

PRACTICE SET 1.1

PAGE NO: 02

1. Show the following numbers on a number line. Draw a separate number line for each example.

(1)
$$\frac{3}{2}, \frac{5}{2}, -\frac{3}{2}$$
 (2) $\frac{7}{5}, \frac{-2}{5}, \frac{-4}{5}$ (3) $\frac{-5}{8}, \frac{11}{8}$ (4) $\frac{13}{10}, \frac{-17}{10}$

Solution:

 $(1) \frac{3}{2}, \frac{5}{2}, -\frac{3}{2}$

Here, the denominator of each fraction is 2. \therefore Each unit will be divided into 2 equal parts.

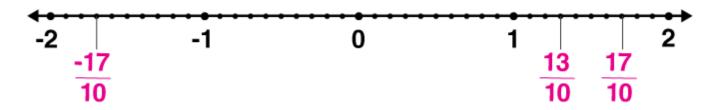
Here, the denominator of each fraction is 5. ∴ Each unit will be divided into 5 equal parts.

(3) $\frac{-5}{8}, \frac{11}{8}$

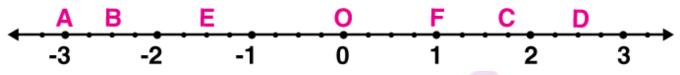
Here, the denominator of each fraction is 8. ∴ Each unit will be divided into 8 equal parts.

(4) $\frac{13}{10}$, $\frac{-17}{10}$

Here, the denominator of each fraction is 10. ∴ Each unit will be divided into 10 equal parts.



2. Observe the number line and answer the questions.



- (1) Which number is indicated by point B?
- (2) Which point indicates the number 1 ³/₄?

(3) State whether the statement, 'the point D denotes the number 5/2, is true or false. Solution:

We know that, each part between integers is divided into 4 parts on the number line So, each part equals ¹/₄.

(1) Which number is indicated by point B?

Point B is marked on the 10th equal part on the left side of O (i.e., the negative side).

: The number indicated by point B is -10/4.

(2) Which point indicates the number 1 ³/₄?

1 ³/₄ can be represented as:

 $1\frac{3}{4} = \frac{1 \times 4 + 3}{4}$ $= \frac{4 + 3}{4}$ $= \frac{7}{4}$

Point C is marked on the 7th equal part on the right side of O.

 \therefore The number 1 ³/₄ is indicated by point C.

(3) State whether the statement, 'the point D denotes the number 5/2, is true or false. The statement is true.

Point D is marked on the 10th equal part on the right side of O.

 \therefore D denotes the number $10/4 = (5 \times 2) / (2 \times 2) = 5/2$

https://byjus.com

PRACTICE SET 1.2

PAGE NO: 03

1. Compare the following numbers.

(1) -7, -2	(2) 0, $\frac{-9}{5}$	$(3) \frac{8}{7}, 0$	(4) $\frac{-5}{4}, \frac{1}{4}$	$(5) \frac{40}{29}, \frac{141}{29}$		
(6) $-\frac{17}{20}, \frac{-13}{20}$	(7) $\frac{15}{12}$, $\frac{7}{16}$	$(8) \frac{-25}{8}, \frac{-9}{4}$	(9) $\frac{12}{15}$, $\frac{3}{5}$	$(10) \frac{-7}{11}, \frac{-3}{4}$		

Solution: (1) -7, -2

Now if there are two numbers, a and b such that a>b then -a<-b. Since, 7 > 2 $\therefore -7 < -2$

(2) 0, -9/5

Since, -9/5 is a negative quantity; it will always be less than zero. $\therefore 0 > -9/5$.

(3) 8/7, 0

Since, 8/7 is a positive quantity; it will always be greater than zero. $\therefore 0 < 8/7$.

(4) -5/4, ¹/₄

Since the denominators are same, we shall check which number in the numerator is greater.

-5 < 1: $-5/4 < \frac{1}{4}$

(5) 40/29, 141/29

Since the denominators are same, we shall check which number in the numerator is greater. 40 < 141 $\therefore 40/29 < 141/29$

(6) -17/20, -13/20Now if there are two numbers, a and b such that a>b then -a < -b. Since, 17 > 13So, -17 < -13.

https://byjus.com

Now, the denominator is same, we shall check which number in the numerator is greater. Since, -17 < -13 $\therefore -17/20 < -13/20$

(7) 15/12, 7/16 Firstly let us make the denominators equal. $\frac{15}{12} = \frac{15 \times 4}{12 \times 4} = \frac{60}{48} \frac{7}{16} = \frac{7 \times 3}{16 \times 3} = \frac{21}{48}$ Now the denominators are equal, we shall check whose numerator is greater. 60 > 21. $\therefore 15/12 > 7/16$ **(8)** -25/8, -9/4 Firstly let us make the denominators equal. $=\frac{-9\times2}{4\times2}=\frac{-18}{8}$ Now the denominators are equal, we shall check whose numerator is greater. -25<-18. $\therefore -25/18 < -9/4$ **(9)** 12/15, 3/5 Firstly let us make the denominators equal. $\frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15}$ Now the denominators are equal, we shall check whose numerator is greater.

Now the denominators are equal, we shall check whose numerator is greater. 12 > 9.

 $\therefore 12/15 > 3/5$

(10) -7/11, -3/4 Firstly let us make the denominators equal. $\frac{-7}{11} = \frac{-7 \times 4}{11 \times 4} = \frac{-28}{44} \frac{-3}{4} = \frac{-3 \times 11}{4 \times 11} = \frac{-33}{44}$ Now the denominators are equal, we shall check whose numerator is greater. -28 > -33.

∴ -7/11 > -3/4

PRACTICE SET 1.3

PAGE NO: 04

1. Write the following rational numbers in decimal form.

	18	(2) 9	-103	(=) 11
(1) $\frac{9}{37}$	(2) $\frac{18}{42}$	(3) $\frac{9}{14}$	(4) $\frac{-103}{5}$	$(5) - \frac{11}{13}$

Solution:

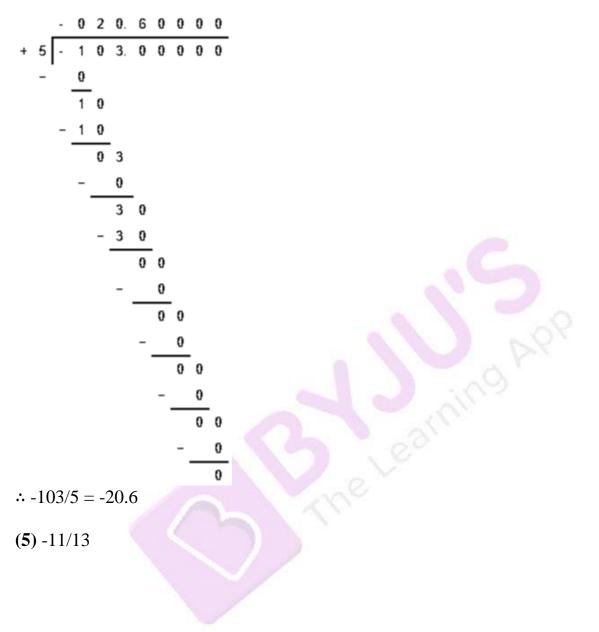
(1) 9/37 Let us divide the fraction using long-division method.

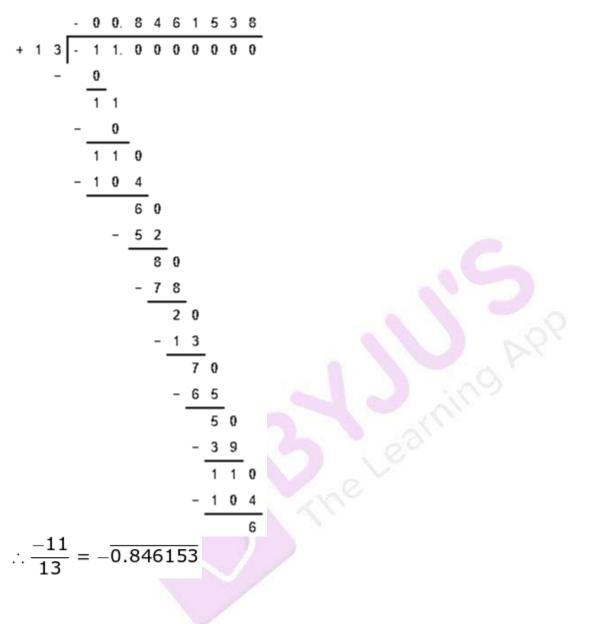
$$\begin{array}{c}
0.24324\\
37\left[9.00000\\
-0\\
90\\
-\frac{74}{160}\\
-\frac{148}{120}\\
-\frac{111}{90}\\
-\frac{74}{160}\\
-\frac{148}{12}\\
\end{array}$$

(2) 18/42

		0	0.	4	2	8	5	7		4	
4	2	1	8.	0	0	0	0	0	0	0	·
	-	0									
		1	8								
	-	_	0	_							
		1	8	0							
	-	1	6	_							
			1	2	0						
		-		8	4						
				3		0					
			-	3	3	_					
						4					
				-	2	_	_				
							0				
					-	2	9				
								6	0		
							-	_	2		
									8		
							-	1	6		N X KO
	1	8	= -	3	_ 7	<u> </u>	12	0		2	
•••	4	2		7	- (J.'	+2	03		T	
(3)) 9	/14	1								

	D.	6	4	2	8	5	7	1	
1	4 9.	0	D	D	D	0	D	0	
	- 0								
	9	0							
	- 8	4							
		6	0						
	-	5	6						
		_	4	0					
		-	2	8	_				
			1	2	0				
		-	1	1	2	_			
					8	0			
				-	7	D			
					1	D	D		
				-	_	9	8		
							2	D	
						-	1	4	
	0							6	
÷.	9 14	= 0	0.6	54	28	35	71		
	14						5		
(4) -103	8/5							
-									





PRACTICE SET 1.4

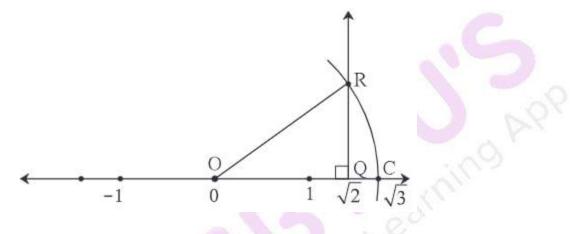
PAGE NO: 05

1. The number $\sqrt{2}$ is shown on a number line. Steps are given to show $\sqrt{3}$ on the number line using $\sqrt{2}$. Fill in the boxes properly and complete the activity.

Activity:

- The point Q on the number line shows the number......
- A line perpendicular to the number line is drawn through the point Q.

Point R is at unit distance from Q on the line.



• Right angled $\triangle ORQ$ is obtained by drawing seg OR.

```
• l(OQ) = \sqrt{2}, l(QR) = 1

\therefore by Pythagoras theorem,

[l(OR)]^2 = [l(OQ)]^2 + [l(QR)]^2

[l(OR)]^2 = [l(OQ)]^2 + [l(QR)]^2

= 2^2 + 2^2 = 4

= 2^2 + 2^2 = 4
```

Draw an arc with center O and radius OR. Mark the point of intersection of the line and the arc as C. The point C shows the number $\sqrt{3}$. Solution:

• The point Q on the number line shows the number $\sqrt{2}$.

• A line perpendicular to the number line is drawn through the point Q. Point R is at unit distance from Q on the line. (Here unit distance means 1 cm or any other unit.)

https://byjus.com

• Right angled $\triangle ORQ$ is obtained by drawing seg OR.

• $l(OQ) = \sqrt{2}$, l(QR) = 1 \therefore By Pythagoras theorem, $[l(OR)]^2 = [l(OQ)]^2 + [l(QR)]^2$ $= (\sqrt{2})^2 + (1)^2 = 2 + 1$ = 3

 $\therefore l(OR) = (\sqrt{3})$

By taking square root on both the sides,

Draw an arc with centre O and radius OR. Mark the point of intersection of the line and the arc as C. The point C shows the number $\sqrt{3}$.

2. Represent $\sqrt{5}$ on the number line. Solution:

Let us draw a number line, mark the center as point O and mark a point Q at number 2 such that it is 2 cm from the center i.e., l(OQ) = 2 units.

Now, draw a line QR perpendicular to the number line through the point Q such that l(QR) = 1 unit.

Draw seg OR.

 ΔOQR formed is a right angled triangle.

By using Pythagoras theorem,

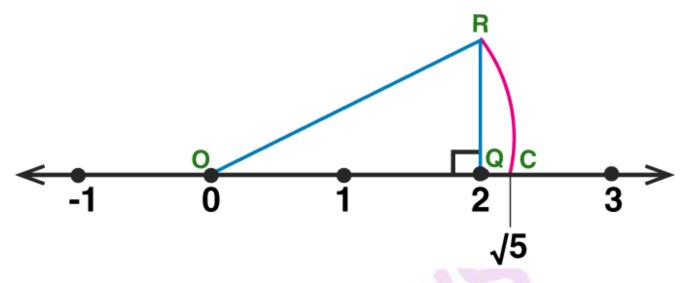
 $[l(OR)]^2 = [l(OQ)]^2 + [l(QR)]^2$

 $= 2^2 + 1^2$ = 4 + 1

= 4 +

= 5

 \therefore l(OR) = $\sqrt{5}$ units



By taking square root on both the sides,

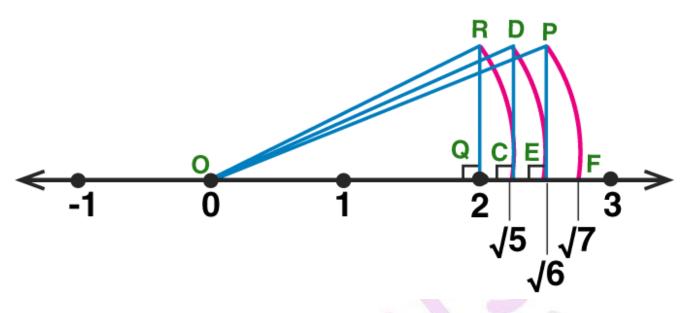
Draw an arc with centre O and radius OR. Mark the point of intersection of the number line and arc as C. The point C shows the number $\sqrt{5}$.

3. Show the number $\sqrt{7}$ on the number line. Solution:

Let us draw a number line, mark the center as point O and mark a point Q at number 2 such that it is 2 cm from the center i.e., 1(OQ) = 2 units.

Draw a line QR perpendicular to the number line through the point Q such that l(QR) = 1 unit.

Draw seg OR. ΔOQR formed is a right angled triangle. By using Pythagoras theorem, $[l(OR)]^2 = [l(OQ)]^2 + [l(QR)]^2$ $= 2^2 + 1^2$ = 4 + 1 = 5 $\therefore l(OR) = \sqrt{5}$ units



By taking square root on both the sides,

Draw an arc with centre O and radius OR.

Mark the point of intersection of the number line and arc as C. The point C shows the number $\sqrt{5}$.

Similarly, draw a line CD perpendicular to the number line through the point C such that l(CD) = 1 unit.

By using Pythagoras theorem,

 $l(OD) = \sqrt{6}$ units

The point E shows the number $\sqrt{6}$.

Similarly, draw a line EP perpendicular to the number line through the point E such that l(EP) = 1 unit.

By Pythagoras theorem,

 $l(OP) = \sqrt{7}$ units

The point F shows the number $\sqrt{7}$.