

Topic covered:

• Solutions (Session - 1) - JEE

Daily Practice Problems

- 1. Select the correct statement:
 - a. A solution must have only one solvent and only one solute
 - b. A solution can have only one solvent but more than one solute
 - c. A solution can have only one solute but more than one solvent
 - d. All the above
- 2. Identify the solute and the solvent in the following solutions:
 - a. Sugar solution
 - b. Air
 - c. Aerated drinks
 - d. Zn-Hg amalgam
- 3. Calculate the molality, molarity and normality of an 8.5 % (w/v) solution of sodium nitrate. The density of the solution is 1.25 g/mL.
- 4. Which of the following concentration terms is independent of temperature?
 - a. Molarity

b. Normality

c. Mole fraction

- d. ppm (w/w)
- 5. If the mole fraction of the solute in a 2 molal solution is 0.2 and the ratio of molar masses of solute and solvent is 1:5. Calculate the molar mass of solute in grams.
- 6. Calculate the mole fraction of benzene in a solution of benzene in HCl. The concentration of the solution is 30 % by mass. (molar mass of Cl = 35.5 g)
- 7. A water sample contains 81 ppm of Ca(HCO₃)₂, 73 ppm of Mg(HCO₃)₂, 68 ppm of CaSO₄ and 60 ppm of MgSO₄. What is the hardness of the water sample?
- 8. The largest value of Henry's law constant for the liquid solvent H_2O will be obtained in which of the following cases?
 - a. He at 300 K
 - c. He at 400 K

- b. O₂ at 300 K
- d. O₂ at 400 K

- 9. Density of pure water is maximum at 4^o C and is 1 g/mL. It decreases on both sides as a function of temperature as shown by the following graph.
 - i. Predict the temperature at which molality of pure water will be equal to its molarity.
 - ii. Predict whether molarity of pure water will be more than or less than its molality at freezing point of pure water.

- 10. The condition for the validity of Henry's law is:
 - a. The pressure should not be too high
 - b. The temperature should not be too low
 - c. The gas should neither dissociate nor enter into chemical combination with the solvent
 - d. All of the above

Answer Key

Question Number	1	2	3	4	5
Answer Key	(b)	 a. Sugar, Water b. Oxygen other gases, Nitrogen c. CO₂, H₂O d. Mercury, Zinc 	m = 0.86, M = 1, N = 1	c, d	25 g/mol

Question Number	6	7	8	9	10
Answer Key	0.165	200 ppm	(c)	4°C, M <m< td=""><td>(d)</td></m<>	(d)

Solutions

1. (b)

A solution is the one in which the solute(s) is/are dissolved in a solvent i.e., a solution can have many solutes dissolved in the same solvent. If there is only one solute, the solution is called a binary solution.

2.

	Solution Sugar solution	Sc St	lute Igar	Solvent Water Nitrogon		
	Aaratad drinka			Wator		
	Aerateu urinks Ze Ug Amalgam	CO ₂		Vialei 7in c		
	Zh-fig Amaigam	ме	rcury	ZINC		
3.	 3. 100 mL of the solution contains 8.5 g of solute ⇒ 1 L solution will contain 85 g of solute 					
	The weight of 1 L of s	olution	= volume × den	Sity		
			$= 1000 \text{ mL} \times 1.2$ = 1250 g	25 g/mL		
	The molar mass of Na	aNO_3	= 85 g			
	Therefore, moles of l	NaNO ₃	$= \frac{\text{Given mass}}{\text{Molar mass}}$			
			$=\frac{85}{85}$			
			= 1 mole			
	moles of s	olute × 1	.000 1 × 1000			
	Molality = $-$ weight o	f solvent	$rac{(g)}{(g)} = rac{(1250 - 8)}{(1250 - 8)}$	$\frac{1}{5} = 0.86 \text{ m}$		

Molality =
$$\frac{1}{\text{weight of solvent (g)}} = \frac{1}{(1250 - 85)} = 0.8$$

Molarity = $\frac{\text{no. of moles of solute}}{\text{Volume of solvent (L)}} = \frac{1}{1} = 1 \text{ M}$

Also, Normality = Molarity \times n-factor

Since, n- factor for $NaNO_3$ is 1. So, the normality of the solution is 1 N.

4. (c, d)

Molarity is the number of moles of solute present in 1 L of a solution and normality is the number of equivalents of solute present in 1 L of a solution. Since, both the quantities are dependent on volume of a solution which is a function of temperature. Thus, both molarity and normality are dependent on temperature. Whereas, mole fraction and ppm (w/w) are quantities that are dependent on mass and the number of moles of the components of a solution. Hence, are independent of temperature.

5. (25 g/mol) $Molality = \frac{n_{solute} \times 1000}{W_{solvent(g)}} = \frac{n_{solute} \times 1000}{n_{solvent} \times M_{solvent(g)}} = \frac{\chi_{solute} \times 1000}{\chi_{solvent} \times M_{solvent}}$ $2 = \frac{0.2 \times 1000}{0.8 \times M_{solvent}}$ $M_{solvent} = 125 \text{ g/mol}$ $M_{solute} = 25 \text{ g/mol}$ 6. (0.165) Let the mass of the solution be 100 g. Mass of benzene = 30 g Moles of benzene = 30/78= 0.38 moles Moles of HCl = 70/36.5= 1.92 moles $\chi_{\text{benzene}} = \frac{0.38}{0.38 + 1.92} = 0.165$ 7. (200 ppm) 162 ppm of $Ca(HCO_3)_2$ is equivalent to 100 ppm of $CaCO_3$ 162 ppm \equiv 100 ppm \therefore 81ppm \equiv 50 ppm 146 ppm of Mg(HCO₃)₂ is equivalent to 100 ppm of CaCO₃ 146 ppm \equiv 100 ppm \therefore 73ppm \equiv 50ppm 136 ppm of CaSO₄ is equivalent to 100 ppm of CaCO₃ $136ppm \equiv 100ppm$ \therefore 68ppm \equiv 50ppm 120 ppm of MgSO₄ is equivalent to 100 ppm of CaCO₃ 120 ppm $\equiv 100$ ppm \therefore 60ppm \equiv 50ppm Total degree of hardness of water = $50 \times 4 = 200$ ppm

8. (c)

Higher the value of K_H , lower will be the solubility. Since He gas has lower intermolecular interactions with water than with O_2 and at a higher temperature, the solubility will be lower,

So, the maximum value of K_H will be obtained in the case of He at 400 K.

9. (i) $m = \frac{n_{solute}}{W_{solvent}(kg)}$ and $M = \frac{n_{solute}}{V_{Solution}(L)}$

When the density of pure water is 1 g/mL, the volume of 1000 g of water is 1000 mL. So, the molality becomes equal to molarity at 4° C.

(ii) At the freezing point, density will be less than 1 g/mL. So, the volume of 1 kg of pure water will be more than 1 L. Hence, the molarity will be less than the molality.

10. (d)

Henry's Law is valid when the following conditions are fulfilled:

- 1. Pressure should not be too high
- 2. Temperature should not be too low
- 3. Solute should not undergo association or dissociation in the solvent