\begin{tabular}{|c|c|c|}
\hline Q. NO \& SOLUTION \& MARKS \\
\hline \& SECTION - A \& \\
\hline 1. \& (B) \(\pm 4\) \& 1 \\
\hline 2. \& (C) \(\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \ldots\) \& 1 \\
\hline 3. \& \[
\text { (C) } 3^{\frac{2}{3}}
\] \& 1 \\
\hline 4. \& (c) \(2 \sqrt{m^{2}+n^{2}}\) \& 1 \\
\hline 5. \& (B) 4 cm \& 1 \\
\hline 6. \& (B) \(\mathrm{x}^{3}-4 \mathrm{x}+3\) \& 1 \\
\hline 7. \& (B) 1.8 cm \& 1 \\
\hline 8. \& \begin{tabular}{l}
(D) \((3,0)\) \\
OR \\
(C) \(\left(0, \frac{7}{2}\right)\)
\end{tabular} \& 1

1 \\
\hline 9. \& (B) inconsistent \& 1 \\
\hline 10. \& (A) $50^{\circ}$ \& 1 \\
\hline 11. \& $\tan ^{2} A$ \& 1 \\

\hline 12. \& $$
\begin{aligned}
& \mathrm{P}(\mathrm{E})=0.023 \\
& P(\bar{E})=1-P(E)
\end{aligned}
$$ \& 1 \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& =1-0.023 \\
\& =0.977
\end{aligned}
\] \& \\
\hline 13. \& Similar \& 1 \\
\hline 14. \& 1 \& 1 \\
\hline 15. \& 5 units \& 1 \\
\hline 16. \& \[
\sin ^{2} 30+\cos ^{2} 60=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=2 \times \frac{1}{4}=\frac{1}{2}
\] \& \(1 / 2+1 / 2=1\) \\
\hline 17. \& \begin{tabular}{l}
\[
k\left[x^{2}+3 x+2\right]
\] \\
OR \\
No. \(x^{2}-1\) can't be remainder. Because the degree of remainder should be less than the degree of the divisor.
\end{tabular} \& 1

1 \\

\hline 18. \& $$
\begin{aligned}
S_{n} & =\frac{n(n+1)}{2} \\
S_{100} & =\frac{100 \times 101}{2}=5050
\end{aligned}
$$ \& 1/2 \\

\hline 19. \& $$
\begin{aligned}
& \mathrm{LCM} \times \mathrm{HCF}=\text { Product } \\
& 182 \times 13=26 \times \mathrm{x} \\
& x=\frac{182 \times 13}{262} \\
& \mathrm{x}=91
\end{aligned}
$$ \& 1/2 \\

\hline
\end{tabular}

|  | Other number $=91$ | 1/2 |
| :---: | :---: | :---: |
| 20. | $\underbrace{}_{30} \quad \begin{aligned} & \tan 30=\frac{1}{\sqrt{3}}=\frac{h}{30} \\ & h=\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m} \end{aligned}$ | $1 / 2$ $1 / 2$ |
| SECTION - B |  |  |
| 21. |  | $1 / 2$ $1+1 / 2$ |
| 22. | Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S be point of contact. $\left.\begin{array}{l} A P=A S \\ B P=B Q \\ C Q=C R \\ D S=D R \end{array}\right] \text { Tan gents drawn from external po int of circle }$ | 1/2 |

$$
\begin{aligned}
\mathrm{AB}+\mathrm{CD} & =\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{RD} \\
& =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
& =\mathrm{AS}+\mathrm{DS}+\mathrm{BQ}+\mathrm{CQ} \\
& =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Hence proved.
(OR)

$$
\begin{aligned}
& \text { Perimeter of } \begin{aligned}
\triangle A B C & =A B+B C+A C \\
& =A B+B D+C D+A C \\
=A B & +B P+C Q+A C
\end{aligned}
\end{aligned}
$$

[Since BD = BP and CD = CQ]
$=A P+A Q$
$=2 \mathrm{AP} \quad[\mathrm{AP}=\mathrm{AQ}$, Tangents drawn from
external point]

$$
\begin{aligned}
& =2 \times 12 \\
& =24 \mathrm{~cm} .
\end{aligned}
$$

Modal class : 30-40

$$
\begin{aligned}
\ell=30, f_{1}=12, f_{0} & =7, f_{2}=5, h=10 \\
\bmod e=e & +\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\
& =30+\left[\frac{12-7}{24-7-5} \times 10\right] \\
& =30+\left[\frac{5}{12} \times 10\right] \\
& =30+\frac{50}{12}=30+4.16 \ldots \ldots
\end{aligned}
$$

|  | $=34.17$ | 1 |
| :---: | :---: | :---: |
| 24. | Given, $\mathrm{PQ} \\| \mathrm{BC}$ in $\triangle \mathrm{ABC}$ <br> By BPT, $\begin{equation*} \frac{A Q}{B Q}=\frac{A P}{P C} \tag{1} \end{equation*}$ <br> PR \\| CD in $\triangle \mathrm{ADC}$ <br> By BPT, $\begin{equation*} \frac{A R}{D R}=\frac{A P}{P C} \tag{2} \end{equation*}$ <br> From (1) and (2) $\begin{aligned} & \frac{A Q}{B Q}=\frac{A R}{D R} \\ & \frac{D R}{A R}=\frac{B Q}{A Q} \end{aligned}$ <br> Hence proved. | $1 / 2$ $1 / 2$ |
| 25. | Let $5+2 \sqrt{7}$ be rational. <br> So $5+2 \sqrt{7}=\frac{a}{b}$, where'a'and'b'are integers and $b \neq 0$ $\begin{aligned} & 2 \sqrt{7}=\frac{a}{b}-5 \\ & 2 \sqrt{7}=\frac{a-5 b}{5} \\ & \sqrt{7}=\frac{a-5 b}{2 b} \end{aligned}$ <br> Since ' $a$ ' and ' $b$ ' are integers $a-5 b$ is also an integer. $\frac{a-5 b}{2 b}$ is rational. So RHS is rational. LHS should be rational. but it is given that $\sqrt{7}$ is irrational .Our assumption is wrong. So $5+2 \sqrt{7}$ is an irrational number. | 1/2 |

## (OR)

$12^{\mathrm{n}}=(2 \times 2 \times 3)^{\mathrm{n}}$
If a number has to and with digit 0 . It should have prime factors 2 and 5.

By fundamental theorem of arithmetic,

$$
12^{\mathrm{n}}=(2 \times 2 \times 3)^{\mathrm{n}}
$$

It doesn't have 5 as prime factor. So $12^{n}$ cannot end with digit 0 .
26. Given $\mathrm{A}, \mathrm{B}$ and C are interior angles of $\triangle \mathrm{ABC}$, $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ (Angle sum property of triangle)
$\mathrm{B}+\mathrm{C}=180-\mathrm{A}$
$\frac{B+C}{2}=\frac{180-A}{2}=90^{-A} / 2$
$\cos \left(\frac{B+C}{2}\right)=\cos \left(90^{-A} / 2\right)$
$\cos \left(\frac{B+C}{2}\right)=\sin A / 2$
SECTION - C
27.

$$
\begin{aligned}
& {\left[\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2}+1\right] \operatorname{cosec}^{2} \theta} \\
& {\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)+1\right] \operatorname{cosec}^{2} \theta} \\
& \quad\left(\sin ^{2} \theta-\cos ^{2} \theta+1\right) \operatorname{cosec} \theta
\end{aligned}
$$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left(\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)+1\right) \operatorname{cosec}^{2} \theta \\
\& \left(\sin ^{2} \theta-1+\sin ^{2} \theta+1\right) \operatorname{cosec} \theta \\
\& 2 \sin ^{2} \theta \times \cos e c^{2} \theta=2
\end{aligned}
\] \\
Hence proved.
\end{tabular} \& 2 \\
\hline 28. \& \begin{tabular}{l}
\[
\begin{aligned}
\& (-5)+(-8)+(-11)+\ldots .(-230) \\
\& a=-5 \\
\& d=-8+5=-3 \\
\& a_{n}=l=-230
\end{aligned}
\] \\
Number of terms \(n=\frac{l-a}{d}+1\)
\[
\begin{aligned}
\& \qquad=\frac{-230+5}{-3}+1=\frac{-225}{-3}+1 \\
\& n=75+1=76 \\
\& S_{n}=\frac{n}{2}[a+l] \\
\& =\frac{76}{2}[-5-230]=38 \times-235 \\
\& \text { Sum }=-8930
\end{aligned}
\]
\end{tabular} \& 1
1
1

1 <br>
\hline
\end{tabular}

29. | For correct construction of $\triangle \mathrm{ABC} \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, |
| :--- |
| $\angle B=60^{\circ}$ |
| $\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime}$ is required similar $\Delta$. |
| $\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime}$ is similar to ABC |
| For correct construction of similar |
| triangle with scale factor $3 / 4$ |
| For correct construction of given circle |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
PA and PB are required tangents to the circle with centre O . \\
For correct construction of tangents
\end{tabular} \& 2 \\
\hline 30. \& \begin{tabular}{l}
ABCD is a parallelogram. \\
\(\mathrm{AB}=12 \mathrm{~cm}=\) diameter \\
Radius \(=6 \mathrm{~cm}\) \\
Area of shaded \(=\operatorname{ar}(\) parallelogram \()-\operatorname{ar}(\) quadrant \()\)
\[
\begin{aligned}
\& =A B \times O D-\frac{1}{4} \times \pi \times 6^{2} \\
\& =12 \times 6-\frac{1}{4} \times 3.14 \times 6 \times 6 \\
\& =72-28.26 \\
\& =43.74 \mathrm{~cm}^{2}
\end{aligned}
\]
\end{tabular} \& 1
1

1 <br>
\hline 31. \& (i) $\mathrm{P}($ to pick a marble from the bag $)=\mathrm{P}($ spinner stops an even number $)$

$$
\begin{aligned}
& \mathrm{A}=\{2,4,6,8,10\} \\
& \mathrm{n}(\mathrm{~A})=5 \\
& \mathrm{n}(\mathrm{~S})=6 \\
& \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{5}{6}
\end{aligned}
$$ \& 1/2 <br>

\hline
\end{tabular}

|  | (ii) $\mathrm{P}($ getting a prize $)=\mathrm{P}($ bag contains 20 balls out of which 6 are black $)$ $=\frac{6}{20}=\frac{3}{10}$ | $1 / 2$ <br> 1 |
| :---: | :---: | :---: |
| 32. | Let the fraction be $\frac{x}{y}$ as per the question, $\begin{align*} & \frac{x-1}{y}=\frac{1}{3} \\ & 3 \mathrm{x}-\mathrm{y}=3 \\ & \text { and, } \frac{x}{y+8}=\frac{1}{4} \\ & \quad 4 \mathrm{x}=8+\mathrm{y} \\ & 4 \mathrm{x}-\mathrm{y}=8 \tag{2} \end{align*}$ <br> By elimination, $\begin{gathered} \Theta \begin{array}{c} 3 x-y=3 \\ 4 x-y=8 \end{array} \\ \begin{array}{c} -x=-5 \\ x=5 \end{array} \\ \text { Put } x=5 \text { in } 1 \\ 15-y=3 \\ y=12 \end{gathered}$ <br> $\therefore$ The required fraction is $\frac{5}{12}$ | 1 |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
Let the present age of son be ' \(x\) ' years \\
As per question,
\[
\begin{aligned}
\& 3 x+6=10+2(x+3) \\
\& 3 x+6=10+2 x+6 \\
\& x=10
\end{aligned}
\] \\
Father's present age \(=3 x+3\)
\[
=3 \times 10+3=33
\] \\
\(\therefore\) Present age of son \(=10\) years \\
Present age of father \(=33\) years
\end{tabular} \& 11 \\
\hline 33. \& \begin{tabular}{l}
Y axis divides the line segment any point on y - axis is of the form ( \(\mathrm{o}, \mathrm{y}\) ) \\
As per the question
\end{tabular} \& \(1 / 2\)

$1 / 2$ <br>
\hline
\end{tabular}

As per section formula,

$$
\begin{aligned}
& P(x, y)=\left(\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+1}\right) \\
& \quad=\left(\frac{-2 k+6}{k+1}, \frac{-7 k-4}{k+1}\right)
\end{aligned}
$$

$\frac{-2 k+6}{k+1}=0$
$-2 k+6=0$
$2 k=6$
$k=3$
$\therefore$ Ratio3:1
$y=\frac{-7 k-4}{k+1}=\frac{-21-4}{4}=\frac{-25}{4}$
$\therefore$ Po int of int er section $\left(0, \frac{-25}{4}\right)$

## (OR)

Let $\mathrm{A}(7,10) \mathrm{B}(-2,5) \mathrm{C}(3,-4)$ be the vertices of triangle.
Distance between 2 points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)
$$

$$
\begin{aligned}
& A B=\sqrt{9^{2}+5^{2}}=\sqrt{81+25}=\sqrt{106} \\
& B C=\sqrt{5^{2}+9^{2}}=\sqrt{25+81}=\sqrt{106} \\
& C A=\sqrt{4^{2}+14^{2}}=\sqrt{16+196}=\sqrt{212}
\end{aligned}
$$

(by pythagoren theorem)

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=A C^{2} \\
& (\sqrt{106})^{2}+(\sqrt{106})^{2}=(\sqrt{212})^{2} 106+106=212
\end{aligned}
$$

$\therefore \mathrm{ABC}$ is an isosceles right angled $\Delta$.

\begin{tabular}{|c|c|c|}
\hline 34. \& \begin{tabular}{l}
Let ' \(a\) ' be any positive integer and \(b=3\), if \(a\) is divided by b by EDL, \\
\(\mathrm{a}=3 \mathrm{~m}+\mathrm{r}, \mathrm{m}\) is any positive integer and
\[
0 \leq r<3
\] \\
If \(r=0, \quad a=3 m\) \\
\(\therefore\) The square of any positive integer is of the form \(3 q\) or \(3 q+1\) for some integer \(q\).
\end{tabular} \& 1

$1+1 / 2$
$1 / 2$ <br>
\hline \multicolumn{3}{|c|}{SECTION - D} <br>
\hline
\end{tabular}

35. Let the sides of the two squares be $x$ and $y(x>Y)$ difference of perimeter is $=32$

$$
\begin{aligned}
& 4 x-4 y=32 \\
& X-y=8 \rightarrow y=x-8
\end{aligned}
$$

Sum of area of two squares $=544$
$\therefore$ Sides of squares are $20 \mathrm{~cm}, 12 \mathrm{~cm}$



## MATHEMATICS STANDARD SOLVED



To find mean

| Number of <br> wickets | Number of <br> bowlers (f) | $\mathbf{x i}$ | $u_{i}=\frac{x_{i}-a}{h}$ | $\mathbf{u}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $20-60$ | 7 | 40 | -3 | -21 |
| $60-100$ | 5 | 80 | -2 | -10 |
| $100-140$ | 16 | 120 | -1 | -16 |
| $140-180$ | 12 | 160 | 0 | 0 |
| $180-220$ | 2 | 200 | 1 | 2 |
| $220-260$ | 3 | 240 | 2 | 6 |
|  | $\mathbf{4 5}$ |  |  | $\mathbf{- 3 9}$ |

Assumed mean $\mathrm{a}=160$
Class size $\mathrm{h}=40$

$$
\begin{aligned}
\operatorname{Mean} \bar{x} & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h\right) \\
& =160+\left(\frac{-39-13}{4593} \times 40\right) \\
& =160+\left(\frac{-104}{3}\right) \\
& =160-34.66 \ldots \\
& =160-34.67 \\
\bar{x} & =125.33
\end{aligned}
$$

To find median,
Number of workers CI No. of bowlers (f) CF

| $20-60$ | 7 | 7 |  |
| :--- | :--- | :--- | :--- |
| $60-100$ | 5 | 12 |  |
| $100-140$ | 16 | 28 |  |
| $140-180$ | 12 | 40 |  |
| $180-220$ | 2 | 42 |  |
| $220-260$ | 3 |  | $\underline{45}$ |
|  | $\mathrm{~N}=45$, |  | $>\mathrm{N} / 2$ |$\ggg>22.5$

Median class: $100-140$

$$
\mathrm{F}=16 \quad \mathrm{~h}=40
$$

|  | $\begin{aligned} & \mathrm{CF}=12 \quad 1=100 \\ & \begin{aligned} & \text { Median }=\ell+\left(\frac{N / 2-C F}{f} \times h\right) \\ &=100+\left(\frac{\frac{45}{2}-12}{164} \times 4010\right) \\ &=100+\frac{105}{4}=100+26.25 \\ &=126.25 \end{aligned} \end{aligned}$ | 1 |
| :---: | :---: | :---: |
| 37. | As per figure, $\mathrm{BC}=\mathrm{h} \mathrm{m}$ <br> In right triangle ACP , $\begin{aligned} \tan 60^{\circ} & =\frac{A C}{P C} \\ \Rightarrow \quad \sqrt{3} & =\frac{A B+B C}{P C} \\ \Rightarrow \quad \sqrt{3} & =\frac{1.6+h}{P C} \end{aligned}$ <br> In right triangle BCP, $\begin{align*} & \tan 45^{\circ}=\frac{B C}{P C} \\ & \Rightarrow \quad 1=\frac{h}{P C} \tag{2} \end{align*}$ | 1 |


|  | Dividing (1) by (2), we get $\begin{aligned} & \frac{\sqrt{3}}{1}=\frac{1.6+h}{h} \\ & \Rightarrow \quad h \sqrt{3}=1.6+h \\ & \Rightarrow \quad h(\sqrt{3}-1)=1.6 \\ & \Rightarrow \quad h=\frac{1.6}{\sqrt{3}-1} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{3-1} \\ & \Rightarrow \quad h=\frac{1.6(\sqrt{3}+1)}{2} \\ & \Rightarrow \quad h=0.8(\sqrt{3}+1) \\ & \mathrm{h}=0.8(1.73+1)=0.8 \times 2.73=2.184 \mathrm{~m} \end{aligned}$ <br> Hence, the height of the pedestal is 2.184 m | $1+1 / 2$ <br> $1 / 2$ |
| :---: | :---: | :---: |
| 38. | $p(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5$ <br> Two zeros are $\sqrt{5}$ and $-\sqrt{5}$ $\begin{aligned} & \therefore x=\sqrt{5} \quad x=-\sqrt{5} \\ & (x-\sqrt{5})(x+\sqrt{5})=x^{2}-5 \text { is a factor of } \mathrm{p}(x) \end{aligned}$ <br> To find other zeroes | 1 |



\begin{tabular}{|c|c|c|}
\hline 39. \& \begin{tabular}{l}
Volume of cylinder \(==\pi r^{2} h\) \\
Volume of sphere \(=\frac{4}{3} \pi r^{3}\) \\
Cylinder: Radius \(\mathrm{r}=10 \mathrm{~cm}\) \\
Raise in water level \(=\mathrm{h}\) \\
Sphere: Radius \(=0.5 \mathrm{~cm}\)
\[
=\frac{1}{2} \mathrm{~cm}
\] \\
Volume of water raised in cylinder \(=9000 \times\) volume of sphere
\[
\begin{aligned}
\& \pi \times 10 \times 10 \times h=9000 \times \frac{4}{3} \times \pi \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
\& A \times \nmid \sigma \times \not \sigma \times h=90 \phi \phi \varnothing \times \frac{A}{\not \partial} \times \not \subset \times \frac{1}{\not 2} \times \frac{1}{\not 2} \times \frac{1}{2} \\
\& h=15 \mathrm{~cm}
\end{aligned}
\] \\
Rise in the level of water in vessel \(=15 \mathrm{~cm}\).
\end{tabular} \& 1
1
1

2 <br>

\hline 40. \& | For correct Given, to prove, Construction and figure |
| :--- |
| For Correct proof |
| Refer NCERT text book pg no. 124 | \& \[

1 / 2 \times 4=2
\] <br>

\hline
\end{tabular}

