CBSE Class 10 Maths (Standard) Question Paper Solution 2020 Set 1

CLASS: X

MATHEMATICS STANDARD SOLVED

Q. NO	SOLUTION	MARKS		
SECTION – A				
1.	(B) $x^3 - 4x + 3$	1		
2.	$(A) AB^2 = 2AC^2$	1		
3.	(D) (3, 0)	1		
	OR			
	(C) $\left(0,\frac{7}{2}\right)$			
4.	(B) <u>+</u> 4	1		
5.	(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}$,	1		
6.	(B) InConstistent	1		
7.	(A) 50°	1		
8.	(C) $3^{2/3}$	1		
9.	(C) $2\sqrt{m^2 + n^2}$	1		
10.	(B) 4cm	1		
11.	1	1		

12.	tan ² A	1
13.	5 units	1
14.	$u_{i} = \frac{x_{i} - a}{h}, a - Assumed mean$ $h - Class size$	1
15.	Similar	1
16.	$S_n = \frac{n(n+1)}{2}$ $S_{100} = \frac{100 \times 101}{2} = 5050$	1/2
17.	$\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{30}$ $h = \frac{30}{\sqrt{3}} = \frac{30 \times \sqrt{3}}{3} = 10\sqrt{3}m$	1/2
	$\sqrt{3}$ 3	
18.	LCM × HCF = Product $182 \times 13 = 2.6 \times x$ $x = \frac{182 \times \cancel{13}}{\cancel{262}}$	1/2

	x = 91	1/2		
	Other number = 91			
19.	$K[x^2 + 3x + 2]$	1		
	(OR)			
	No. $x^2 - 1$ can't be the remainder because	1		
	degree of the remainder should be less than the			
	degree of the divisor.			
20.	$\frac{2\tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}} = 2$	1/2 + 1/2		
	$\tan 45=1, \cos 60=\frac{1}{2}, \sin 30=\frac{1}{2}$.			
	For correct values, ½ mark will be given			
	SECTION – B			
21.	Given DE AC			
	$BPT \Rightarrow \frac{BE}{EC} = \frac{BD}{AD}$ 1	1/2		
	and , $DF \parallel AC$			
	$By BPT \Rightarrow \frac{BF}{FE} = \frac{BD}{AD} \qquad \dots 2$	1/2		
	$\frac{BE}{EC} = \frac{BF}{FE}$	1		

	Hence proved.	
22.	Let $5+2\sqrt{7}$ be rational. So $5+2\sqrt{7}=\frac{a}{b}$, where 'a' and 'b' are integers and $b\neq 0$	1/2
	$2\sqrt{7} = \frac{a}{b} - 5$ $2\sqrt{7} = \frac{a - 5b}{5}$ $\sqrt{7} = \frac{a - 5b}{2b}$ Since 'a' and 'b' are integers a − 5b is also an integer. $\frac{a - 5b}{2b}$ is rational. So RHS is rational. LHS should be rational. but it is given that $\sqrt{7}$ is irrational .Our assumption is wrong. So $5 + 2\sqrt{7}$ is an irrational number.	1/2
	OR $12^{n} = (2 \times 2 \times 3)^{n}$ If a number has to and with digit 0. It should have prime factors 2 and 5. By fundamental theorem of arithmetic, $12^{n} = (2 \times 2 \times 3)^{n}$	1

	It doesn't have 5 as prime factor. So 12 ⁿ cannot	1
	end with digit 0.	
23.	Given A, B and C are interior angles of $\triangle ABC$,	
	$A + B + C = 180^{\circ}$ (Angle sum property of triangle)	
	B + C = 180 - A	1
	$\frac{B+C}{2} = \frac{180-A}{2} = 90^{-A/2}$	
	$\cos\left(\frac{B+C}{2}\right) = \cos\left(90 - \frac{A}{2}\right)$	
	$\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$	1
24.	Let P, Q, R and S be point of	1/2
	contact.	,-
		1/2
	$\begin{vmatrix} AP = AS \\ BP = BQ \end{vmatrix}$	/2
	$\begin{bmatrix} CQ = CR \\ DS = DR \end{bmatrix}$ Tan gents drawn from external point of circle	
	AB + CD = AP + BP + CR + RD	

$$= AS + BQ + CQ + DS$$

$$= AS + DS + BQ + CQ$$

$$= AD + BC$$

Hence proved.

(OR)

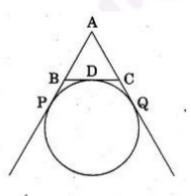


Figure-7

Perimeter of
$$\triangle ABC = AB + BC + AC$$

1

$$= AB + BD + CD + AC$$

$$= AB + BP + CQ + AC$$

[Since BD = BP and CD = CQ]

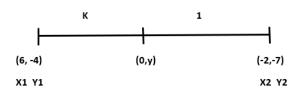
$$= AP + AQ$$

= 2AP [AP = AQ, Tangents drawn

from external point]

$$=2\times12$$

1/2


1/2

	= 24 cm.	1/2
25.	Modal class: 30 – 40	
	$\ell = 30, f_1 = 12, f_0 = 7, f_2 = 5, h = 10$	1/2
	$mod\ e = \ell + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$	1/2
	$= 30 + \left[\frac{12 - 7}{24 - 7 - 5} \times 10 \right]$	
	$=30+\left[\frac{5}{12}\times10\right]$	5
	$= 30 + \frac{50}{12} = 30 + 4.16 = 34.17$	
		1
26.	Volume of cube = 125 cm^3	
	Let 'a' be edge of cube	
	So $a^3 = 125$	1/2
	a = 5	
	Cuboid: Length $\ell = 10 cm$	1/2
	b = 5 cm	
	h = 5 cm	
	surface area = $2(\ell b + bh + h\ell)$	
	=2(50+25+50)	

	$= 250 \text{ cm}^2$	1
	SECTION – C	
27.	Let the fraction be $\frac{x}{y}$ as per the question,	
	$\frac{x-1}{y} = \frac{1}{3}$	
	3x - 3 = y	
	3x - y = 3	1
	and, $\frac{x}{y+8} = \frac{1}{4}$	
	4x = 8 + y	
	$4x - y = 8 \qquad \dots \dots$	1/2
	By elimination,	
	$\Theta \frac{3x - y = 3}{4x - y = 8}$	
	$\frac{4x - y = 8}{-x = -5}$	
	x = 5	
	Put x = 5 in 1 $15 - y = 3$	
	y = 12	
	$\therefore The required fraction is \frac{5}{12}$	1 + ½
	OR	

	Let the present age of son be 'x' years			
		Father	Son	
	Present age	3x + 3	X	
	Three years	3x + 6	x + 3	
	hence			
	As per questic	on,	100	
	3x + 6 =	10+2(x+3)		10P
	3x + 6 =	10 + 2x + 6		1
	x = 10			
	Father's prese	nt age = 3x + 3	3	
	$= 3 \times 10 + 3 = 33$			
	Present age o	of son = 10 yea	ars	
	Present age	of father $= 33$	years	1
28.	Let 'a' be any	positive intege	er and $b = 3$, if	a is
	divided by b b	y EDL,		
	a = 3m + r, m	is any positive	integer and	
	$0 \le r < 3$			1

	If $r=0$,	a = 3m	
		$a^2 = (3m)^2 = 3 \times 3m^2$	
		$a^2 = 3q$, where $3m^2 = q$	
	r = 1,	a = 3m + 1	
		$a^2 = (3m + 1)^2 = 9m^2 + 6m + 1$	
		$=3(3m^2+2m)+1$	
		$a^2 = 3q + 1$ where $q = 3m^2 + 2m$	
	r = 2,	a = 3m + 2	
		$a^2 = (3m + 2)^2 = 9m^2 + 12m + 4$	
		$=9m^2+12m+3+1$	
		$= 3 (3m^2 + 4m + 1) + 1$	
	$a^2 = 3q + 1$, where $q = 3m^2 + 4m + 1$		
	The so	quare of any positive integer is of the	
	form 3q	or $3q + 1$ for some integer q.	1/2
29.	Given, Y axis divides the line segment.		
	Any point on $y - axis$ is of the form $(0, y)$		
	As per the qu	estion	

1/2

As per section formula,

$$P(x,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$$

$$= \left(\frac{-2k + 6}{k+1}, \frac{-7k - 4}{k+1}\right)$$

$$\frac{-2k + 6}{k+1} = 0$$

$$-2k + 6 = 0$$

$$2k = 6$$

$$k = 3$$

1

1

$$y = \frac{-7k - 4}{k + 1} = \frac{-21 - 4}{4} = \frac{-25}{4}$$

*∴ Ratio*3: 1

 $\therefore Point of intersection \left(0, \frac{-25}{4}\right)$

OR

Let A (7, 10) B(-2, 5) C(3, -4) be the vertices of triangle.

	Distance between two points $ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $(x_1, y_1) (x_2, y_2)$	1/2
	$AB = \sqrt{9^2 + 5^2} = \sqrt{81 + 25} = \sqrt{106}$ $BC = \sqrt{5^2 + 9^2} = \sqrt{25 + 81} = \sqrt{106}$ $CA = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$ (by pythagoras theorem) $AB^2 + BC^2 = AC^2$	1+ 1/2
	$(\sqrt{106})^2 + (\sqrt{106})^2 = (\sqrt{212})^2 \cdot 106 + 106 = 212$ $\therefore ABC \text{ is an isosceles right angled } \Delta.$	1
	ADC is all isosecies right angled \(\Delta\).	1
30.	LHS:	1
	$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{1+\sin A}{1-\sin A}} \times \frac{1+\sin A}{1+\sin A}$ $= \sqrt{\frac{(1+\sin A)^2}{1-\sin^2 A}} = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}}$ $= \frac{1+\sin A}{\cos A} = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$	
	$= \sec A + \tan A = RHS$	1
	Hence proved	
31.	Given, for an AP	
	$a = 5,$ $d = 3,$ $a_n = 50$	
	$n=?$ $S_n=?$	

	$a_n = a + (n-1)d = 50$	1/2
	5 + (n-1)3 = 50	
	$(n-1) \ 3 = 45$	
	n - 1 = 15	
	n = 16	1
	$s_{n} = \frac{n}{2}[a + a_{n}]$ $s_{16} = \frac{16}{2}[a + a_{16}]$ $= 8[5 + 50] = 8 \times 55$ $s_{16} = 440$ $n = 16$	1+ 1/2
32.	For correct construction of \triangle ABC AB = 5 cm, BC = 6 cm, $\angle B = 60^{\circ}$	1
	A'B C' is required similar Δ .	
	A' B C' is similar to ABC $\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$	

centre O.

For correct construction of tangents

For correct construction of similar triangle with scale	
factor 3/4	2
OR	
For correct construction of given circle	1
OP = 7cm, $OA = OB = 3.5 cm$.	
PA and PB are required tangents to the circle with	

33.	(i) P(to pick a marble from the bag) = P(spinner
	stops an even number)

even number)

$$A = \{2, 4, 6, 8, 10\}$$

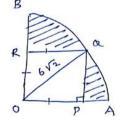
$$n(A) = 5$$

$$n(S) = 6$$

$$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$$

(ii) P(getting a prize) = P(bag contains 20 balls out of $\frac{1}{1/2}$

which 6 are black)


$$=\frac{6}{20}=\frac{3}{10}$$

1

1/2

Radius of circle $r = 6\sqrt{2}$

$$OA = OB = OQ = 6\sqrt{2} cm$$

In \triangle OPQ,

$$(OP)^2 + (PQ)^2 = (OQ)^2$$

$$2(OP)^2 = \left(6\sqrt{2}\right)^2$$

a =	op	=	6	cm

Area of the shaded region = ar (quadrant, with $r = 6\sqrt{2}$) – ar (square with side 6 cm)

$$= \left[\frac{1}{4}\pi \times r^2\right] - a^2$$

$$= \left[\frac{1}{4} \times 3.14 \times \left(6\sqrt{2}\right)^2\right] - 6^2$$

$$= \left[18 \times 3.14\right] - 36 = 56.52 - 36$$

$$= 20.52cm^2(app)$$

SECTION - D

35.
$$p(x) = 2x^4 - x^3 - 11x^2 + 5x + 5$$

Two zeros are $\sqrt{5}$ and $-\sqrt{5}$

$$\therefore x = \sqrt{5} \quad x = -\sqrt{5}$$

$$(x-\sqrt{5})(x+\sqrt{5})=x^2-5$$
 is a factor of $p(x)$

To find other zeroes

1

2x ² - x - 1	
$x^2 - 5$ $2x^4 - x^3 - 11x^2 + 5x + 5$	
2x ⁴ - 10x ²	
•	
$ \begin{array}{r} -x^3 - x^2 + 5x \\ +x^3 + 5x \end{array} $	
$-x^2 + 5$	
$\frac{-x^2+5}{2}$	
$\therefore 2x^2 - x - 1 is \ a \ factor$	2
$2x^2 - 2x + x - 1 = 0$	2,
2x(x-1) + 1(x-1) = 0	
(2x + 1) (x - 1) = 0	
x = -1/2 $x = 1$	
: Other zeroes are -1/2, 1	1
(OR)	
2x + 5	
$x^2 - 4x + 8$ $2x^3 - 3x^2 + 6x + 7$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5x ² - 10x + 7	
$5x^{2} - 20x + 40$	
10x - 33	3

	So, $-10x + 33$ has to be added	1
36.	For correct Given, to prove, Construction and figure	½ x 4=2
	For Correct proof	2
	Refer NCERT Text book Pg no 142	
37.	Let the sides of the two squares be x and y $(x > Y)$	
	Difference in perimeter is = 32	
	4x - 4y = 32	
	$x - y = 8 \implies y = x - 8$	
	Sum of area of two squares = 544	1
	$x^2 + y^2 = 544$	
	$x^2 + (x - 8)^2 = 544$	
	$x^2 + x^2 + 64 - 16 x = 544$	
	$2x^2 - 16x = 480$	
	$\div 2$, $x^2 - 8x = 240$	
	$x^2 - 8x - 240 = 0$	2

$$(x-20)(x+12)=0$$

$$X = 20,-12$$

Side can't be negative.

So
$$x = 20$$

$$y = x - 8 = 20 - 8 = 12$$

: Sides of squares are 20 cm, 12cm

(**OR**)

Speed of boat = 18 km/h

Let speed of the stream be =x km/h

Speed of upstream = (18-x)km/hr

Speed of downstream = (18+x)km/hr

Distance = 24 km

$$Time = \frac{Distance}{Speed}$$

As per question,

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

1

1

	$24\left[\frac{1}{18-x} - \frac{1}{18+x}\right] = 1$ $\frac{18+x-18+x}{(18-x)(18+x)} = \frac{1}{24}$ $\frac{2x}{324-x^2} = \frac{1}{24}$ $324-x^2 = 48x$ $x^2 + 48x - 324 = 0$ $(x+54)(x-6) = 0$ $x = 6, -54$ $\therefore x = 6 \ km/hr$ Speed of stream = 6 \ km/hr	1
38.	Volume of the toy = Volume of cone + Volume of hemisphere	

Cone: r = 7 cm

h = 10 cm

Hemisphere: r = 7 cm

Volume of toy $= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$

$$= \frac{1}{3}\pi r^2 [h+2r]$$

$$= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 [10+14]$$

$$= \frac{1}{3} \times 22 \times 7 \times 24$$

Volume of toy $=1232 cm^3$

Area of coloured sheet required to cover the toy =

CSA of cone + CSA of hemisphere

$$= \pi r l + 2\pi r^{2}$$

$$= \pi r [l + 2r]$$

$$= \frac{22}{7} \times 7[12.2 + 14]$$

$$l^2 = 10^2 + 7^2$$

$$l^2 = 100 + 49$$

$$l = \sqrt{149}$$

1/2

1

1

	l = 12.2	1/2
	$=22\times26.2$	
	$=576.4cm^2$	1
39.	As per figure, $BC = h m$	1
	In right triangle ACP,	
	$\tan 60^{\circ} = \frac{AC}{PC}$	
	$\Rightarrow \sqrt{3} = \frac{AB + BC}{PC}$ $P = \sqrt{45^{\circ}}$	
	$\Rightarrow \sqrt{3} = \frac{1.6 + h}{PC} \qquad \dots \qquad \text{(A point on the ground)}$	
	In right triangle BCP,	
	$\tan 45^\circ = \frac{BC}{PC}$	
	$\Rightarrow 1 = \frac{h}{PC} \qquad \dots (2)$	1
	Dividing (1) by (2), we get	
	$\frac{\sqrt{3}}{1} = \frac{1.6 + h}{h}$	
	$\Rightarrow h\sqrt{3} = 1.6 + h$	
	$\Rightarrow h(\sqrt{3}-1)=1.6$	

	\Rightarrow	$h = \frac{1.6}{\sqrt{3} - 1}$				
	\Rightarrow	$h = \frac{1.6\left(\sqrt{3}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}\right)}$	$\frac{(3+1)}{\sqrt{3}+1}$			
	\Rightarrow	$h = \frac{1.6\left(\sqrt{3} + \frac{1}{3 - 1}\right)}{3 - 1}$	1)			
	\Rightarrow	$h = \frac{1.6\left(\sqrt{3} + \frac{1}{2}\right)}{2}$	1)			
	\Rightarrow	$h = 0.8\left(\sqrt{3} + \right)$	1)			1+ 1/2
	h=0.8	8(1.73+1))=0.8 x 2.73 =	=2.184m		
						1/
	Henc	e, the hei	ight of the peo	destal is 2.	184 m	1/2
	Henc	e, the hei	ight of the peo	destal is 2.	184 m	72
40.		4	y distribution	ear,	184 m	72
40.		4	35 %	ear,	184 m	72
40.		frequency	y distribution	eal,		72
40.		frequency	y distribution No. of persons	Class Less than	CF	72
40.		frequency Age 0-10	y distribution No. of persons 5	Class Less than 10 Less than	CF 5	72
40.		Age 0-10 10-20	y distribution No. of persons 5	Class Less than 10 Less than 20 Less than	CF 5 20	72

	50 – 60	11	Less than	91	
			60		
	60 - 70	9	Less than	100	•
			70		
Coordinat	es to plot	less than og	give:		J
(10, 5)	(20, 20)	(30, 40) (4	40, 65) (50	0, 80)	

N = 100, N/2 = 50 Median = 34

(60, 91) (70, 100)

100

100

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(10, 5)

(1

(OR)

2

2

	C 1	
Γ	tind	mean
10	IIIIU	mean

Number of	Number of	Xi	$u_i = \frac{x_i - a}{1}$	u _i f _i
wickets	bowlers (f)		h	
20 – 60	7	40	-3	-21
60 – 100	5	80	-2	-10
100 – 140	16	120	-1	-16
140 – 180	12	160	0	0
180 – 220	2	200	1	2
220 – 260	3	240	2	6
	45		.49	-39

Assumed mean a = 160

Class size h = 40

Mean
$$\bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$$

$$= 160 + \left(\frac{\cancel{39} - 13}{\cancel{45} \cancel{9} 3} \times \cancel{40}\right)$$

$$= 160 + \left(\frac{-104}{3}\right)$$

$$= 160 - 34.66 \dots$$

$$= 160 - 34.67$$

$$\bar{x} = 125.33$$

To find median,

Number of workers CI

No. of bowlers (f)

CF

1

1

MATHEMATICS STANDARD SOLVED

CLASS: X

	20	- 60	7	7	
	60 -	- 100	5	12	
	100) – 140	16	28	
	140	0 – 180	12	40	
	180	0 – 220	2	42	
	220) – 260	3	<u>45</u>	
	N=45,	$> N/2 \rightarrow > 2$	22.5	7	
	Median clas	s: 100 – 140		PLA	1
	F = 16	h = 40		9	
	CF = 12	1 = 100			
	Me	$edian = \ell + \left(\frac{\frac{N}{2} - CF}{f} \times h\right)$			
		$=100+\left(\frac{\frac{45}{2}-12}{\cancel{164}}\times\cancel{40}\right)$	610		
		$= 100 + \frac{105}{4} = 100 + 2$ $= 126.25$	6.25		1
I	1				