

Practice set 1.1

Page 5

1. Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

Solution:

Let base of the first triangle is b_1 and height is h_1 . Let base of second triangle is b_2 and height is h_2 . Ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights.

Here $b_1 = 9$ $h_1 = 5$ $b_2 = 10$ $h_1 = 6$ Then ratio of their areas $= b_1 \times h_1/b_2 \times h_2$ $= 9 \times 5/10 \times 6$ = 3/4Hence the ratio of the areas of these triangles is 3:4

2. In figure 1.13 BC \perp AB, AD \perp AB, BC = 4, AD = 8, then find A(\triangle ABC) /A(\triangle ADB).

Solution:

Here $\triangle ABC$ and $\triangle ADB$ have the same base AB. Areas of triangles with equal bases are proportional to their corresponding heights. Since bases are equal, areas are proportional to heights.

Given BC = 4 and AD = 8 So, A(\triangle ABC) /A(\triangle ADB) = BC/AD = 4/8 = 1/2 Hence ratio of areas of \triangle ABC and \triangle ADB is 1:2.

3. In adjoining figure 1.14 seg PS \perp seg RQ, seg QT \perp seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.

Hence measure of side QT is 3 units.

4. In adjoining figure, AP \perp BC, AD || BC, then find A(\triangle ABC):A(\triangle BCD).

Fig. 1.15

Solution:

Given , AP \perp BC, and AD || BC. \triangle ABC and \triangle BCD has same base BC. Areas of triangles with equal bases are proportional to their corresponding heights. Since AP is the perpendicular distance between parallel lines AD and BC, height of \triangle ABC and height of \triangle BCD are same.

 $\therefore A(\triangle ABC) / A(\triangle BCD) = AP/AP = 1$ Hence A($\triangle ABC$): A($\triangle BCD$) = 1:1

5. In adjoining figure PQ \perp BC, AD \perp BC then find following ratios.

(i) $A(\triangle PQB) / A(\triangle PBC)$ (ii) $A(\triangle PBC) / A(\triangle ABC)$ (iii) $A(\triangle ABC) / A(\triangle ADC)$ (iv) $A(\triangle ADC) / A(\triangle PQC)$

Fig. 1.16

Solution:

(i) $\triangle PQB$ and $\triangle PBC$ have same height PQ.

Ratio of areas of triangles with equal heights are proportional to their corresponding bases. $\therefore A(\triangle PQB)/A(\triangle PBC) = BQ/BC$

(ii) \triangle PBC and \triangle ABC have same base BC. Ratio of areas of triangles with equal bases are proportional to their corresponding heights. $\therefore A(\triangle$ PBC) / A(\triangle ABC) = PQ/AD

(iii) \triangle ABC) and \triangle ADC have equal heights AD. Ratio of areas of triangles with equal heights are proportional to their corresponding bases. \therefore A(\triangle ABC)/A(\triangle ADC) = BC/DC

(iv) Ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights.

 \therefore A(\triangle ADC) /A(\triangle PQC) = DC×AD/QC×PQ

Practice set 1.2

Page 13

1. Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of \angle QPR.

(iii) In \triangle PQR PR/PQ = 10/9.....(i) RM/QM = 4/3.6 = 40/36 = 10/9(ii) From (i) and (ii) PR/PQ = RM/QM \therefore By Converse of angle bisector theorem , Ray PM is the bisector of \angle QPR.

2. In \triangle PQR, PM = 15, PQ = 25 PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.

Solution:

Given PM = 15, PQ = 25, PR = 20, NR = 8 PQ = PM+MQ 25 = 15+MQ $\Rightarrow MQ = 25-15$ $\Rightarrow MQ = 10$ PR = PN+NR 20 = PN+8 $\Rightarrow PN = 20-8$ $\Rightarrow PN = 12$ PM/MQ = 15/10 = 3/2 PN/NR = 12/8 = 3/2In $\triangle PQR$, PM/MQ = PN/NR. \therefore By Converse of basic proportionality theorem , line NM II side RQ.

3. In \triangle MNP, NQ is a bisector of \angle N. If MN = 5, PN = 7 MQ = 2.5 then find QP.

Solution:

Given MN = 5, PN = 7, MQ = 2.5 Since NQ is a bisector of $\angle N$, PN/MN = QP/MQ [Angle bisector theorem] 7/5 = QP/2.5 $\Rightarrow QP = 7 \times 2.5/5$ $\Rightarrow QP = 3.5$ Hence measure of QP is 3.5 units.

4. Measures of some angles in the figure are given. Prove that AP/PB = AQ/QC

Solution:

 $\angle ABC = 60^{\circ}$ [Given] $\angle APQ = 60^{\circ}$ [Given]

Since the corresponding angles are equal, line PQ II BC. In $\triangle ABC$, PQ II BC. \therefore By basic proportionality theorem , AP/PB = AQ/QC Hence proved.

5. In trapezium ABCD, side AB ||side PQ ||side DC, AP = 15, PD = 12, QC = 14, find BQ.

Solution:

Given AB II PQ II DC. AP = 15 PD = 12 QC = 14 AP/PD = BQ/QC [Property of three parallel lines and their transversals] 15/12 = BQ / 14 $\Rightarrow BQ = 15 \times 14/12$ $\Rightarrow BQ = 17.5$ units. Hence measure of BQ is 17.5 units.

6. Find QP using given information in the figure.

Fig. 1.40

Solution:

From figure MN = 25, NP = 40, MQ = 14Given NQ bisects $\angle MNP$.

 \therefore MN/NP = MQ/QP [Angle bisector theorem] 25/40 = 14/QP \Rightarrow QP = 40×14/25 \Rightarrow QP = 22.5 Hence measure of QP is 22.5 units.

7. In figure 1.41, if AB || CD || FE then find x and AE.

Solution:

From figure BD = 8, DF = 4, AC = 12 and CE = xGiven AB II CD II FE \therefore BD/DF = AC/CE [Property of three parallel lines and their transversals] 8/4 = 12/x $x = 12 \times 4/8$ $\Rightarrow x = 6$ $\therefore CE = 6$ AE = AC + CE $\therefore AE = 12+6$ $\therefore AE = 18$ Hence measure of x is 6 units and AE is 18 units.

8. In D LMN, ray MT bisects \angle LMN. If LM = 6, MN = 10, TN = 8, then find LT.

Solution:

Given ray MT bisects \angle LMN.

LM = 6 MN = 10 TN = 8 Since ray MT bisects \angle LMN , LM/MN = LT/TN [Angle bisector theorem] 6/10 = LT/8 \Rightarrow LT = 6×8/10 \Rightarrow LT = 4.8 Hence measure of LT is 4.8 units.

9. In $\triangle ABC$, seg BD bisects $\angle ABC$. If AB = x, BC = x+5, AD = x-2, DC = x+2, then find the value of x.

 \therefore the value of x is 10.

10. In the figure 1.44, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

Fig. 1.44

Proof : In \triangle XDE, PQ || DE (I) (Basic proportionality theorem)

In \triangle XEF, QR || EF

seg PR || seg DE (converse of basic proportionality theorem)

Solution:

In \triangle XDE, PQ || DE..... Given

 \therefore XP/PD = XQ/QE.....(I) (Basic proportionality theorem)

In \triangle XEF, QR || EF..... Given

:XR/RF = XQ/QE......(II) (Basic proportionality theorem)

 \therefore XP/PD = XR/RF from (I) and (II)

: seg PR || seg DE (converse of basic proportionality theorem)

11*. In \triangle ABC, ray BD bisects \angle ABC and ray CE bisects \angle ACB. If seg AB \cong seg AC then prove that ED || BC.

Solution:

Given , In \triangle ABC ray BD bisects \angle ABC . \therefore AB/BC = AD/CD(i) [Angle bisector theorem] Since ray CE bisects \angle ACB AC/BC = AE/BE(ii) [Angle bisector theorem] Given seg AB = seg AC. Substitute AB in (ii) AB/BC = AE/BE.....(iii) From (i) AD/CD = AE/BE [in (i) AB/BC = AD/CD] \therefore ED II BC [converse of basic proportionality theorem] Hence proved.

Practice set 1.3

Page 21

1. In figure 1.55, \angle ABC = 75°, \angle EDC = 75° state which two triangles are similar and by which test? Also write the similarity of these two triangles by a proper one to one correspondence.

One to one correspondence is ABC \leftrightarrow EDC

2. Are the triangles in figure 1.56 similar? If yes, by which test ?

Solution: Consider \triangle PQR and \triangle LMN, PQ/LM = 6/3 = 2/1(i)

QR/MN = 8/4 = 2/1(ii) PR/LN = 10/5 = 2/1(iii) ∴ PQ/LM = QR/MN = PR/LN ∴ \triangle PQR ~ \triangle LMN [SSS test of similarity]

3. As shown in figure 1.57, two poles of height 8 m and 4 m are perpendicular to the ground. If the length of shadow of smaller pole due to sunlight is 6 m then how long will be the shadow of the bigger pole at the same time ?

Solution:

Here PR and AC represents the smaller and bigger poles, and QR and BC represents their shadows respectively.

Given PR = 4m, QR = 6m, AC = 8m, BC = x

 \triangle PRQ ~ \triangle ACB [\therefore Vertical poles and their shadows form similar figures]

 \therefore PR/AC = QR/BC [Corresponding sides of similar triangles]

$$4/8 = 6/x$$

 $\Rightarrow x = 6 \times 8/4$

$$\Rightarrow x = 12$$

Hence the length of shadow of the bigger pole is 12 m.

4. In \triangle ABC, AP \perp BC, BQ \perp AC B-P-C, A-Q - C then prove that, \triangle CPA ~ \triangle CQB. If AP = 7, BQ = 8, BC = 12 then find AC.

Fig. 1.58

Solution:

Consider \triangle CPA and \triangle CQB, \angle CPA $\cong \angle$ CQB [From figure, angle is equal to 90°] \angle PCA $\cong \angle$ QCB [Common angle] $\therefore \triangle$ CPA ~ \triangle CQB, [AA test of similarity] Hence proved. AC/BC = AP/BQ [corresponding sides of similar triangles] Given AP = 7, BQ = 8, BC = 12 AC/12 = 7/8 \Rightarrow AC = 12×7/8 \Rightarrow AC = 10.5 Hence measure of AC is 10.5 units.

5. Given : In trapezium PQRS, side PQ || side SR, AR = 5AP, AS = 5AQ then prove that, SR = 5PQ

Solution:

Given side PQ II side SR. Also AR = 5AP, AS = 5AQSQ is the transversal of parallel sides PQ and SR. $\angle QSR = \angle PQS$ [Alternate interior angles] $\angle ASR = \angle AQP....(i)$ [Alternate interior angles] Consider $\triangle ASR$ and $\triangle AQP$ $\angle ASR = \angle AQP$ From (i) \angle SAR = \angle OAP [vertical opposite angles] \triangle ASR ~ \triangle AQP [AA test of similarity] [Corresponding sides of similar triangles] AS/AQ = SR/PQAS = 5AQ[Given] AS/AQ = 5/1SR/PQ = 5/1 \therefore SR = 5PQ Hence proved.

Practice set 1.4

Page 25

1. The ratio of corresponding sides of similar triangles is 3:5; then find the ratio of their areas

Solution:

When two triangles are similar, the ratio of areas of those triangles is equal to the ratio of the squares of their corresponding sides.

Given , the ratio of corresponding sides of the triangle is 3:5. \therefore Ratio of their areas = $3^2/5^2$ [Theorem of areas of similar triangles] = 9/25

Hence ratio of their areas = 9:25

2. If $\triangle ABC \sim \triangle PQR$ and AB: PQ = 2:3, then fill in the blanks. A($\triangle ABC$)/A($\triangle PQR$) = AB²/___ = 2²/3² = __/___

Solution:

A(\triangle ABC)/ A(\triangle PQR) = AB²/PQ² = 2²/3² = 4/9 [Theorem of areas of similar triangles]

3. If $\triangle ABC \sim \triangle PQR$, $A(\triangle ABC) = 80$, $A(\triangle PQR) = 125$, then fill in the blanks. $A(\triangle ABC) / A(\triangle...) = 80/125 \therefore AB/PQ = __/___$

Solution:

Given A(\triangle ABC) = 80, A(\triangle PQR) = 125 (\triangle ABC) / A(\triangle PQR) = 80/125 = 16/25 (\triangle ABC) / A(\triangle PQR) = AB²/PQ² [Theorem of areas of similar triangles] \therefore AB²/PQ² = 16/25 Taking square root on both sides \therefore AB/PQ = 4/5 Hence AB/PQ = 4/5

4. \triangle LMN ~ \triangle PQR, 9 ×A(\triangle PQR) = 16 ×A(\triangle LMN). If QR = 20 then find MN.

Solution:

Given $9 \times A(\triangle PQR) = 16 \times A(\triangle LMN)$ $\therefore A(\triangle PQR) / A(\triangle LMN) = 16/9.....(i)$ $\triangle LMN \sim \triangle PQR$ $\therefore A(\triangle PQR) / A(\triangle LMN) = QR^{2/}MN^2(ii)$ From (i) and (ii) $QR^{2/}MN^2 = 16/9$ Given QR = 20 $\therefore 20^2/MN^2 = 16/9$ Taking square root on both sides

20/MN = 4/3MN = $20 \times 3/4$ MN = 15 Hence the measure of MN is 15 units.

Problem Set 1

Page 26

Solution:

Given AB/QR = BC/PR = CA/PQBy SSS test of similarity, $\triangle PQR \sim \triangle CAB$. \therefore Correct option is (B).

(2) If in △ DEF and △ PQR, ∠ D ≅ ∠ Q, ∠ R ≅ ∠ E then which of the following statements is false?
(A) EF/PR = DF/ PQ
(B) DE/ PQ = EF/ RP

(C) DE/PQ = EF/RF(C) DE/QR = DF/PQ

(D) EF/RP = DE/QR

Fig. 1.68

Solution:

Given $\angle D \cong \angle Q$, $\angle R \cong \angle E$ $\therefore \triangle DEF \sim \triangle QRP....$ $\therefore DE/QR = EF/RP = DF/QP$ $\therefore DE/PQ \neq EF/RP$ Hence option (B) is false.

[AA test of similarity] [Corresponding sides of similar triangles]

(3) In \triangle ABC and \triangle DEF \angle B = \angle E, \angle F = \angle C and AB = 3DE then which of the statements regarding the two triangles is true?

(A)The triangles are not congruent and not similar

(B)The triangles are similar but not congruent.

(C)The triangles are congruent and similar.

(D) None of the statements above is true.

Fig. 1.69

Solution:

Given $\angle B = \angle E$ $\angle F = \angle C$ $\therefore \triangle ABC \sim \triangle DEF$ [AA test of similarity] Hence option B is the true statement.

(4) △ ABC and △ DEF are equilateral triangles, A (△ABC):A(△DEF)=1:2
If AB = 4 then what is length of DE?
(A)2√2
(B)4
(C)8
(D)4√2

Fig. 1.70

Solution:

Given A ($\triangle ABC$):A($\triangle DEF$) = 1:2 $\triangle ABC$ and $\triangle DEF$ are equilateral triangles. $\angle A = \angle D$ [Angle equals 60°] $\angle B = \angle E$ [Angle equals 60°] $\therefore \triangle ABC \sim \triangle DEF$ [AA test of similarity] $\therefore A (\triangle ABC):A(\triangle DEF) = AB^2/DE^2$ [Theorem of areas of similar triangles] $1/2 = 4^2/DE^2$ Taking square root on both sides $1/\sqrt{2} = 4/DE$ $\therefore DE = 4\sqrt{2}$ Hence option (D) is the correct answer.

(5) In figure 1.71, seg XY || seg BC, then which of the following statements is true? (A) AB / AC = AX / AY (B) AX / XB = AY / AC (C) AX / YC = AY / XB (D) AB / YC = AC / XB

Fig. 1.71

Solution:

Given seg XY || seg BC AX/BX = AY/YC

[Basic proportionality theorem]

 $\Rightarrow (BX/AX) +1 = (YC/AY) +1$ $\Rightarrow (BX+AX)/AX = (YC+AY)/AY$ $\Rightarrow AB/AX = AC/AY$ $\Rightarrow AB/AC = AX/AY$ Hence correct option is (A).

2. In △ ABC, B - D - C and BD = 7, BC = 20 then find following ratios.
(1) A(△ ABD) /A(△ ADC)
(2) A(△ ABD) /A(△ ABC)
(3) A(△ ADC) /A(△ ABC)

Solution:

BC = BD+DC 20 = 7+DC $\therefore DC = 13$	
(1)A(\triangle ABD) /A(\triangle ADC) = BD/DC \therefore A(\triangle ABD) /A(\triangle ADC) = 7/13	[Triangles having same height]
(2) $A(\triangle ABD) / A(\triangle ABC) = BD/BC$ $\therefore A(\triangle ABD) / A(\triangle ABC) = 7/20$	[Triangles having same height]
(3) $A(\triangle ADC) / A(\triangle ABC) = DC/BC$ $\therefore A(\triangle ADC) / A(\triangle ABC) = 13/20$	[Triangles having same height]

3. Ratio of areas of two triangles with equal heights is **2:3.** If the base of the smaller triangle is 6cm then what is the corresponding base of the bigger triangle ?

Solution:

Given ratio of two triangles with equal height is 2:3 Let b_1 be base of smaller triangle and b_2 be base of bigger triangle. $b_1 = 6$ cm Let a_1 and a_2 be areas of the triangles. Since triangles have equal height , $a_1/a_2 = b_1/b_2$ $\therefore 2/3 = 6/b_2$ $\therefore b_2 = 3 \times 6/2$ $\therefore b_2 = 9$ Hence base of bigger triangle is 9 cm.

4. In figure 1.73, $\angle ABC = \angle DCB = 90^{\circ} AB = 6$, DC = 8 then A($\triangle ABC$) /A($\triangle DCB$) = ?

Solution:

Given $\angle ABC = \angle DCB = 90^{\circ} AB = 6$, DC = 8BC is the common base of $\triangle ABC$ and $\triangle DCB$

 $\therefore A(\triangle ABC) / A(\triangle DCB) = AB/DC$ = 6/8= 3/4

5. In figure 1.74, PM = 10 cm A(\triangle PQS) = 100 sq.cm A(\triangle QRS) = 110 sq.cm then find NR.

Solution:

Given PM = 10 cm $A(\triangle PQS) = 100 \text{ sq.cm}$ $A(\triangle QRS) = 110 \text{ sq.cm}$ \triangle PQS and \triangle QRS have common base QS \therefore A(\triangle PQS)/ A(\triangle QRS) = PM/NR $\therefore 100/110 = 10/NR$ \Rightarrow NR = 110×10/100 \Rightarrow NR = 11 Hence NR = 11 cm.

6. \triangle MNT ~ \triangle QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point S is 9. Find the ratio A(\triangle MNT)/A(\triangle QRS).

Solution:

9 5 Ν Ρ Μ R Given \triangle MNT ~ \triangle QRS [corresponding angles of similar triangles] $\therefore \angle TMN \cong \angle SQR$ Construction: Draw altitude from T to MN meeting at L. Draw altitude from S to QR meeting at P. \angle TLM = \angle SPQ = 90° In \triangle MLT and \triangle QPS $\angle TMN \cong \angle SQR$ $\angle TLM \cong \angle SPQ$ [AA test of similarity] $\therefore \triangle MLT \sim \triangle QPS$ \therefore MT/QS = TL/SP \therefore MT/QS = 5/9 \triangle MNT ~ \triangle QRS [Given] $\therefore A(\triangle MNT) / A(\triangle QRS) = MT^2/QS^2$ [Theorem of areas of similar triangles] $\therefore A(\triangle MNT) / A(\triangle QRS) = 5^2/9^2$ $\therefore A(\triangle MNT) / A(\triangle QRS) = 25/81$ Hence A(\triangle MNT):A(\triangle QRS) = 25:81

7. In figure 1.75, A - D - C and B - E - C seg $DE \parallel$ side AB If AD = 5, DC = 3, BC = 6.4 then find BE.

[Given]

[Given]

[Basic proportionality theorem]

Solution:

Given DE II AB. \therefore AD/DC = BE/EC AD = 5, DC = 3, BC = 6.4 BE = x, EC = 6.4-x $\therefore 5/3 = x/(6.4-x)$ Cross multiplying we get $5 \times (6.4-x) = 3 \times x$ 32-5x = 3x 32 = 8x $\therefore x = 32/8 = 4$ Hence BE = 4 units.

