MATHEMATICS STANDARD SOLVED
SET 1 (CODE: 30/5/1) SERIES: .JBB/5

| Q. NO | SOLUTION | MARKS |
| :---: | :---: | :---: |
| SECTION-A |  |  |
| 1. | (B) $\mathrm{x}^{3}-4 x+3$ | 1 |
| 2. | (A) $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$ | 1 |
| 3. | (D) $(3,0)$ <br> OR <br> (C) $\left(0, \frac{7}{2}\right)$ | 1 |
| 4. | (B) $\pm 4$ | 1 |
| 5. | (C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3} \ldots \ldots$, | 1 |
| 6. | (B) InConstistent | 1 |
| 7. | (A) $50^{\circ}$ | 1 |
| 8. | (C) $3^{2 / 3}$ | 1 |
| 9. | (C) $2 \sqrt{m^{2}+n^{2}}$ | 1 |
| 10. | (B) 4 cm | 1 |
| 11. | 1 | 1 |


| 12. | $\tan ^{2} \mathrm{~A}$ | 1 |
| :---: | :---: | :---: |
| 13. | 5 units | 1 |
| 14. | $u_{i}=\frac{x_{i}-a}{h}, \begin{aligned} & x_{i}-\text { class mark } \\ & a-\text { Assumed mean } \\ & h-\text { Class size } \end{aligned}$ | 1 |
| 15. | Similar | 1 |
| 16. | $\begin{aligned} & S_{n}=\frac{n(n+1)}{2} \\ & S_{100}=\frac{100 \times 101}{2}=5050 \end{aligned}$ | $1 / 2$ $1 / 2$ |
| 17. | $\begin{array}{r} \tan 30=\frac{1}{\sqrt{3}}=\frac{h}{30} \\ h=\frac{30}{\sqrt{3}}=\frac{30 \times \sqrt{3}}{3}=10 \sqrt{3} \mathrm{~m} \\ \mathbf{3 0} \end{array}$ | $1 / 2$ $1 / 2$ |
| 18. | $\mathrm{LCM} \times \mathrm{HCF}=$ Product $\begin{aligned} & 182 \times 13=26 \times \mathrm{x} \\ & x=\frac{182 \times 13}{262} \end{aligned}$ | 1/2 |


|  | $\begin{gathered} \mathrm{x}=91 \\ \text { Other number }=91 \end{gathered}$ | 1/2 |
| :---: | :---: | :---: |
| 19. | $\mathrm{K}\left[\mathrm{x}^{2}+3 \mathrm{x}+2\right]$ | 1 |
|  | (OR) <br> No. $x^{2}-1$ can't be the remainder because degree of the remainder should be less than the degree of the divisor. | 1 |
| 20. | $\begin{aligned} & \frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}=2 \\ & \tan 45=1, \cos 60=1 / 2, \sin 30=1 / 2 \end{aligned}$ <br> For correct values, $1 / 2$ mark will be given | 1/2+1/2 |

## SECTION - B

21. 

Given DE || AC

$$
\begin{align*}
& B P T \Rightarrow \frac{B E}{E C}=\frac{B D}{A D} \\
& \text { and, } D F \| A C \\
& \quad B y B P T \Rightarrow \frac{B F}{F E}=\frac{B D}{A D}
\end{align*}
$$

From1and 2

$$
\frac{B E}{E C}=\frac{B F}{F E}
$$

Hence proved.
22. Let $5+2 \sqrt{7}$ be rational.

So $5+2 \sqrt{7}=\frac{a}{b}$, where $a^{\prime} a^{\prime}$ and $^{\prime} b^{\prime}$ are integers and $b \neq 0$
$2 \sqrt{7}=\frac{a}{b}-5$
$2 \sqrt{7}=\frac{a-5 b}{5}$
$\sqrt{7}=\frac{a-5 b}{2 b}$
Since ' $a$ ' and ' $b$ ' are integers $a-5 b$ is also an integer. $\frac{a-5 b}{2 b}$ is rational. So RHS is rational.

LHS should be rational. but it is given that $\sqrt{7}$ is irrational .Our assumption is wrong. So $5+2 \sqrt{7}$ is an irrational number.

## OR

$12^{\mathrm{n}}=(2 \times 2 \times 3)^{\mathrm{n}}$
If a number has to and with digit 0 . It should have prime factors 2 and 5.

By fundamental theorem of arithmetic,

$$
12^{\mathrm{n}}=(2 \times 2 \times 3)^{\mathrm{n}}
$$

## It doesn't have 5 as prime factor. So $12^{\mathrm{n}}$ cannot end with digit 0 .

23. Given $\mathrm{A}, \mathrm{B}$ and C are interior angles of $\triangle \mathrm{ABC}$,
$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ (Angle sum property of triangle)
$B+C=180-A$
$\frac{B+C}{2}=\frac{180-A}{2}=90-A / 2$
$\cos \left(\frac{B+C}{2}\right)=\cos (90-A / 2)$
$\cos \left(\frac{B+C}{2}\right)=\sin A / 2$
24. Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S be point of contact.

$A P=A S$
$B P=B Q$
$C Q=C R$
$D S=D R]$
$\mathrm{AB}+\mathrm{CD}=\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{RD}$

$$
\begin{aligned}
& =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
& =\mathrm{AS}+\mathrm{DS}+\mathrm{BQ}+\mathrm{CQ} \\
& =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Hence proved.
(OR)


Figure-7

Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$

$$
\begin{aligned}
& =\mathrm{AB}+\mathrm{BD}+\mathrm{CD}+\mathrm{AC} \\
& =\mathrm{AB}+\mathrm{BP}+\mathrm{CQ}+\mathrm{AC}
\end{aligned}
$$

[Since $\mathrm{BD}=\mathrm{BP}$ and $\mathrm{CD}=\mathrm{CQ}$ ]

$$
\begin{aligned}
& =\mathrm{AP}+\mathrm{AQ} \\
& =2 \mathrm{AP} \quad[\mathrm{AP}=\mathrm{AQ}, \text { Tangents drawn }
\end{aligned}
$$

from external point]

$$
=2 \times 12
$$

|  | $=24 \mathrm{~cm}$. | 1/2 |
| :---: | :---: | :---: |
| 25. | Modal class : 30-40 $\begin{aligned} & \ell=30, f_{1}=12, f_{0}=7, f_{2}=5, h=10 \\ & \qquad \begin{aligned} \bmod & e \end{aligned}=\ell+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\ & \\ & =30+\left[\frac{12-7}{24-7-5} \times 10\right] \\ & \\ & =30+\left[\frac{5}{12} \times 10\right] \\ & \\ & =30+\frac{50}{12}=30+4.16 \ldots=34.17 \end{aligned}$ | $1 / 2$ $1 / 2$ |
| 26. | Volume of cube $=125 \mathrm{~cm}^{3}$ <br> Let 'a' be edge of cube <br> So $\begin{aligned} & \mathrm{a}^{3}=125 \\ & \mathrm{a}=5 \end{aligned}$ <br> Cuboid : Length $\ell=10 \mathrm{~cm}$ $\begin{aligned} \mathrm{b} & =5 \mathrm{~cm} \\ \mathrm{~h} & =5 \mathrm{~cm} \\ \text { surface area } & =2(\ell b+b h+h \ell) \\ & =2(50+25+50) \end{aligned}$ | $1 / 2$ $1 / 2$ |


|  | $=250 \mathrm{~cm}^{2}$ | 1 |
| :---: | :---: | :---: |
| SECTION - C |  |  |
| 27. | Let the fraction be $\frac{x}{y}$ as per the question, $\begin{aligned} & \frac{x-1}{y}=\frac{1}{3} \\ & 3 x-3=y \\ & 3 x-y=3 \\ & \text { and, } \frac{x}{y+8}=\frac{1}{4} \\ & \qquad 4 x=8+y \\ & 4 x-y=8 \end{aligned}$ <br> By elimination, $\begin{gathered} \begin{array}{c} 3 x-y=3 \\ 4 x-y=8 \end{array} \\ \begin{array}{c} -x=-5 \end{array} \\ x=5 \end{gathered}$ <br> $\therefore$ The required fraction is $\frac{5}{12}$ | $1 / 2$ $1+1 / 2$ |

Let the present age of son be ' $x$ ' years

|  | Father | Son |
| :--- | :--- | :--- |
| Present age | $3 x+3$ | $X$ |
| Three years <br> hence | $3 x+6$ | $x+3$ |

As per question,

$$
\begin{aligned}
& 3 x+6=10+2(x+3) \\
& 3 x+6=10+2 x+6 \\
& x=10
\end{aligned}
$$

Father's present age $=3 x+3$

$$
=3 \times 10+3=33
$$

$\therefore$ Present age of son $=10$ years
Present age of father $=33$ years
28.

Let ' $a$ ' be any positive integer and $b=3$, if $a$ is divided by b by EDL,
$\mathrm{a}=3 \mathrm{~m}+\mathrm{r}, \mathrm{m}$ is any positive integer and
$0 \leq r<3$

|  | If $\mathrm{r}=0, \quad \mathrm{a}=3 \mathrm{~m}$ <br> $\therefore$ The square of any positive integer is of the form $3 q$ or $3 q+1$ for some integer $q$. | $1+1 / 2$ <br> $1 / 2$ |
| :---: | :---: | :---: |
| 29. | Given, Y axis divides the line segment . <br> Any point on y - axis is of the form $(0, \mathrm{y})$ <br> As per the question | 1/2 |



Distance between two points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
& A B=\sqrt{9^{2}+5^{2}}=\sqrt{81+25}=\sqrt{106} \\
& B C=\sqrt{5^{2}+9^{2}}=\sqrt{25+81}=\sqrt{106} \\
& C A=\sqrt{4^{2}+14^{2}}=\sqrt{16+196}=\sqrt{212}
\end{aligned}
$$

(by pythagoras theorem)

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \\
& (\sqrt{106})^{2}+(\sqrt{106})^{2}=(\sqrt{212})^{2} 106+106=212
\end{aligned}
$$

$\therefore \mathrm{ABC}$ is an isosceles right angled $\Delta$.
30. LHS:

$$
\begin{aligned}
\sqrt{\frac{1+\sin A}{1-\sin A}} & =\sqrt{\frac{1+\sin A}{1-\sin A} \times \frac{1+\sin A}{1+\sin A}} \\
& =\sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}}=\sqrt{\frac{(1+\sin A)^{2}}{\cos ^{2} A}} \\
& =\frac{1+\sin A}{\cos A}=\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\
& =\sec A+\tan A=R H S
\end{aligned}
$$

## Hence proved

Given, for an AP

$$
\begin{array}{lll}
\mathrm{a}=5, & \mathrm{~d}=3, & \mathrm{a}_{\mathrm{n}}=50 \\
\mathrm{n}=? & \mathrm{~S}_{\mathrm{n}}=? &
\end{array}
$$



| For correct construction of similar triangle with scale |
| :--- | :--- | :--- |
| factor $3 / 4$ |


| 33. | (i) P (to pick a marble from the bag $)=\mathrm{P}($ spinner stops an even number) $\begin{aligned} & \mathrm{A}=\{2,4,6,8,10\} \\ & \mathrm{n}(\mathrm{~A})=5 \\ & \mathrm{n}(\mathrm{~S})=6 \\ & \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{5}{6} \end{aligned}$ <br> (ii) $\mathrm{P}($ getting a prize $)=\mathrm{P}($ bag contains 20 balls out of which 6 are black) $=\frac{6}{20}=\frac{3}{10}$ | 1/2 |
| :---: | :---: | :---: |
| 34. | Given, <br> Radius of circle $r=6 \sqrt{2}$ $\mathrm{OA}=\mathrm{OB}=\mathrm{OQ}=6 \sqrt{2} \mathrm{~cm}$ <br> In $\Delta \mathrm{OPQ}$, $\begin{aligned} & (\mathrm{OP})^{2}+(\mathrm{PQ})^{2}=(\mathrm{OQ})^{2} \\ & 2(\mathrm{OP})^{2}=(6 \sqrt{2})^{2} \end{aligned}$ |  |


|  | $\mathrm{a}=\mathrm{op}=6 \mathrm{~cm}$ <br> Area of the shaded region $=$ ar (quadrant, with $r=$ $6 \sqrt{2}$ ) - ar (square with side 6 cm ) $\begin{aligned} = & {\left[\frac{1}{4} \pi \times r^{2}\right]-a^{2} } \\ & =\left[\frac{1}{4} \times 3.14 \times(6 \sqrt{2})^{2}\right]-6^{2} \\ & =[18 \times 3.14]-36=56.52-36 \\ & =20.52 \mathrm{~cm}^{2}(a p p) \end{aligned}$ | 1 |
| :---: | :---: | :---: |
| SECTION - D |  |  |
| 35. | $\mathrm{p}(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5$ <br> Two zeros are $\sqrt{5}$ and $-\sqrt{5}$ $\therefore x=\sqrt{5} \quad x=-\sqrt{5}$ <br> $(x-\sqrt{5})(x+\sqrt{5})=x^{2}-5$ is a factor of $\mathrm{p}(x)$ <br> To find other zeroes | 1 |



|  | So, $-10 \mathrm{x}+33$ has to be added | 1 |
| :---: | :---: | :---: |
| 36. | For correct Given, to prove, Construction and figure <br> For Correct proof <br> Refer NCERT Text book Pg no 142 | $1 / 2 \times 4=2$ |
| 37. | Let the sides of the two squares be x and $\mathrm{y}(\mathrm{x}>\mathrm{Y})$ Difference in perimeter is $=32$ $\begin{aligned} 4 x-4 y & =32 \\ x-y & =8 \rightarrow y=x-8 \end{aligned}$ <br> Sum of area of two squares $=544$ $\begin{gathered} x^{2}+y^{2}=544 \\ x^{2}+(x-8)^{2}=544 \\ x^{2}+x^{2}+64-16 x=544 \\ 2 x^{2}-16 x=480 \\ \div 2, \\ x^{2}-8 x=240 \\ x^{2}-8 x-240=0 \end{gathered}$ | 2 |

$$
\begin{aligned}
& (x-20)(x+12)=0 \\
& X=20,-12
\end{aligned}
$$

Side can't be negative.

$$
\begin{aligned}
& \text { So } \mathrm{x}=20 \\
& \mathrm{y}=\mathrm{x}-8=20-8=12
\end{aligned}
$$

$\therefore$ Sides of squares are $20 \mathrm{~cm}, 12 \mathrm{~cm}$

## (OR )

## Speed of boat $=18 \mathrm{~km} / \mathrm{h}$

Let speed of the stream be $=x \mathrm{~km} / \mathrm{h}$
Speed of upstream $=(18-x) k m / h r$
Speed of downstream $=(18+x) \mathrm{km} / \mathrm{hr}$
Distance $=24 \mathrm{~km}$
Time $=\frac{\text { Distance }}{\text { Speed }}$
As per question,

$$
\frac{24}{18-x}-\frac{24}{18+x}=1
$$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{array}{ll} 
\& 24\left[\frac{1}{18-x}-\frac{1}{18+x}\right]=1 \\
\& \frac{18+x-18+x}{(18-x)(18+x)}=\frac{1}{24} \\
\& \frac{2 x}{324-x^{2}}=\frac{1}{24} \\
\& 324-x^{2}=48 x \\
\& x^{2}+48 x-324=0 \\
\& (x+54)(x-6)=0 \\
\therefore \quad \& x=6,-54 \\
\therefore \quad \& x \mathrm{~km} / \mathrm{hr}
\end{array}
\] \\
Speed of stream \(=6 \mathrm{~km} / \mathrm{hr}\)
\end{tabular} \& 1

1 <br>
\hline 38. \& Volume of the toy $=$ Volume of cone + Volume of hemisphere \& <br>
\hline
\end{tabular}

Cone: $\quad \mathrm{r}=7 \mathrm{~cm}$

$$
\mathrm{h}=10 \mathrm{~cm}
$$

Hemisphere: $\mathrm{r}=7 \mathrm{~cm}$

Volume of toy $=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2}[h+2 r] \\
& =\frac{1}{3} \times \frac{22}{7} \times 7 \times 7[10+14] \\
& =\frac{1}{3} \times 22 \times 7 \times 24
\end{aligned}
$$

Volume of toy $=1232 \mathrm{~cm}^{3}$
Area of coloured sheet required to cover the toy $=$
CSA of cone + CSA of hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi r^{2} \\
& =\pi r[l+2 r] \\
& =\frac{22}{7} \times 7[12.2+14]
\end{aligned}
$$

$$
l^{2}=10^{2}+7^{2}
$$

$$
l^{2}=100+49
$$

$$
l=\sqrt{149}
$$

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
l=12.2 \& \\
\& =22 \times 26.2 \\
\& =576.4 \mathrm{~cm}^{2}
\end{aligned}
\] \& \(1 / 2\)
1 \\
\hline 39. \& \begin{tabular}{l}
As per figure, \(\mathrm{BC}=\mathrm{h} \mathrm{m}\) \\
In right triangle ACP ,
\[
\begin{align*}
\tan 60^{\circ} \& =\frac{A C}{P C} \\
\Rightarrow \quad \sqrt{3} \& =\frac{A B+B C}{P C} \\
\Rightarrow \quad \sqrt{3} \& =\frac{1.6+h}{P C} \tag{1}
\end{align*}
\] \\
(A point on \\
In right triangle BCP ,
\[
\begin{align*}
\& \tan 45^{\circ}=\frac{B C}{P C} \\
\Rightarrow \& 1=\frac{h}{P C} \tag{2}
\end{align*}
\] \\
Dividing (1) by (2), we get
\[
\begin{aligned}
\& \frac{\sqrt{3}}{1}=\frac{1.6+h}{h} \\
\& \Rightarrow \quad h \sqrt{3}=1.6+h
\end{aligned}
\]
\[
\Rightarrow \quad h(\sqrt{3}-1)=1.6
\]
\end{tabular} \& 1

1 <br>
\hline
\end{tabular}

|  | $\begin{aligned} & \Rightarrow \quad h=\frac{1.6}{\sqrt{3}-1} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{3-1} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{2} \\ & \Rightarrow \quad h=0.8(\sqrt{3}+1) \\ & \mathrm{h}=0.8(1.73+1)=0.8 \times 2.73=2.184 \mathrm{~m} \end{aligned}$ <br> Hence, the height of the pedestal is 2.184 m |  |  |  | $1+1 / 2$ <br> $1 / 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40. | Less than frequency distribution |  |  |  |  |
|  |  |  |  |  |  |
|  | Age | No. of persons | Class | CF |  |
|  | $0-10$ | 5 | Less than 10 | 5 |  |
|  | $10-20$ | 15 | Less than <br> 20 | 20 |  |
|  | $20-30$ | 20 | Less than <br> 30 | 40 |  |
|  | $30-40$ | 25 | Less than <br> 40 | 65 |  |
|  | $40-50$ | 15 | Less than 50 | 80 |  |

## SET 1 (CODE: 30/5/1) SERIES: JBB/5

| $50-60$ | 11 | Less than <br> 60 | 91 |
| :---: | :---: | :---: | :---: |
| $60-70$ | 9 | Less than <br> 70 | 100 |

## Coordinates to plot less than ogive:

$(10,5) \quad(20,20)(30,40)(40,65)(50,80)$
$(60,91)(70,100)$
$\mathrm{N}=100, \mathrm{~N} / 2=50$ Median $=34$

(OR)

## To find mean

| Number of <br> wickets | Number of <br> bowlers (f) | $\mathbf{X i}$ | $u_{i}=\frac{x_{i}-a}{h}$ | $\mathbf{u}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $20-60$ | 7 | 40 | -3 | -21 |
| $60-100$ | 5 | 80 | -2 | -10 |
| $100-140$ | 16 | 120 | -1 | -16 |
| $140-180$ | 12 | 160 | 0 | 0 |
| $180-220$ | 2 | 200 | 1 | 2 |
| $220-260$ | 3 | 240 | 2 | 6 |
|  | $\mathbf{4 5}$ |  |  | $\mathbf{- 3 9}$ |

Assumed mean $\mathrm{a}=160$
Class size $\mathrm{h}=40$

$$
\begin{aligned}
\text { Mean } \bar{x} & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h\right) \\
& =160+\left(\frac{-39-13}{4593} \times 46\right) \\
& =160+\left(\frac{-104}{3}\right) \\
& =160-34.66 \ldots \\
& =160-34.67 \\
\bar{x} & =125.33
\end{aligned}
$$

To find median,


BYJU'S
The Learning App

CLASS: X
MATHEMATICS STANDARD SOLVED
SET 1 (CODE: 30/5/1) SERIES: JBB/5


