CBSE Class 10 Maths (Standard) Question Paper Solution 2020 Set 1 CLASS: X #### MATHEMATICS STANDARD SOLVED | Q. NO | SOLUTION | MARKS | | | |-------------|---|-------|--|--| | SECTION – A | | | | | | 1. | (B) $x^3 - 4x + 3$ | 1 | | | | 2. | $(A) AB^2 = 2AC^2$ | 1 | | | | 3. | (D) (3, 0) | 1 | | | | | OR | | | | | | (C) $\left(0,\frac{7}{2}\right)$ | | | | | 4. | (B) <u>+</u> 4 | 1 | | | | 5. | (C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}$, | 1 | | | | 6. | (B) InConstistent | 1 | | | | 7. | (A) 50° | 1 | | | | 8. | (C) $3^{2/3}$ | 1 | | | | 9. | (C) $2\sqrt{m^2 + n^2}$ | 1 | | | | 10. | (B) 4cm | 1 | | | | 11. | 1 | 1 | | | | 12. | tan ² A | 1 | |-----|--|-----| | 13. | 5 units | 1 | | 14. | $u_{i} = \frac{x_{i} - a}{h}, a - Assumed mean$ $h - Class size$ | 1 | | 15. | Similar | 1 | | 16. | $S_n = \frac{n(n+1)}{2}$ $S_{100} = \frac{100 \times 101}{2} = 5050$ | 1/2 | | 17. | $\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{30}$ $h = \frac{30}{\sqrt{3}} = \frac{30 \times \sqrt{3}}{3} = 10\sqrt{3}m$ | 1/2 | | | $\sqrt{3}$ 3 | | | 18. | LCM × HCF = Product
$182 \times 13 = 2.6 \times x$ $x = \frac{182 \times \cancel{13}}{\cancel{262}}$ | 1/2 | | | x = 91 | 1/2 | | | |-----|---|-----------|--|--| | | Other number = 91 | | | | | 19. | $K[x^2 + 3x + 2]$ | 1 | | | | | (OR) | | | | | | No. $x^2 - 1$ can't be the remainder because | 1 | | | | | degree of the remainder should be less than the | | | | | | degree of the divisor. | | | | | 20. | $\frac{2\tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}} = 2$ | 1/2 + 1/2 | | | | | $\tan 45=1, \cos 60=\frac{1}{2}, \sin 30=\frac{1}{2}$. | | | | | | For correct values, ½ mark will be given | | | | | | SECTION – B | | | | | 21. | Given DE AC | | | | | | $BPT \Rightarrow \frac{BE}{EC} = \frac{BD}{AD}$ 1 | 1/2 | | | | | and , $DF \parallel AC$ | | | | | | $By BPT \Rightarrow \frac{BF}{FE} = \frac{BD}{AD} \qquad \dots 2$ | 1/2 | | | | | $\frac{BE}{EC} = \frac{BF}{FE}$ | 1 | | | | | Hence proved. | | |-----|---|-----| | 22. | Let $5+2\sqrt{7}$ be rational.
So $5+2\sqrt{7}=\frac{a}{b}$, where 'a' and 'b' are integers and $b\neq 0$ | 1/2 | | | $2\sqrt{7} = \frac{a}{b} - 5$ $2\sqrt{7} = \frac{a - 5b}{5}$ $\sqrt{7} = \frac{a - 5b}{2b}$ Since 'a' and 'b' are integers a − 5b is also an integer. $\frac{a - 5b}{2b}$ is rational. So RHS is rational. LHS should be rational. but it is given that $\sqrt{7}$ is irrational .Our assumption is wrong. So $5 + 2\sqrt{7}$ is an irrational number. | 1/2 | | | OR $12^{n} = (2 \times 2 \times 3)^{n}$ If a number has to and with digit 0. It should have prime factors 2 and 5. By fundamental theorem of arithmetic, $12^{n} = (2 \times 2 \times 3)^{n}$ | 1 | | | It doesn't have 5 as prime factor. So 12 ⁿ cannot | 1 | |-----|--|-----| | | end with digit 0. | | | 23. | Given A, B and C are interior angles of $\triangle ABC$, | | | | $A + B + C = 180^{\circ}$ (Angle sum property of triangle) | | | | B + C = 180 - A | 1 | | | $\frac{B+C}{2} = \frac{180-A}{2} = 90^{-A/2}$ | | | | $\cos\left(\frac{B+C}{2}\right) = \cos\left(90 - \frac{A}{2}\right)$ | | | | $\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$ | 1 | | 24. | Let P, Q, R and S be point of | 1/2 | | | contact. | ,- | | | | 1/2 | | | $\begin{vmatrix} AP = AS \\ BP = BQ \end{vmatrix}$ | /2 | | | $\begin{bmatrix} CQ = CR \\ DS = DR \end{bmatrix}$ Tan gents drawn from external point of circle | | | | | | | | AB + CD = AP + BP + CR + RD | | | | | | $$= AS + BQ + CQ + DS$$ $$= AS + DS + BQ + CQ$$ $$= AD + BC$$ Hence proved. (OR) Figure-7 Perimeter of $$\triangle ABC = AB + BC + AC$$ 1 $$= AB + BD + CD + AC$$ $$= AB + BP + CQ + AC$$ [Since BD = BP and CD = CQ] $$= AP + AQ$$ = 2AP [AP = AQ, Tangents drawn from external point] $$=2\times12$$ 1/2 1/2 | | = 24 cm. | 1/2 | |-----|--|-----| | 25. | Modal class: 30 – 40 | | | | $\ell = 30, f_1 = 12, f_0 = 7, f_2 = 5, h = 10$ | 1/2 | | | $mod\ e = \ell + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$ | 1/2 | | | $= 30 + \left[\frac{12 - 7}{24 - 7 - 5} \times 10 \right]$ | | | | $=30+\left[\frac{5}{12}\times10\right]$ | 5 | | | $= 30 + \frac{50}{12} = 30 + 4.16 = 34.17$ | | | | | 1 | | 26. | Volume of cube = 125 cm^3 | | | | Let 'a' be edge of cube | | | | So $a^3 = 125$ | 1/2 | | | a = 5 | | | | Cuboid: Length $\ell = 10 cm$ | 1/2 | | | b = 5 cm | | | | h = 5 cm | | | | surface area = $2(\ell b + bh + h\ell)$ | | | | =2(50+25+50) | | | | $= 250 \text{ cm}^2$ | 1 | |-----|---|-------| | | SECTION – C | | | 27. | Let the fraction be $\frac{x}{y}$ as per the question, | | | | $\frac{x-1}{y} = \frac{1}{3}$ | | | | 3x - 3 = y | | | | 3x - y = 3 | 1 | | | and, $\frac{x}{y+8} = \frac{1}{4}$ | | | | 4x = 8 + y | | | | $4x - y = 8 \qquad \dots \dots$ | 1/2 | | | By elimination, | | | | $\Theta \frac{3x - y = 3}{4x - y = 8}$ | | | | $\frac{4x - y = 8}{-x = -5}$ | | | | x = 5 | | | | Put x = 5 in 1 $15 - y = 3$ | | | | y = 12 | | | | $\therefore The required fraction is \frac{5}{12}$ | 1 + ½ | | | OR | | | | Let the present age of son be 'x' years | | | | |-----|---|------------------|---------------------|------| | | | Father | Son | | | | Present age | 3x + 3 | X | | | | Three years | 3x + 6 | x + 3 | | | | hence | | | | | | As per questic | on, | 100 | | | | 3x + 6 = | 10+2(x+3) | | 10P | | | 3x + 6 = | 10 + 2x + 6 | | 1 | | | x = 10 | | | | | | Father's prese | nt age = 3x + 3 | 3 | | | | $= 3 \times 10 + 3 = 33$ | | | | | | Present age o | of son = 10 yea | ars | | | | Present age | of father $= 33$ | years | 1 | | 28. | Let 'a' be any | positive intege | er and $b = 3$, if | a is | | | divided by b b | y EDL, | | | | | a = 3m + r, m | is any positive | integer and | | | | $0 \le r < 3$ | | | 1 | | | | | | | | | If $r=0$, | a = 3m | | |-----|---|---|-----| | | | $a^2 = (3m)^2 = 3 \times 3m^2$ | | | | | $a^2 = 3q$, where $3m^2 = q$ | | | | r = 1, | a = 3m + 1 | | | | | $a^2 = (3m + 1)^2 = 9m^2 + 6m + 1$ | | | | | $=3(3m^2+2m)+1$ | | | | | $a^2 = 3q + 1$ where $q = 3m^2 + 2m$ | | | | r = 2, | a = 3m + 2 | | | | | $a^2 = (3m + 2)^2 = 9m^2 + 12m + 4$ | | | | | $=9m^2+12m+3+1$ | | | | | $= 3 (3m^2 + 4m + 1) + 1$ | | | | $a^2 = 3q + 1$, where $q = 3m^2 + 4m + 1$ | | | | | The so | quare of any positive integer is of the | | | | form 3q | or $3q + 1$ for some integer q. | 1/2 | | 29. | Given, Y axis divides the line segment. | | | | | Any point on $y - axis$ is of the form $(0, y)$ | | | | | | | | | | As per the qu | estion | | | | | | | | | | | | 1/2 As per section formula, $$P(x,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$$ $$= \left(\frac{-2k + 6}{k+1}, \frac{-7k - 4}{k+1}\right)$$ $$\frac{-2k + 6}{k+1} = 0$$ $$-2k + 6 = 0$$ $$2k = 6$$ $$k = 3$$ 1 1 $$y = \frac{-7k - 4}{k + 1} = \frac{-21 - 4}{4} = \frac{-25}{4}$$ *∴ Ratio*3: 1 $\therefore Point of intersection \left(0, \frac{-25}{4}\right)$ **OR** Let A (7, 10) B(-2, 5) C(3, -4) be the vertices of triangle. | | Distance between two points $ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $(x_1, y_1) (x_2, y_2)$ | 1/2 | |-----|---|--------| | | $AB = \sqrt{9^2 + 5^2} = \sqrt{81 + 25} = \sqrt{106}$ $BC = \sqrt{5^2 + 9^2} = \sqrt{25 + 81} = \sqrt{106}$ $CA = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$ (by pythagoras theorem) $AB^2 + BC^2 = AC^2$ | 1+ 1/2 | | | $(\sqrt{106})^2 + (\sqrt{106})^2 = (\sqrt{212})^2 \cdot 106 + 106 = 212$ $\therefore ABC \text{ is an isosceles right angled } \Delta.$ | 1 | | | ADC is all isosecies right angled \(\Delta\). | 1 | | 30. | LHS: | 1 | | | $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{1+\sin A}{1-\sin A}} \times \frac{1+\sin A}{1+\sin A}$ $= \sqrt{\frac{(1+\sin A)^2}{1-\sin^2 A}} = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}}$ $= \frac{1+\sin A}{\cos A} = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$ | | | | $= \sec A + \tan A = RHS$ | 1 | | | Hence proved | | | | | | | 31. | Given, for an AP | | | | $a = 5,$ $d = 3,$ $a_n = 50$ | | | | $n=?$ $S_n=?$ | | | | $a_n = a + (n-1)d = 50$ | 1/2 | |-----|--|--------| | | 5 + (n-1)3 = 50 | | | | $(n-1) \ 3 = 45$ | | | | n - 1 = 15 | | | | n = 16 | 1 | | | $s_{n} = \frac{n}{2}[a + a_{n}]$ $s_{16} = \frac{16}{2}[a + a_{16}]$ $= 8[5 + 50] = 8 \times 55$ $s_{16} = 440$ $n = 16$ | 1+ 1/2 | | | | | | 32. | For correct construction of \triangle ABC AB = 5 cm, BC = 6 cm, $\angle B = 60^{\circ}$ | 1 | | | A'B C' is required similar Δ . | | | | A' B C' is similar to ABC $\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$ | | centre O. For correct construction of tangents | For correct construction of similar triangle with scale | | |---|---| | factor 3/4 | 2 | | | | | OR | | | | | | For correct construction of given circle | 1 | | OP = 7cm, $OA = OB = 3.5 cm$. | | | PA and PB are required tangents to the circle with | | | 33. | (i) P(to pick a marble from the bag) = P(spinner | |-----|--| | | stops an even number) | even number) $$A = \{2, 4, 6, 8, 10\}$$ $$n(A) = 5$$ $$n(S) = 6$$ $$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$$ (ii) P(getting a prize) = P(bag contains 20 balls out of $\frac{1}{1/2}$ which 6 are black) $$=\frac{6}{20}=\frac{3}{10}$$ 1 1/2 Radius of circle $r = 6\sqrt{2}$ $$OA = OB = OQ = 6\sqrt{2} cm$$ In \triangle OPQ, $$(OP)^2 + (PQ)^2 = (OQ)^2$$ $$2(OP)^2 = \left(6\sqrt{2}\right)^2$$ | a = | op | = | 6 | cm | |-----|----|---|---|----| | | | | | | Area of the shaded region = ar (quadrant, with $r = 6\sqrt{2}$) – ar (square with side 6 cm) $$= \left[\frac{1}{4}\pi \times r^2\right] - a^2$$ $$= \left[\frac{1}{4} \times 3.14 \times \left(6\sqrt{2}\right)^2\right] - 6^2$$ $$= \left[18 \times 3.14\right] - 36 = 56.52 - 36$$ $$= 20.52cm^2(app)$$ ## SECTION - D 35. $$p(x) = 2x^4 - x^3 - 11x^2 + 5x + 5$$ Two zeros are $\sqrt{5}$ and $-\sqrt{5}$ $$\therefore x = \sqrt{5} \quad x = -\sqrt{5}$$ $$(x-\sqrt{5})(x+\sqrt{5})=x^2-5$$ is a factor of $p(x)$ To find other zeroes 1 | 2x ² - x - 1 | | |---|----| | $x^2 - 5$ $2x^4 - x^3 - 11x^2 + 5x + 5$ | | | 2x ⁴ - 10x ² | | | • | | | $ \begin{array}{r} -x^3 - x^2 + 5x \\ +x^3 + 5x \end{array} $ | | | $-x^2 + 5$ | | | $\frac{-x^2+5}{2}$ | | | | | | $\therefore 2x^2 - x - 1 is \ a \ factor$ | 2 | | $2x^2 - 2x + x - 1 = 0$ | 2, | | 2x(x-1) + 1(x-1) = 0 | | | (2x + 1) (x - 1) = 0 | | | x = -1/2 $x = 1$ | | | : Other zeroes are -1/2, 1 | 1 | | (OR) | | | 2x + 5 | | | $x^2 - 4x + 8$ $2x^3 - 3x^2 + 6x + 7$ | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 5x ² - 10x + 7 | | | $5x^{2} - 20x + 40$ | | | 10x - 33 | 3 | | | | | | So, $-10x + 33$ has to be added | 1 | |-----|---|---------| | 36. | For correct Given, to prove, Construction and figure | ½ x 4=2 | | | For Correct proof | 2 | | | Refer NCERT Text book Pg no 142 | | | 37. | Let the sides of the two squares be x and y $(x > Y)$ | | | | Difference in perimeter is = 32 | | | | 4x - 4y = 32 | | | | $x - y = 8 \implies y = x - 8$ | | | | Sum of area of two squares = 544 | 1 | | | $x^2 + y^2 = 544$ | | | | $x^2 + (x - 8)^2 = 544$ | | | | $x^2 + x^2 + 64 - 16 x = 544$ | | | | $2x^2 - 16x = 480$ | | | | $\div 2$, $x^2 - 8x = 240$ | | | | $x^2 - 8x - 240 = 0$ | 2 | | | | | $$(x-20)(x+12)=0$$ $$X = 20,-12$$ Side can't be negative. So $$x = 20$$ $$y = x - 8 = 20 - 8 = 12$$: Sides of squares are 20 cm, 12cm (**OR**) Speed of boat = 18 km/h Let speed of the stream be =x km/h Speed of upstream = (18-x)km/hr Speed of downstream = (18+x)km/hr Distance = 24 km $$Time = \frac{Distance}{Speed}$$ As per question, $$\frac{24}{18-x} - \frac{24}{18+x} = 1$$ 1 1 | | $24\left[\frac{1}{18-x} - \frac{1}{18+x}\right] = 1$ $\frac{18+x-18+x}{(18-x)(18+x)} = \frac{1}{24}$ $\frac{2x}{324-x^2} = \frac{1}{24}$ $324-x^2 = 48x$ $x^2 + 48x - 324 = 0$ $(x+54)(x-6) = 0$ $x = 6, -54$ $\therefore x = 6 \ km/hr$ Speed of stream = 6 \ km/hr | 1 | |-----|--|---| | 38. | Volume of the toy = Volume of cone + Volume of hemisphere | | Cone: r = 7 cm h = 10 cm Hemisphere: r = 7 cm Volume of toy $= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$ $$= \frac{1}{3}\pi r^2 [h+2r]$$ $$= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 [10+14]$$ $$= \frac{1}{3} \times 22 \times 7 \times 24$$ Volume of toy $=1232 cm^3$ Area of coloured sheet required to cover the toy = CSA of cone + CSA of hemisphere $$= \pi r l + 2\pi r^{2}$$ $$= \pi r [l + 2r]$$ $$= \frac{22}{7} \times 7[12.2 + 14]$$ $$l^2 = 10^2 + 7^2$$ $$l^2 = 100 + 49$$ $$l = \sqrt{149}$$ 1/2 1 1 | | l = 12.2 | 1/2 | |-----|--|-----| | | $=22\times26.2$ | | | | $=576.4cm^2$ | 1 | | | | | | 39. | As per figure, $BC = h m$ | 1 | | | In right triangle ACP, | | | | $\tan 60^{\circ} = \frac{AC}{PC}$ | | | | $\Rightarrow \sqrt{3} = \frac{AB + BC}{PC}$ $P = \sqrt{45^{\circ}}$ | | | | $\Rightarrow \sqrt{3} = \frac{1.6 + h}{PC} \qquad \dots \qquad \text{(A point on the ground)}$ | | | | In right triangle BCP, | | | | $\tan 45^\circ = \frac{BC}{PC}$ | | | | $\Rightarrow 1 = \frac{h}{PC} \qquad \dots (2)$ | 1 | | | Dividing (1) by (2), we get | | | | $\frac{\sqrt{3}}{1} = \frac{1.6 + h}{h}$ | | | | $\Rightarrow h\sqrt{3} = 1.6 + h$ | | | | $\Rightarrow h(\sqrt{3}-1)=1.6$ | | | | \Rightarrow | $h = \frac{1.6}{\sqrt{3} - 1}$ | | | | | |-----|---------------|---|-----------------------------------|---|----------------|--------| | | \Rightarrow | $h = \frac{1.6\left(\sqrt{3}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}\right)}$ | $\frac{(3+1)}{\sqrt{3}+1}$ | | | | | | \Rightarrow | $h = \frac{1.6\left(\sqrt{3} + \frac{1}{3 - 1}\right)}{3 - 1}$ | 1) | | | | | | \Rightarrow | $h = \frac{1.6\left(\sqrt{3} + \frac{1}{2}\right)}{2}$ | 1) | | | | | | \Rightarrow | $h = 0.8\left(\sqrt{3} + \right)$ | 1) | | | 1+ 1/2 | | | h=0.8 | 8(1.73+1) |)=0.8 x 2.73 = | =2.184m | | | | | | | | | | 1/ | | | Henc | e, the hei | ight of the peo | destal is 2. | 184 m | 1/2 | | | Henc | e, the hei | ight of the peo | destal is 2. | 184 m | 72 | | 40. | | 4 | y distribution | ear, | 184 m | 72 | | 40. | | 4 | 35 % | ear, | 184 m | 72 | | 40. | | frequency | y distribution | eal, | | 72 | | 40. | | frequency | y distribution No. of persons | Class Less than | CF | 72 | | 40. | | frequency Age 0-10 | y distribution No. of persons 5 | Class Less than 10 Less than | CF 5 | 72 | | 40. | | Age 0-10 10-20 | y distribution No. of persons 5 | Class Less than 10 Less than 20 Less than | CF 5 20 | 72 | | | 50 – 60 | 11 | Less than | 91 | | |-----------|------------|--------------|-------------|--------|---| | | | | 60 | | | | | 60 - 70 | 9 | Less than | 100 | • | | | | | 70 | | | | Coordinat | es to plot | less than og | give: | | J | | (10, 5) | (20, 20) | (30, 40) (4 | 40, 65) (50 | 0, 80) | | N = 100, N/2 = 50 Median = 34 (60, 91) (70, 100) 100 100 (10, 5) (1 (OR) 2 2 | | C 1 | | |----------|-------|------| | Γ | tind | mean | | 10 | IIIIU | mean | | Number of | Number of | Xi | $u_i = \frac{x_i - a}{1}$ | u _i f _i | |-----------|-------------|-----|---------------------------|-------------------------------| | wickets | bowlers (f) | | h | | | 20 – 60 | 7 | 40 | -3 | -21 | | 60 – 100 | 5 | 80 | -2 | -10 | | 100 – 140 | 16 | 120 | -1 | -16 | | 140 – 180 | 12 | 160 | 0 | 0 | | 180 – 220 | 2 | 200 | 1 | 2 | | 220 – 260 | 3 | 240 | 2 | 6 | | | 45 | | .49 | -39 | Assumed mean a = 160 Class size h = 40 Mean $$\bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$$ $$= 160 + \left(\frac{\cancel{39} - 13}{\cancel{45} \cancel{9} 3} \times \cancel{40}\right)$$ $$= 160 + \left(\frac{-104}{3}\right)$$ $$= 160 - 34.66 \dots$$ $$= 160 - 34.67$$ $$\bar{x} = 125.33$$ To find median, **Number of workers CI** No. of bowlers (f) **CF** 1 1 ## MATHEMATICS STANDARD SOLVED CLASS: X | | 20 | - 60 | 7 | 7 | | |---|-------------|---|------|-----------|---| | | 60 - | - 100 | 5 | 12 | | | | 100 |) – 140 | 16 | 28 | | | | 140 | 0 – 180 | 12 | 40 | | | | 180 | 0 – 220 | 2 | 42 | | | | 220 |) – 260 | 3 | <u>45</u> | | | | N=45, | $> N/2 \rightarrow > 2$ | 22.5 | 7 | | | | Median clas | s: 100 – 140 | | PLA | 1 | | | F = 16 | h = 40 | | 9 | | | | CF = 12 | 1 = 100 | | | | | | Me | $edian = \ell + \left(\frac{\frac{N}{2} - CF}{f} \times h\right)$ | | | | | | | $=100+\left(\frac{\frac{45}{2}-12}{\cancel{164}}\times\cancel{40}\right)$ | 610 | | | | | | $= 100 + \frac{105}{4} = 100 + 2$ $= 126.25$ | 6.25 | | 1 | | I | 1 | | | | |