CBSE Class 10 Maths (Standard) Question Paper Solution 2020 Set 2

CLASS: X

MATHEMATICS STANDARD SOLVED

Q. NO	SOLUTION	MARKS	
	SECTION – A		
1.	(B) ±4	1	
2.	(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1	
3.	(B) 4 cm	1	
4.	(C) $2\sqrt{m^2 + n^2}$	1	
5.	(A) 2	1	
6.	$(A) AB^2 = 2AC^2$	1	
7.	(D) (3, 0)	1	
	OR		
	$(\mathbf{C})\left(0,\frac{7}{2}\right)$	1	
8.	(B) inconsistent	1	
9.	(A) 50°	1	
10.	(C) $3^{\frac{2}{3}}$	1	
11.	5 units	1	

12.	$u_i = \frac{x_i - a}{h}$	1
	x_i - class mark	
	a – assumed mean	
	h – class size	
13.	Similar	1
14.	1 app	1
15.	$(1-\cos^2 A)(1+\cot^2 A) = \sin^2 A \times \cos ec^2 A = 1$	1
16.	$LCM \times HCF = Product$	
	$182 \times 13 = 2.6 \times x$	1/2
	$x = \frac{182 \times \cancel{13}}{\cancel{26} 2}$	
	x = 91	
	Other number = 91	1/2
17.	$k\left[x^2+3x+2\right]$	1
	OR	

	No. $x^2 - 1$ can't be remainder. Because degree of the remainder	1
	should be less than the degree of the divisor.	
18.	$S_n = \frac{n(n+1)}{2}$	1/2
	$S_{100} = \frac{100 \times 101}{2} = 5050$	1/2
19.	$2 \sec 30 \times \tan 60 = 2 \times \frac{2}{\sqrt{3}} \times \sqrt{3} = 4$	1/2 + 1/2
20.	$\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{30}$ $h = \frac{30}{\sqrt{3}} = 10\sqrt{3}m$	1/2
	CECTION D	
	SECTION – B	
21.	Modal class: $30-40$	
	$\ell = 30$, $f_1 = 12$, $f_0 = 7$, $f_2 = 5$, $h = 10$	1/2
	$mod\ e = \ell + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$	1/2
	$= 30 + \left[\frac{12 - 7}{24 - 7 - 5} \times 10 \right]$	

	$=30+\left[\frac{5}{12}\times10\right]$	
	$=30+\frac{50}{12}=30+4.16$	
	= 34.17	1
22.	Let P, Q, R and S be point of contact. A B C C	1/2
	AP = AS $BP = BQ$ $CQ = CR$ $DS = DR$ Tan gents drawn from external point of circle	1/2
	AB + CD = AP + BP + CR + RD	
	= AS + BQ + CQ + DS	
	= AS + DS + BQ + CQ	
	= AD + BC	1
	Hence proved.	
	(OR)	
	Perimeter of $\triangle ABC = AB + BC + AC$	1/2
	= AB + BD + CD + AC	
	= AB + BP + CQ + AC	1/2
	[Since $BD = BP$ and $CD = CQ$]	/2

	= AP + AQ	
	= 2AP [AP = AQ, Tangents drawn from	1/2
	external point]	
	$=2\times12$	
	= 24 cm.	1/2
23.	Number of small cubes made = $\frac{\text{Volume of cube of side } 10 \text{ cm}}{\text{Volume of cube of side } 2 \text{ cm}}$	1
	$=\frac{10\times10\times10}{2\times2\times2}=125$	9
	125 cubes can be made.	1
24.	Given DE AC	
	$BPT \Rightarrow \frac{BE}{EC} = \frac{BD}{AD}$ 1 $and, DF \parallel AC$	1/2
	$By BPT \Rightarrow \frac{BF}{FE} = \frac{BD}{AD} \qquad \dots 2$ From 1 and 2	1/2
	$\frac{BE}{EC} = \frac{BF}{FE}$	1
	Hence proved.	
25.	Let $5+2\sqrt{7}$ be rational.	
	So $5 + 2\sqrt{7} = \frac{a}{b}$, where 'a' and 'b' are integers $b \neq 0$	1/2

	$2\sqrt{7} = \frac{a}{b} - 5$	
	$2\sqrt{7} = \frac{a}{b} - 5$ $2\sqrt{7} = \frac{a - 5b}{5}$	
	$\sqrt{7} = \frac{a - 5b}{2b}$	1/2
	Since 'a' and 'b' are integers a – 5b is also an integer.	
	$\frac{a-5b}{2b}$ is rational. So RHS is rational. LHS should be	
	rational. but it is given that $\sqrt{7}$ is irrational .Our assumption	
	is wrong. So $5+2\sqrt{7}$ is an irrational number.	1
	(OR)	
	$12^{\rm n}=(2\times2\times3)^{\rm n}$	
	If a number has to and with digit 0. It should have	
	prime factors 2 and 5.	1
	By fundamental theorem of arithmetic,	
	$12^{\rm n}=(2\times2\times3)^{\rm n}$	
	It doesn't have 5 as prime factor. So 12 ⁿ cannot end with	1
	digit 0.	
26.	Given A, B and C are interior angles of ΔABC	
	So $A + B + C = 180$	
	B + C = 180 - A	1
	$\frac{B+C}{2} = \frac{180-A}{2} = 90 - \frac{A}{2}$	
	$\frac{B+C}{2} = 90 - \frac{A}{2}$	

$\cot\left(\frac{B+C}{2}\right) = \cot\left(90 - \frac{A}{2}\right)$	1
$\cot\left(\frac{B+C}{2}\right) = \tan\frac{A}{2}$	

SECTION - C

27. Given,

Radius of circle $r = 6\sqrt{2}$

$$OA = OB = OQ = 6\sqrt{2} \text{ cm}$$

In Δ OPQ,

$$(OP)^2 + (PQ)^2 = (OQ)^2$$

$$2(OP)^2 = \left(6\sqrt{2}\right)^2$$

$$a = op = 6 cm$$

Area of the shaded region = ar (quadrant, with $r = 6\sqrt{2}$) – ar (square with side 6 cm)

$$= \left[\frac{1}{4}\pi \times r^{2}\right] - a^{2}$$

$$= \left[\frac{1}{4} \times 3.14 \times \left(6\sqrt{2}\right)^{2}\right] - 6^{2}$$

$$= \left[18 \times 3.14\right] - 36 = 56.52 - 36$$

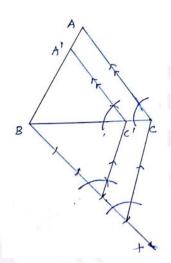
$$= 20.52cm^{2}(app)$$

R 6 Viz

1

1

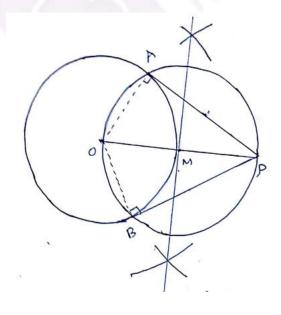
28. For correct construction	of \triangle ABC
------------------------------	--------------------


 $AB = 5 \text{ cm}, BC = 6 \text{ cm}, \angle B = 60^{\circ}$

A'B C' is required similar Δ .

A' B C' is similar to ABC

$$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$$


For correct construction of similar triangle with scale factor 3/4

2

1

OR

	For correct construction of given circle	
	OP = 7cm, $OA = OB = 3.5$ cm.	1
	PA and PB are required tangents to the circle with centre O.	
	For correct construction of tangents	2
29.	LHS: $\frac{2\cos^{3}\theta - \cos\theta}{\sin\theta - 2\sin^{3}\theta} = \frac{\cos\theta \left[2\cos^{2}\theta - 1\right]}{\sin\theta \left[1 - 2\sin^{2}\theta\right]}$	1
	$=\frac{\cot\theta\Big[2\big(1-\sin^2\theta\big)-1\Big]}{1-2\sin^2\theta}$	1
	$= \frac{\cot \theta \left[2 - 2\sin^2 \theta - 1\right]}{\left(1 - 2\sin^2 \theta\right)} = \frac{\cot \theta \left[1 - 2\sin^2 \theta\right]}{1 - 2\sin^2 \theta}$	
	$=\cot\theta$	1
30.	Let the fraction be $\frac{x}{y}$ as per the question,	
	$\frac{x-1}{y} = \frac{1}{3}$	
	3x - 3 = y	
	$3x - y = 3 \qquad \dots \dots$	1
	and, $\frac{x}{y+8} = \frac{1}{4}$	
	4x = 8 + y	1/2
	$4x - y = 8 \qquad \dots \dots$	72
	By elimination,	

$\Theta_{4x-y=8}^{3x-y=3}$
4x - y = 8
-x = -5
x = 5
Put x = 5 in 1
15 - y = 3
y = 12

 $1 + \frac{1}{2}$

 \therefore The required fraction is $\frac{5}{12}$

OR

Let the present age of son be 'x' years

	Father	Son
Present age	3x + 3	X
Three years	3x + 6	x + 3
hence	1 Vine	

1

As per question,

$$3x + 6 = 10 + 2(x + 3)$$

$$3x + 6 = 10 + 2x + 6$$

x = 10

Father's present age = 3x + 3

$$= 3 \times 10 + 3 = 33$$

	∴ Present age of son = 10 years	
	Present age of father = 33 years	1
31.	Required number = HCF $[870 - 3, 258 - 3]$	1
	= HCF [867, 255]	
	$867 = 255 \times 3 + 102$ (by EDL)	
	$255 = 102 \times 2 + 51$	
	$102 = 51 \times 2$	
	HCF = 51	
	∴ Required number = 51	2
32.	Y axis divides the line segment. Any point on y – axis is of the	
	form (o, y)	1/2
	As per the question	
	(6, -4) (0,y) (-2,-7) X1 Y1 X2 Y2	
	As per section formula, $P(x,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$	1/2

	$=\left(\frac{-2k+6}{k+1}, \frac{-7k-4}{k+1}\right)$	
	$\frac{-2k+6}{k+1} = 0$	
	-2k+6=0	
	2k = 6	
	k = 3	
	∴ Ratio3:1	1
	$y = \frac{-7k - 4}{k + 1} = \frac{-21 - 4}{4} = \frac{-25}{4}$	
	$\therefore Point of intersection \left(0, \frac{-25}{4}\right)$	1
	(OR)	
	Distance between 2 points $ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ (x_1, y_1) (x_2, y_2) $	1/2
	$AB = \sqrt{9^2 + 5^2} = \sqrt{81 + 25} = \sqrt{106}$ $BC = \sqrt{5^2 + 9^2} = \sqrt{25 + 81} = \sqrt{106}$ $CA = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$	
	$CA = \sqrt{4} + 14 = \sqrt{16 + 196} = \sqrt{212}$ (by Pythagoras theorem)	$1 + \frac{1}{2}$
	$AB^2 + BC^2 = AC^2$	
	$(\sqrt{106})^2 + (\sqrt{106})^2 = (\sqrt{212})^2 \cdot 106 + 106 = 212$	
	\therefore ABC is an isosceles right angled Δ .	1
33.	Given: $a = 54$	

	$d = -3 \qquad \qquad n = ?$	
	$a_n = 0 S_n = ?$	
	$a_n = a + (n-1)d = 0$	1/2
	54 + (n-1)(-3) = 0	
	(n-1)(-3) = -54	
	(n-1)=18	
	n=19	1
	$S_n = \frac{n}{2} [a + a_n]$	1/2
	$S_{19} = \frac{19}{2} [54 + 0] = 19 \times 27 = 513$	
	$n=19, S_n=513$	1
34.	(i) P(to pick a marble from the bag) = P(spinner stops an even	1/2
	number)	
	A = {2, 4, 6, 8, 10}	
	n(A) = 5	
	n(S) = 6	
	$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$	1

(ii) P(getting a prize) = P(bag contains 20 balls out of which 6
are black)

1/2

 $= \frac{6}{20} = \frac{3}{10}$

1

SECTION - D

35. Let the sides of the two squares be x and y (x > Y) difference of perimeter is = 32

$$4x - 4y = 32$$

$$X - y = 8 \implies y = x - 8$$

Sum of area of two squares = 544

1

$$x^2 + y^2 = 544$$

$$x^2 + (x - 8)^2 = 544$$

$$x^2 + x^2 + 64 - 16 x = 544$$

$$2x^2 - 16x = 480$$

$$\div 2$$
, $x^2 - 8x = 240$

$$x^2 - 8x - 240 = 0$$

$$(x-20)(x+12)=0$$

$$X = 20,-12$$

Side can't be negative.

So
$$x = 20$$

$$y = x - 8 = 20 - 8 = 12$$

.. Sides of squares are 20 cm,12cm

(OR)

Speed of boat = 18 km/hr

Let speed of the stream be =x km/hr

Speed of upstream = (18-x)km/hr

Speed of downstream = (18+x)km/hr

Distance = 24 km

$$Time = \frac{Distance}{Speed}$$

As per question,

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

$$24\left[\frac{1}{18-x} - \frac{1}{18+x}\right] = 1$$

$$\frac{18+x-18+x}{(18-x)(18+x)} = \frac{1}{24}$$

$$\frac{2x}{324 - x^2} = \frac{1}{24}$$

$$324 - x^2 = 48x$$

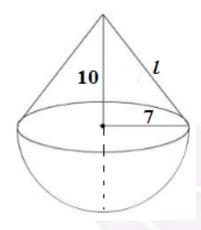
1

1

_			
202	1 /1 Q 20	-324 =	. ^
x	± 40x) 24 -	• • • •

$$(x+54)(x-6)=0$$

$$x = 6, -54$$


$$\therefore$$
 $x = 6 \, km / hr$

Speed of stream = $6 \, km / hr$

2

36.

Volume of the toy = Volume of cone + Volume of hemisphere

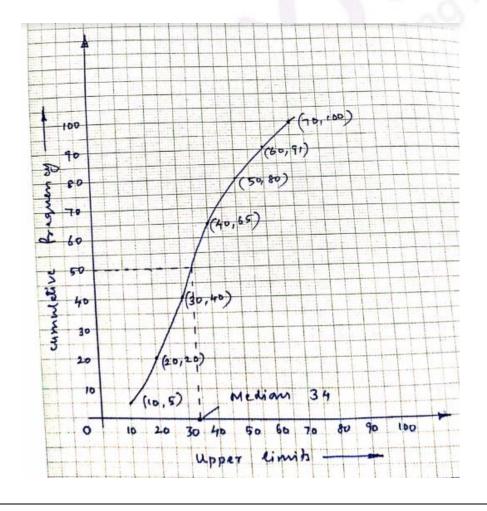
Cone:

$$r = 7 \text{ cm}$$

$$h = 10 \text{ cm}$$

Hemisphere: r = 7 cm

Volume of toy $= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$


	$=\frac{1}{3}$	$\pi r^2 [h+2r]$			
	$=\frac{1}{3}$	$\times \frac{22}{7} \times 7 \times 7 [10 + 14]$			
	$=\frac{1}{3}$	×22×7×24			
	Volume of toy =1	$232cm^3$			1
	Area of coloured	sheet required	to cover th	ne toy = C	SA 1/2
	of cone + CSA of	hemisphere			766
	$=\pi$	$rl + 2\pi r^2$			
	$=\pi$	r[l+2r]			
	$=\frac{2}{3}$	$\frac{2}{7} \times 7[12.2 + 14]$			
	$l^2 = 10^2 + 7$	2			
	$l^2 = 100 + 4$	9			
	$l = \sqrt{149}$				
	<i>l</i> =12.2				1/2
	= 2	2×26.2			
	= 5	$76.4cm^2$			1
37.	Age	No. of persons	Class	CF	
	0-10	5	Less than 10	5	
	10 – 20	15	Less than 20	20	

SET 2 (CODE: 30/5/2) SERIES: JBB/5

20 – 30	20	Less than 30	40
30 – 40	25	Less than 40	65
40 - 50	15	Less than 50	80
50 – 60	11	Less than 60	91
60 - 70	9	Less than 70	100

Coordinates to plot less than ogive: (10, 5) (20, 20) (30, 40) (40, 65) (50, 80) (60, 91)(70, 100)

N = 100, N/2 = 50 Median = 34

(OR)

To find mean

Number of wickets	Number of bowlers (f)	xi	$u_i = \frac{x_i - a}{h}$	$\mathbf{u_i} \ \mathbf{f_i}$
20 – 60	7	40	-3	-21
60 – 100	5	80	-2	-10
100 – 140	16	120	-1	-16
140 – 180	12	160	0	0
180 – 220	2	200	1	2
220 – 260	3	240	2	6
	45			-39

Assumed mean a = 160

Class size h = 40

Mean
$$\bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$$

$$= 160 + \left(\frac{\cancel{39} - 13}{\cancel{45} \cancel{9} 3} \times \cancel{40}\right)$$

$$= 160 + \left(\frac{-104}{3}\right)$$

$$= 160 - 34.66 \dots$$

$$= 160 - 34.67$$

$$\bar{x} = 125.33$$

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 2 (CODE: 30/5/2) SERIES: JBB/5

,	ľo	find	median,
---	----	------	---------

Number of workers C	I No. of bowlers	(f) CF
20 - 60	7	7
60 - 100	5	12
100 – 140	16	28
140 – 180	12	40
180 - 220	2	42
220 – 260	3	<u>45</u>
	N = 45,	$> N/2 \rightarrow > 22.5$

Median class: 100 - 140

$$F = 16$$

$$CF = 12$$
 $1 = 100$

$$1 = 100$$

$$Median = \ell + \left(\frac{N/2 - CF}{f} \times h\right)$$

$$=100 + \left(\frac{\frac{45}{2} - 12}{\cancel{164}} \times \cancel{40}10\right)$$

$$= 100 + \frac{105}{4} = 100 + 26.25$$
$$= 126.25$$

38.	A (Bottom of tower) A (Bottom of tower) A point on the ground)	
	Let the height of the tower be h m. Then, in right triangle CBP, $\tan 60^{\circ} = \frac{BC}{BP}$	1
	$\Rightarrow \sqrt{3} = \frac{AB + AC}{BP}$ $\sqrt{3} = \frac{20 + h}{BP} \qquad \dots (i)$ In right triangle ABP,	
	tan $45^o = \frac{AB}{BP}$ $\Rightarrow 1 = \frac{20}{BP} \qquad \dots (ii)$	1
	Dividing (1) by (2), we get	

	$\sqrt{3} = \frac{20 + h}{20}$ $\Rightarrow 20\sqrt{3} = 20 + h$ $\Rightarrow h = 20\sqrt{3} - 20$ $\Rightarrow h = 20\left(\sqrt{3} - 1\right)$	
	Hence, the height of the tower $20(\sqrt{3}-1)m = 20(1.73-1)=20 \text{ x}$ 0.73= 14.6 m	2
39.	For correct Given, to prove, Construction and figure	1/2 x 4 = 2
	For Correct proof Pythagoras theorem proof: Refer NCERT text book Pg: No. 145	2
40.	$p(x) = 2x^{4} - x^{3} - 11 x^{2} + 5x + 5$ Two zeros are $\sqrt{5}$ and $-\sqrt{5}$ $\therefore x = \sqrt{5} x = -\sqrt{5}$ $\left(x - \sqrt{5}\right)\left(x + \sqrt{5}\right) = x^{2} - 5 \text{ is a factor of } p(x)$ To find other zeroes $x^{2} - 5 = 2x^{2} - x - 1$ $x^{2} - 5 = 2x^{2} - x - 1$ $2x^{2} - x - 1$ $2x^{2} - x - 1$ $2x^{4} - x^{3} - 11x^{2} + 5x + 5$ $-x^{3} - x^{2} + 5x$ $-x^{3} - x^{2} + 5x$ $-x^{2} + 5$ $-x^{2} + 5$ 0	1

$\therefore 2x^2 - x$	-1is a factor		2
$2x^2 - 2x$	x + x - 1 = 0		
2x (x-1)	1) + 1 (x - 1) = 0		
(2x+1)	(x-1)=0		
x = -1/2	x = 1		1
∴ Other	zeroes are -1/2, 1		
	(OR)	1,3	
	2x + 5	TO PLAY	
x ² - 4x + 8	$2x^3 - 3x^2 + 6x + 7$	00.	
	$2x^3 - 8x^2 + 16x$	1711	
	5x ² - 10x + 7	331	
	$5x^2 - 20x + 40$		
	10x - 33		3
So $-10x + 33 \text{ h}$	as to be added		1
			1