b, c), (c, b)\}$ be equivalence	ı, b), e rel	(b, a)}, ations, then								
	a. $R \cup S$ is an equivalence relation										
	b. $R \cup S$ is not transitive										
	c. $R \cup S$ is not reflexive										
	d. $R \cup S$ is transitive and reflexive but not symmetric	ric									
10.	Let a relation R , on the set R of real numbers of define $\forall a, b \in R$. Then R , is	ned a	$as(a,b) \in R, \Leftrightarrow 1 + ab > 0$								
	a. Equivalence relation										
	b. Reflexive and transitive only										
	c. Not transitive										
	d. Symmetric and transitive only.										
11.	Let <i>N</i> be a set of all-natural numbers and let <i>P</i> be a r (<i>a</i> , <i>b</i>) <i>R</i> (<i>c</i> , <i>d</i>) \Leftrightarrow <i>ad</i> = <i>bc</i> \forall (<i>a</i> , <i>b</i>), (<i>c</i> , <i>d</i>) \in <i>N</i> ×	elati N. T	ion and $N \times N$, defined by hen <i>R</i>								
	a. An equivalence relation	b.	Reflexive and symmetric only								
	c. Reflexive and transitive only	d.	Not symmetric								
12.	Let $S = \{1, 2, 3, 4\}$. The total number of unordered	pairs	s of disjoint subsets of <i>S</i> is equal to								
	a. 41	b.	42								
	c. 25	d.	34								

	13. The $A \cap$	number of unordered pairs (A, B) of subsets of the $B = \phi$ and $A \cup B = S$ is	ne se	et $S = \{1, 2, 3, 4, 5, 6\}$ such that							
	a.	32	b.	64							
	C.	128	d.	63							
	14. Let a subs	A & B be two sets containing from and two eleme sets of set $A \times B$ each having at least five elemen	nts ts is	respectively. Then the number of							
	a.	90	b.	120							
	с.	93	d.	125							
	15. If <i>A</i>	= { α , β , γ }, B = {1, 2, 3, 4}, then the number of α	elerr	the set $A \times B \times B$ is							
	a	48	b.	36							
	с.	10	d.	2 ^{3×4×4}							
	16. Let $B =$	$A = \{x : x \text{ is a root of the eqn. } x^3 + 2x^2 - x - 2 \\ \{x : x \text{ is a prime division of 720} \} \text{ then } n(A \times B)$	= 0] ?)	}							
	a.	6	b.	9							
	с.	12	d.	10							
	17. <i>A</i> =	$A = \{1, 2, 3, 4, 5, 6\}, B = \{3, 6, 9, 12\}, C = \{6, 12, 18, 20\} \text{ then } n\{(A \times B) \cap (A \times C)\} = \{1, 2, 3, 4, 5, 6\}, B = \{3, 6, 9, 12\}, C = \{2, 12, 18, 20\} \text{ then } n\{(A \times B) \cap (A \times C)\}$									
	a.	12	b.	24							
	С.	48	d.	36							
	18. For rela	real numbers x and y, we write $x R y \Leftrightarrow x - y$ tion R is	+ 1	$\sqrt{12}$ is an irrational number. Then the							
	a. 1	Reflexive	b.	Equivalence							
	с. '	Transitive	d.	Reflexive and transitive							
19. Let <i>R</i> be a relation on the set <i>N</i> of natural number defined by $n R m \iff n$ is a factor of m (<i>i.e.</i> , $n m$). The <i>R</i> is											
	a. 1	Reflexive and Symmetric	b.	Transitive and symmetric							
	С.	Equivalence	d.	Reflexive, transitive but not symmetric							
20. The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is											
	a.	Reflexive only	b.	Symmetric and reflexive only							
	с.	Equivalence relation	d.	Not transitive but reflexive.							

ANSWER KEY

Question No.	1	2	3	4	5	6	7	8	9	10
Correct Answer	(b)	(c)	(b)	(b)	(a)	(d)	(b)	(c)	(b)	(c)

Question No.	11	12	13	14	15	16	17	18	19	20
Correct Answer	(a)	(a)	(a)	(c)	(a)	(b)	(a)	(a)	(d)	(C)

SOLUTIONS

Answer 1 :

Given n(x) = 5, Each element has 3 options. Either set y and z or none $(y \cap z \neq 0)$ \therefore Number of ordered pairs = 3^5

Answer 2 :

Statement 1 (i) x - x = 0 is an integer \therefore Reflexive (ii) $x - y \in Z$ $y - z \in Z$ \Rightarrow Symmetric (iii) $x - y \in Z, y - z \in Z$ $\Rightarrow (x - y) + (y - z) \in Z \Rightarrow x - z \in Z \Rightarrow$ Transitive \therefore Statement 1 is equivalence

Statement 2.

(i) $x = \alpha x \Rightarrow \alpha = 1 \in Z$ rational number \therefore Reflexive (ii) $\frac{1}{b} = \alpha$ is true for $\frac{y}{x} = \alpha$ may not be true Let x = 0, y = 1 then $\frac{x}{y} = 0$ But $\frac{y}{x}$ not feasible. \therefore Statement 2 is not equivalence.

Answer 3 :

For R: $x = \omega x \Rightarrow 1 \Rightarrow$ Reflexive relation. $x = \omega x \Rightarrow y = \omega x$ is in correct as $10 = 2.5 \Rightarrow 5 = 2.10 \Rightarrow$ Not Symmetric \therefore Not an equivalence relation. For S: $\frac{m}{n} = \frac{p}{+}$ (i) $\frac{m}{n} = \frac{m}{n}$ \therefore Reflexive (ii) $\frac{m}{n} = \frac{p}{+} \Rightarrow \frac{p}{+} = \frac{m}{n}$ \therefore Symmetric (iii) $\frac{m}{n} = \frac{p}{+}$, $\frac{p}{+} = \frac{r}{s} \Rightarrow \frac{m}{n} = \frac{r}{s} \Rightarrow ms = nr$ \therefore Transitive Hence equivalence relation.

Relations and Functions (Session 1)

Answer 4 :

(i) (x,x) ∈ R, ∀x ∈ W, So R is reflexive
(ii) (x,y) ∈ R, then (y,x) ∈ R, So R is symmetric
(iii) Let x = CAP, y = RAT, z = TOY, then x R y (A common) y R z (T common)

But *x R z* does not exist as no letter is common.

Answer 5 :

- (i) It is reflexive as {(3, 3), (6, 6), (9, 9), (12, 12)} present.
- (ii) It is not symmetric as $(6, 12) \in \mathbb{R}$ but $(12, 6) \notin \mathbb{R}$
- (iii) It is transitive as $\{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\} \in \mathbb{R}$.

Answer 6 :

 $(A \times B) \cap (B \times A) = (A \cap B) \times (A \cap B) = 3^2 = 9.$

Answer 7:

 $(-1,0) \in A \times A(0,1) \in A \times A$ $\therefore A = \{-1,0,1\}$

Answer 8 :

 $(a,b) \in R \Leftrightarrow a^2 + b^2 = 25 \Leftrightarrow b = \pm \sqrt{25 - a^2}$ $\therefore a = 0 \Rightarrow b = \pm 5$ $a = \pm 3 \Rightarrow b = \pm 5$ $a = \pm 4 \Rightarrow b = \pm 3$ $a = \pm 5 \Rightarrow b = \pm 0$ $\therefore \text{ Domain} = \{0, \pm 3, \pm 4, \pm 5\}$

Answer 9:

 $(a,b) \in R \cup S, (b,c) \in R \cup S$ but $(a,c) \notin R \cup S$ Hence not transitive.

Answer 10:

(i) $(a, a) \in R$, $\Rightarrow 1 + a^2 > 0$ \therefore Reflexive (ii) $(a, b) \in R$, $\Rightarrow 1 + ab > 0 \Rightarrow 1 + ba > 0 \Rightarrow (b, a) \in R$, \therefore Symmetric (iii) $\left(1, \frac{1}{2}\right) \in R$, $\Rightarrow 1 + 1\left(\frac{1}{2}\right) > 0$ $\left(\frac{1}{2}, -1\right) \in R$, $\Rightarrow 1 + \frac{1}{2}(-1) > 0$ But $(1, -1) \notin R$, because $1 + 1(-1) = 0, \Rightarrow 0 \therefore$ Not transitive.

B

Answer 11: (i) $(a, b) \in N \times N$ $(a, b) R (a, b) \Leftrightarrow ab = ba$. Which is true Hence Reflexive (ii) $(a, b) R (c, d) \Leftrightarrow ad = bc$ $\Leftrightarrow bc = ad$ $(c, d) R (a, b) \Leftrightarrow cb = da$ which is true (iii) $(a, b) R (c, d) \Rightarrow ad = bc$ $(c, d) R (e, f) \Rightarrow cf = de$ (a, d) (c, f) = (b, c) (d, e) $\Rightarrow af = be$ $\Rightarrow (a, b) R (e, f)$ $\therefore (a, b) R (c, d), (c, d) R (e, f) \Rightarrow (a, b) R (e, f)$ \Rightarrow Transitive Hence equivalence relation.

Answer 12 :

Let *P* & *Q* be disjoint subsets of *S*. Now for any element a, we have 3 cases Case 1: $a \in P, a \notin Q$, Case 2: $a \notin P, a \notin Q$ Case 3: $a \notin P, a \notin Q$ \therefore Total options = 3⁴ Here $P \neq Q$ except the case $P = \phi, Q = \phi$ $\therefore 81 - 1 = 80$, No. of unordered pairs = $\frac{80}{2} + 1 = 41$

Answer 13 :

 $A \cup B = S$ i.e. if set A contains x elements then set B must contain 6 – x elements. Now let us hold

the subsets starting from selecting 0 element for A, b for B, 1 element for A, 5 for B

:.
$${}^{6}C_{0} \cdot 1 + {}^{6}C_{1} \cdot 1 + {}^{6}C_{2} \cdot 1 + \dots + {}^{6}C_{6} = 2^{6}$$

:. Unordered pairs $= \frac{2^{6}}{2} = 2^{5} = 32$.

Answer 14 :

 $n(A \times B) = 8$ No. of subsets of $A \times B$ having at least 5 elements will be ${}^{8}C_{5} + {}^{8}C_{6} + {}^{8}C_{7} + {}^{8}C_{8} = {}^{8}C_{3} + {}^{8}C_{2} + {}^{8}C_{1} + {}^{8}C_{0} = 1 + 8 + 28 + 56 = 93$

Answer 15 :

 $N(A \times B \times B) = n(A) n(B) n(B) = 3 \cdot 4 \cdot 4 = 48$

Answer 16 :

$$x^{3} + 2x^{2} - x - 2 = (x - 1) (x + 1)(x + 2) = 0$$

$$\therefore \quad A = \{-1, 1, -2\}$$

$$B = \{2, 3, 5\}$$

$$n = (A \times B) = 9$$

Answer 17 :

$$(A \times B) \cap (A \times C) = (A \cap A) \times (B \cap C)$$

= {1,2,3,4,5,6} × {12,6}
 $n((A \times B) \cap (A \times C)) = 12$ elements

Answer 18:

 $x R y \Leftrightarrow x - y + \sqrt{2}, x, y \in R$ is irrational (i) $x R y \Rightarrow x - x + \sqrt{2} = \sqrt{2}$ is irrational (ii) Not symmetric; $\sqrt{2} R 1$ but $1 R \sqrt{2}$ (iii) Not transitive $\sqrt{2} R 1$, $IR 2\sqrt{2}$ but $\sqrt{2} R - 2\sqrt{2}$

Answer 19 :

(i) n|n \therefore Reflexive(ii) not symmetric because 2|6 but 6|2(iii) $n R m, m R p \Rightarrow n R p$ \therefore transitive

Answer 20 :

R is an identity relation on the set $\{1, 2, 3\}$ and the identity relation is always an equivalence relation. Simple: 1, 6, 7, 9, 15 Av: 4, 5, 8, 14, 16, 17, 19, 20 Diff: 2, 3, 10, 11, 12, 13, 18

