76G9'7`Ugg'%\$'A Uh\ g'fGHJbXUfXŁ'E i Ygh]cb'DUdYf'Gc`i h]cb' &\$&\$'GYh'

CLASS: X

MATHEMATICS STANDARD SOLVED

Q. NO	SOLUTION	MARKS
	SECTION – A	
1.	(B)±4	1
2.	(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1
3.	(C) $3^{\frac{2}{3}}$	1
4.	(c) $2\sqrt{m^2 + n^2}$	1
5.	(B) 4 cm	1
6.	(B) $x^3 - 4x + 3$	1
7.	(B) 1.8 cm	1
8.	(D) (3, 0)	1
	OR	
	$(C)\left(0,\frac{7}{2}\right)$	1
9.	(B) inconsistent	1
10.	(A) 50°	1
11.	$\tan^2 A$	1
12.	$P(E) = 0.023$ $P(\overline{E}) = 1 - P(E)$	1
	$P(\overline{E}) = 1 - P(E)$	

	=1-0.023	
	= 0.977	
13.	Similar	1
14.	1	1
15.	5 units	1
16.	$\sin^2 30 + \cos^2 60 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 2 \times \frac{1}{4} = \frac{1}{2}$	1/2 + 1/2 = 1
17.	$k\left[x^2+3x+2\right]$	1
	OR	
	No. $x^2 - 1$ can't be remainder. Because the degree of remainder should be less than the degree of the divisor.	1
18.	$S_n = \frac{n(n+1)}{2}$	1/2
	$S_{100} = \frac{100 \times 101}{2} = 5050$	1/2
19.	$LCM \times HCF = Product$	
	$182 \times 13 = 2.6 \times x$	1/2
	$x = \frac{182 \times \cancel{13}}{\cancel{26} 2}$	
	x = 91	

	Other number = 91	1/2
20.	$\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{30}$ $h = \frac{30}{\sqrt{3}} = 10\sqrt{3}m$	1/2
	SECTION – B	
21.	As per question Cone Cylinder Radius = r radius = r Height = $3h$ height = h	1/2
	$\frac{V_{cone}}{V_{cylinder}} = \frac{\frac{1}{3}\pi r^2 \times 3h}{\pi r^2 h} = 1:1$	1 + ½
22.	Let P, Q, R and S be point of contact. A S R C	1/2
	AP = AS $BP = BQ$ $CQ = CR$ $DS = DR$ Tan gents drawn from external point of circle	1/2

	AB + CD = AP + BP + CR + RD	
	= AS + BQ + CQ + DS	
	= AS + DS + BQ + CQ	1
	= AD + BC	1
	Hence proved.	
	(OR)	
	Perimeter of $\triangle ABC = AB + BC + AC$	1/2
	= AB + BD + CD + AC	
	= AB + BP + CQ + AC	
	[Since $BD = BP$ and $CD = CQ$]	
	= AP + AQ	1/2
	= 2AP [AP = AQ, Tangents drawn from	1/2
	external point]	
	$=2\times12$	
	= 24 cm.	1/2
		/2
23.	Modal class: $30-40$	
	$\ell = 30$, $f_1 = 12$, $f_0 = 7$, $f_2 = 5$, $h = 10$	1/2
	$mod\ e = \ell + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$	1/2
	$= 30 + \left[\frac{12 - 7}{24 - 7 - 5} \times 10 \right]$	
	$=30+\left[\frac{5}{12}\times10\right]$	
	$= 30 + \frac{50}{12} = 30 + 4.16.\dots$	

	= 34.17	1
24.	Given, PQ BC in ΔABC	
	By BPT, $\frac{AQ}{BQ} = \frac{AP}{PC} \dots (1)$	1/2
	$PR \parallel CD \text{ in } \Delta ADC$	
	By BPT, $\frac{AR}{DR} = \frac{AP}{PC} \dots (2)$	1/2
	From (1) and (2)	
	$\frac{AQ}{BQ} = \frac{AR}{DR}$	3
	$\frac{DR}{AR} = \frac{BQ}{AQ}$	
	Hence proved.	1
25.	Let $5+2\sqrt{7}$ be rational.	
	So $5 + 2\sqrt{7} = \frac{a}{b}$, where 'a' and 'b' are integers and $b \neq 0$	1/2
	$2\sqrt{7} = \frac{a}{b} - 5$	
	$2\sqrt{7} = \frac{a-5b}{5}$	
	$\sqrt{7} = \frac{a - 5b}{2b}$	1/2
	Since 'a' and 'b' are integers a – 5b is also an integer. $\frac{a-5b}{2b}$ is	
	rational. So RHS is rational. LHS should be rational. but it is given	
	that $\sqrt{7}$ is irrational .Our assumption is wrong. So $5+2\sqrt{7}$ is an	1
	irrational number.	

	(OR)	
	$12^{\rm n}=(2\times2\times3)^{\rm n}$	
	If a number has to and with digit 0. It should have	1
	prime factors 2 and 5.	
	By fundamental theorem of arithmetic,	
	$12^{\rm n}=(2\times2\times3)^{\rm n}$	
	It doesn't have 5 as prime factor. So 12 ⁿ cannot end with	1
	digit 0.	
26.	Given A, B and C are interior angles of ΔABC,	
	A + B + C = 180° (Angle sum property of triangle)	1
	B + C = 180 - A	
	$\frac{B+C}{2} = \frac{180-A}{2} = 90^{-A/2}$	
	$\cos\left(\frac{B+C}{2}\right) = \cos\left(90 - \frac{A}{2}\right)$	
	$\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$	1
	SECTION – C	
27.		
	$\left[\left(\sin^2\theta\right)^2 - \left(\cos^2\theta\right)^2 + 1\right]\cos ec^2\theta$	1/2
	$\left[\left(\sin^2\theta + \cos^2\theta\right)\left(\sin^2\theta - \cos^2\theta\right) + 1\right]\cos ec^2\theta$	1/2
	$\left(\sin^2\theta - \cos^2\theta + 1\right)\cos ec^2\theta$	

	$\left(\sin^2\theta - \left(1 - \sin^2\theta\right) + 1\right)\cos ec^2\theta$	
	$\left(\sin^2\theta - 1 + \sin^2\theta + 1\right)\cos ec^2\theta$	
	$2\sin^2\theta\times\cos ec^2\theta=2$	2
	Hence proved.	
28.	(-5)+(-8)+(-11)+(-230)	
	a = -5	
	d = -8 + 5 = -3	
	$a_n = l = -230$	1
	Number of terms $n = \frac{l-a}{d} + 1$	
	$= \frac{-230+5}{-3} + 1 = \frac{-225}{-3} + 1$	1
	n = 75 + 1 = 76	
	$S_n = \frac{n}{2} [a+l]$	
	$= \frac{76}{2} \left[-5 - 230 \right] = 38 \times -235$	1
	Sum = -8930	

MATHEMATICS STANDARD SOLVED

CLASS: X

SET 3 (CODE: 30/5/3) SERIES: JBB/5

^{29.} For correct construction of \triangle ABC AB = 5 cm, BC= 6 cm,

$$\angle B = 60^{\circ}$$

A'B C' is required similar Δ .

A' B C' is similar to ABC

$$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$$

For correct construction of similar triangle with scale factor 3/4

2

1

OR

For correct construction of given circle

$$OP = 7cm$$
, $OA = OB = 3.5 cm$.

	PA and PB are required tangents to the circle with centre O.	
	For correct construction of tangents	2
30.	ABCD is a parallelogram.	
	AB = 12 cm = diameter	
	Radius = 6 cm	
	D 12 cm C	
	Area of shaded = $ar(parallelogram) - ar(quadrant)$	1
	$= AB \times OD - \frac{1}{4} \times \pi \times 6^2$	1
	$=12\times6-\frac{1}{4}\times3.14\times6\times6$	
	=72-28.26	
	$=43.74cm^2$	1
31.	(i) P(to pick a marble from the bag) = P(spinner stops an even number)	1/2
	$A = \{2, 4, 6, 8, 10\}$	
	n(A) = 5	
	n(S) = 6	
	$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$	1

	(ii) P(getting a prize) = P(bag contains 20 balls out of which 6 are black)	1/2
	$= \frac{6}{20} = \frac{3}{10}$	1
32.	Let the fraction be $\frac{x}{y}$ as per the question,	
	$\frac{x-1}{y} = \frac{1}{3}$	
	$3x - y = 3 \qquad \dots \dots$	1
	and, $\frac{x}{y+8} = \frac{1}{4}$	
	4x = 8 + y	
	$4x - y = 8 \qquad \dots \dots$	1/2
	By elimination,	
	$\Theta \frac{3x - y = 3}{4x - y = 8}$	
	-x=-5	
	$x = 5$ $Put \ x = 5 \ in 1$	
	15 - y = 3 $y = 12$	
	\therefore The required fraction is $\frac{5}{12}$	1 . 1/
	12	$1 + \frac{1}{2}$

			OR		
	Let the present a	age of son be 'x' y	years		
			Father	Son	
		Present age	3x + 3	X	
		Three years	3x + 6	x + 3	1
		hence			
	As per qu	estion,			
	3x -	+6 = 10 + 2 (x +	3)		2
	3x -	+6 = 10 + 2x + 6			1
	x =	10			1
	Father's p	present age = $3x +$	- 3		
		$= 3 \times 10$	+ 3 = 33		
	∴ Present	age of son $= 10$ y	vears		
	Present	age of father = 33	3 years		1
33.	Y axis div	vides the line segr	nent any point o	on $y - axis$ is of the form	1/2
	(o, y)		J F		
	As per the	auastion			
	As per the	question			
		к	1		
		 	_		
	(6,	-4)	(0,y)	(-2,-7)	
	Х1	Y1		X2 Y2	1/2

As per section formula,

$$P(x,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$$
$$= \left(\frac{-2k+6}{k+1}, \frac{-7k-4}{k+1}\right)$$

$$\frac{-2k+6}{k+1} = 0$$
$$-2k+6=0$$
$$2k=6$$

$$k=3$$

∴ *Ratio* 3:1

$$y = \frac{-7k - 4}{k + 1} = \frac{-21 - 4}{4} = \frac{-25}{4}$$

 $\therefore Po \text{ int } of \text{ int } er \sec tion \left(0, \frac{-25}{4}\right)$

(OR)

Let A (7, 10) B(-2, 5) C(3, -4) be the vertices of triangle.

Distance between 2 points $= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $(x_1, y_1) (x_2, y_2)$

$$AB = \sqrt{9^2 + 5^2} = \sqrt{81 + 25} = \sqrt{106}$$

$$BC = \sqrt{5^2 + 9^2} = \sqrt{25 + 81} = \sqrt{106}$$

$$CA = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$$

(by pythagoren theorem)

$$AB^2 + BC^2 = AC^2$$

$$\left(\sqrt{106}\right)^2 + \left(\sqrt{106}\right)^2 = \left(\sqrt{212}\right)^2 106 + 106 = 212$$

 \therefore ABC is an isosceles right angled Δ .

1

1

1

1/2

 $1 + \frac{1}{2}$

34.		Let 'a' b	be any positive integer and $b = 3$, if a is	
		divided l	by b by EDL,	
		a = 3m +	- r, m is any positive integer and	
		$0 \le r < 3$		1
	If	r = 0,	a = 3m	
			$a^2 = (3m)^2 = 3 \times 3m^2$	
			$a^2 = 3q, \text{ where } 3m^2 = q$	
		r=1,	a = 3m + 1	
			$a^2 = (3m + 1)^2 = 9m^2 + 6m + 1$	
			$=3(3m^2+2m)+1$	
			$a^2 = 3q + 1$ where $q = 3m^2 + 2m$	
		r=2,	a = 3m + 2	
			$a^2 = (3m + 2)^2 = 9m^2 + 12m + 4$	
			$=9m^2+12m+3+1$	
			$= 3 (3m^2 + 4m + 1) + 1$	1 + ½
			$a^2 = 3q + 1$, where $q = 3m^2 + 4m + 1$	
		:. The sq	quare of any positive integer is of the form	1/2
		3q or 3q	+ 1 for some integer q.	
			SECTION – D	

Let the sides of the two squares be x and y (x > Y) difference of perimeter is = 32

$$4x - 4y = 32$$

$$X - y = 8 \implies y = x - 8$$

Sum of area of two squares = 544

$$x^2 + y^2 = 544$$

$$x^2 + (x - 8)^2 = 544$$

$$x^2 + x^2 + 64 - 16 x = 544$$

$$2x^2 - 16x = 480$$

$$\div 2$$
, $x^2 - 8x = 240$

$$x^2 - 8x - 240 = 0$$

$$(x-20)(x+12)=0$$

$$X = 20, -12$$

Side can't be negative.

So
$$x = 20$$

$$y = x - 8 = 20 - 8 = 12$$

: Sides of squares are 20 cm,12cm

1

2

(OR)

Speed of boat = 18 km/hr

Let speed of the stream be =x km/hr

Speed of upstream = (18-x)km/hr

Speed of downstream = (18+x)km/hr

Distance = 24 km

$$Time = \frac{Distance}{Speed}$$

As per question,

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

$$24 \left[\frac{1}{18 - x} - \frac{1}{18 + x} \right] = 1$$

$$\frac{18+x-18+x}{(18-x)(18+x)} = \frac{1}{24}$$

$$\frac{2x}{324 - x^2} = \frac{1}{24}$$

$$324 - x^2 = 48x$$

$$x^2 + 48x - 324 = 0$$

$$(x+54)(x-6)=0$$

$$x = 6, -54$$

$$\therefore$$
 $x = 6 \, km / hr$

Speed of stream = $6 \, km / hr$

2

MATHEMATICS STANDARD SOLVED

CLASS: X

	5 15 20 25 15 11 9 ss than ogive: 0, 91)(70, 100)		5 20 40 65 80 91 100	30, 40)
	20 25 15 11 9	Less than 30 Less than 40 Less than 50 Less than 60 Less than 70 (10, 5) (2	40 65 80 91 100	30, 40)
$ \begin{array}{r} 30 - 40 \\ \hline 40 - 50 \\ \hline 50 - 60 \\ \hline 60 - 70 \end{array} $ es to plot les	25 15 11 9 ss than ogive:	Less than 40 Less than 50 Less than 60 Less than 70 (10, 5) (2	65 80 91 100	30, 40)
40 - 50 $50 - 60$ $60 - 70$ es to plot les	15 11 9 ss than ogive:	Less than 50 Less than 60 Less than 70 (10, 5) (2	80 91 100	30, 40)
50 - 60 60 - 70 es to plot les	ss than ogive:	Less than 60 Less than 70 (10, 5) (2	91 100	30, 40)
es to plot les	ss than ogive:	Less than 70 (20, 5) (2	100	30, 40)
es to plot les	ss than ogive:	(10, 5) (2	2	30, 40)
			20, 20) (3	30, 40)

-39

180 - 220

220 - 260

Assumed mean a = 160

Class size h = 40

Mean
$$\bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$$

$$= 160 + \left(\frac{\cancel{-39} - 13}{\cancel{\cancel{45}}\cancel{\cancel{9}}3} \times \cancel{\cancel{40}}\right)$$

$$= 160 + \left(\frac{-104}{3}\right)$$

$$= 160 - 34.66 \dots$$

$$= 160 - 34.67$$
 $\bar{x} = 125.33$

1

To find median,

Number of workers C1	No. of bowlers (1)	CF
20 - 60	7	7
60 - 100	5	12
100 – 140	16	28
140 - 180	12	40
180 - 220	2	42
220 - 260	3	<u>45</u>
N	t = 45, $ > N/2$	2 → > 22.5

h = 40

1

Median class: 100 - 140

$$F = 16$$

$$CF = 12$$
 $1 = 100$

$$Median = \ell + \left(\frac{N/2 - CF}{f} \times h\right)$$

$$=100 + \left(\frac{\frac{45}{2} - 12}{\cancel{164}} \times \cancel{40}10\right)$$

$$= 100 + \frac{105}{4} = 100 + 26.25$$
$$= 126.25$$

37. As per figure, BC = h m

In right triangle ACP,

$$\tan 60^{\circ} = \frac{AC}{PC}$$

$$\Rightarrow \sqrt{3} = \frac{AB + BC}{PC}$$

$$\Rightarrow \sqrt{3} = \frac{1.6 + h}{PC} \dots (1)$$

In right triangle BCP,

$$\tan 45^\circ = \frac{BC}{PC}$$

$$\Rightarrow \qquad 1 = \frac{h}{PC} \qquad \dots (2)$$

	Dividing (1) by (2), we get				
	$\frac{\sqrt{3}}{1} = \frac{1.6 + h}{h}$				
	$\implies h\sqrt{3} = 1.6 + h$				
	\rightarrow $1(5,1)$				
	$\Rightarrow h(\sqrt{3}-1)=1.6$				
	$\Rightarrow h = \frac{1.6}{\sqrt{3} - 1}$				
	$\Rightarrow h = \frac{1.6(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$				
	$\Rightarrow h = \frac{1.6(\sqrt{3}+1)}{3-1}$				
	$\Rightarrow h = \frac{1.6(\sqrt{3}+1)}{2}$	1+ ½			
	$\Rightarrow h = 0.8\left(\sqrt{3} + 1\right)$				
	h=0.8(1.73+1)=0.8 x 2.73 =2.184m	1/2			
	Hence, the height of the pedestal is 2.184 m				
38.	$p(x) = 2x^4 - x^3 - 11 x^2 + 5x + 5$				
	Two zeros are $\sqrt{5}$ and $-\sqrt{5}$				
	$\therefore x = \sqrt{5} x = -\sqrt{5}$				
	$(x-\sqrt{5})(x+\sqrt{5}) = x^2-5$ is a factor of $p(x)$				
	To find other zeroes	1			

$ \begin{array}{c} 2x^2 - x - 1 \\ x^2 - 5 \\ \hline 2x^4 - x^3 - 11x^2 + 5x + 5 \\ \hline -x^4 - 10x^2 \\ \hline -x^3 - x^2 + 5 \\ \hline -x^2 + 5 \\ \hline 0 \end{array} $ $ \therefore 2x^2 - x - 1is \ a \ factor $ $ 2x^2 - 2x + x - 1 = 0 $ $ 2x(x - 1) + 1(x - 1) = 0 $ $ (2x + 1) \qquad (x - 1) = 0 $ $ x = -1/2 \qquad x = 1 $ $ \therefore \text{ Other zeroes are } -1/2, 1 $ $ \begin{array}{c} \text{(OR)} \\ \hline 2x + 5 \\ \hline x^2 - 4x + 8 \\ \hline 2x^3 - 3x^2 + 6x + 7 \\ - + \\ - 2x^3 - 8x^2 + 16x \end{array} $ $ \begin{array}{c} 5x^2 - 10x + 7 \\ \hline -5x^2 - 20x + 40 \\ \hline 10x - 33 \end{array} $ So $-10x + 33$ has to be added			
$ \frac{\begin{vmatrix} 2x^4 & -10x^2 \\ -10x^2 & + -10x^2 \\ -x^3 - x^2 + 5x & + -15x \end{vmatrix}}{\begin{vmatrix} -x^2 + 5 & -x^2 + 5 & -x^2 + 5 \\ -x^2 + 5 & -x^2 + 5 \end{vmatrix}} $ $ \therefore 2x^2 - x - 1is \ a \ factor $ $ 2x^2 - 2x + x - 1 = 0 $ $ 2x (x - 1) + 1 (x - 1) = 0 $ $ (2x + 1) \qquad (x - 1) = 0 $ $ x = -1/2 \qquad x = 1 $ $ \therefore \text{ Other zeroes are } -1/2, 1 $ $ (OR) $ $ 2x + 5 $ $ 2x^3 - 3x^2 + 6x + 7 $ $ - + + + + + +$			
$ \frac{-\frac{x^3 - x^2 + 5x}{\frac{1}{x^3} + 5x}}{-\frac{x^2 + 5}{\frac{1}{x^3} + 5x}} $ $ \frac{-\frac{x^2 + 5}{-x^2 + 5}}{\frac{1}{x^2 + 5}} $ $ \frac{-x^2 + 5}{\frac{1}{x^2 + 5}} $ $ \frac{-x^2 + 5}{\frac{x^2 + 5}{x$		- +	
$ \frac{-x^{2}+5}{-x^{2}+5} $ $ 0 $ $ \therefore 2x^{2}-x-1 \text{ is a factor} $ $ 2x^{2}-2x+x-1=0 $ $ 2x(x-1)+1(x-1)=0 $ $ (2x+1) \qquad (x-1)=0 $ $ x=-1/2 \qquad x=1 $ $ \therefore \text{ Other zeroes are } -1/2, 1 $ $ (OR) $ $ 2x+5 $ $ 2x^{3}-3x^{2}+6x+7 $ $ -x+1 $ $ 2x^{3}-8x^{2}+16x $ $ 5x^{2}-10x+7 $ $ -x+1 $ $ -x+1 $ $ 2x^{3}-8x^{2}+16x $ $ 3$ $ 10x-33 $		•	
$ \frac{-x^{2}+5}{0} $ $ \therefore 2x^{2}-x-1 is a factor $ $ 2x^{2}-2x+x-1=0 $ $ 2x (x-1)+1 (x-1)=0 $ $ (2x+1) $			
$\therefore 2x^{2} - x - 1 \text{ is a factor}$ $2x^{2} - 2x + x - 1 = 0$ $2x (x - 1) + 1 (x - 1) = 0$ $(2x + 1) \qquad (x - 1) = 0$ $x = -1/2 \qquad x = 1$ $\therefore \text{ Other zeroes are } -1/2, 1$ (OR) $2x + 5$ $2x^{3} - 3x^{2} + 6x + 7$ $- + + + +$		- x ² + 5	
$2x^{2}-2x+x-1=0$ $2x (x-1)+1 (x-1)=0$ $(2x+1) $			
$2x (x-1) + 1 (x-1) = 0$ $(2x + 1) (x - 1) = 0$ $x = -1/2 x = 1$ $\therefore \text{ Other zeroes are } -1/2, 1$ (OR) $2x + 5$ $2x^3 - 3x^2 + 6x + 7$ $- + +$	$\therefore 2x^2 - x$	–1is a factor	2
(2x + 1) (x - 1) = 0 x = -1/2 x = 1 ∴ Other zeroes are -1/2, 1 (OR) $ 2x + 5 $ $ 2x^3 - 3x^2 + 6x + 7 $ $ - + - $ $ 2x^3 - 8x^2 + 16x $ $ 5x^2 - 10x + 7 $ $ 5x^2 - 20x + 40 $ $ 10x - 33$	$2x^2-2x$	+x-1=0	~0
$x = -1/2 \qquad x = 1$ $\therefore \text{ Other zeroes are } -1/2, 1$ (OR) $x^2 - 4x + 8 \qquad 2x + 5$ $2x^3 - 3x^2 + 6x + 7$ $- + -$ $2x^3 - 8x^2 + 16x$ $5x^2 - 10x + 7$ $5x^2 - 20x + 40$ $10x - 33$	2x(x-1)	1) + 1(x - 1) = 0	Dh.
.: Other zeroes are -1/2, 1 (OR) $ 2x + 5 $ $ 2x^{3} - 3x^{2} + 6x + 7 $ $ - + - $ $ 2x^{3} - 8x^{2} + 16x $ $ 5x^{2} - 10x + 7 $ $ 5x^{2} - 20x + 40 $ $ 10x - 33$	(2x+1)	(x-1)=0	00'
(OR) $ \begin{array}{r} 2x + 5 \\ 2x^3 - 3x^2 + 6x + 7 \\ - + - \\ 2x^3 - 8x^2 + 16x \end{array} $ $ \begin{array}{r} 5x^2 - 10x + 7 \\ \hline 5x^2 - 20x + 40 \end{array} $ $ \begin{array}{r} 10x - 33 \end{array} $	x = -1/2	x = 1	1
$ \begin{array}{r} 2x + 5 \\ x^2 - 4x + 8 \overline{)2x^3 - 3x^2 + 6x + 7} \\ - + \\ 2x^3 - 8x^2 + 16x \\ \hline 5x^2 - 10x + 7 \\ 5x^2 - 20x + 40 \\ \hline 10x - 33 \end{array} $:. Other	zeroes are -1/2, 1	
$ \begin{array}{r} 2x + 5 \\ x^2 - 4x + 8 \overline{)2x^3 - 3x^2 + 6x + 7} \\ - + \\ 2x^3 - 8x^2 + 16x \\ \hline 5x^2 - 10x + 7 \\ 5x^2 - 20x + 40 \\ \hline 10x - 33 \end{array} $			
$x^{2}-4x+8 = 2x^{3}-3x^{2}+6x+7$ $-x+-2x^{3}-8x^{2}+16x$ $5x^{2}-10x+7$ $-x+5x^{2}-20x+40$ $10x-33$		(OR)	
$x^{2} - 4x + 8$ $2x^{3} - 3x^{2} + 6x + 7$ $- +$		2v + 5	
$ \begin{array}{r} $			
$ \begin{array}{r} 5x^2 - 10x + 7 \\ \hline 5x^2 - 20x + 40 \\ \hline 10x - 33 \end{array} $	X ² - 4X + 8	- + ₋	
$\frac{5x^{2}-20x+40}{10x-33}$		2x ² - 8x ² + 10x	
10x - 33		$5x^2 - 10x + 7$	
			3
So $-10x + 33$ has to be added		10x - 33	
So $-10x + 33$ has to be added			
	So $-10x + 33 \text{ h}$	as to be added	1

39.	Volume of cylinder = $=\pi r^2 h$	
	Volume of sphere $=\frac{4}{3}\pi r^3$	
	Cylinder: Radius r = 10 cm	
	Raise in water level = h	
	Sphere: Radius = 0.5 cm	
	$= \frac{1}{2} \text{ cm}$ Spherical balls	1
	Volume of water raised in cylinder = $9000 \times \text{volume}$ of sphere	
	$\pi \times 10 \times 10 \times h = 9000 \times \frac{4}{3} \times \pi \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$	1
	$\cancel{\pi} \times \cancel{10} \times \cancel{10} \times h = \cancel{90} \cancel{0} \cancel{0} \cancel{0} \times \cancel{\cancel{4}} \times \cancel{\pi} \times \frac{1}{\cancel{2}} \times \frac{1}{\cancel{2}} \times \frac{1}{\cancel{2}}$	
	h = 15 cm	
	Rise in the level of water in vessel = 15 cm.	2
40.	For correct Given, to prove, Construction and figure	½ x 4 =2
	For Correct proof	2
	Refer NCERT text book pg no. 124	