

Practice Set 2.1

Page 17

1. In figure 2.5, line RP || line MS and line DK is their transversal. \angle DHP = 85° Find the measures of following angles.

(i) ∠RHD (ii) ∠PHG (iii) ∠HGS (iv) ∠MGK

Solution:

Given RP II MS. DK is the transversal. (i) \angle DHP = 85° $\therefore \angle$ RHD = 180-85 = 95° (ii) \angle PHG = \angle RHD = 95° (iii) \angle HGS = 180-95 = 85° (iv) \angle MGK = \angle HGS = 85°

[Linear pair] [∠RHD and ∠PHG are vertically opposite angles] [∠PHG and ∠HGS are corresponding interior angles] [Vertically opposite angles]

2. In figure 2.6, line p || line q and line *l* and line *m* are transversals. Measures of some angles are shown. Hence find the measures of $\angle a$, $\angle b$, $\angle c$, $\angle d$.

Solution:

Given line p II line q.	
<i>l</i> and <i>m</i> are transversals.	
$\therefore \angle a = 180 - 110 = 70^{\circ}$	[Linear pair]
∠p and 110° are correspondi	ng interior angles.
$\therefore \angle p = 180 \text{-} 110 = 70^{\circ}$	
$\therefore \angle b = \angle p = 70^{\circ}$	[Vertically opposite angles]
line p II line q	
m is the transversal.	
$\therefore c = 115^{\circ}$	[Corresponding angles]
$\angle d + 115 = 180^{\circ}$	[Linear pair]
$\therefore \angle d = 180 - 115 = 65^{\circ}$	
Hence measure of $\angle a$, $\angle b$, \angle	Ic and $\angle d$ are 70°, 70°, 115° and 65° respectively.

3. In figure 2.7, line *l* || line *m* and line *n* || line *p*. Find $\angle a$, $\angle b$, $\angle c$ from the given measure of an angle.

Solution:

From figure, ∠d and 45°	form a linear pair.
$\therefore \angle d = 180-45 = 135^{\circ}$	
$\therefore \angle a = \angle d = 135^{\circ}$	[$\angle d$ and $\angle a$ are alternate interior angles]
$\therefore \angle b = \angle a = 135^{\circ}$	$[\angle$ a and \angle b are Vertically opposite angles]
$\therefore \angle c = \angle a = 135^{\circ}$	$[\angle c \text{ and } \angle a \text{ are alternate interior angles}]$

4* . In figure 2.8, sides of \angle PQR and \angle XYZ are parallel to each other. Prove that, \angle PQR $\cong \angle$ XYZ

Fig. 2.8

Solution: Construction: Produce ray YZ in opposite direction. It meets at point A.

To prove : $\angle PQR \cong \angle XYZ$ Proof: Given XY || PQ XY || PA AY is the transversal. $\therefore \angle XYZ \cong \angle PAY \dots(i)$ AZ || QR PQ is the transversal. $\therefore \angle PAY \cong \angle PQR \dots(ii)$ $\therefore \angle XYZ \cong \angle PQR$ $\therefore \angle PQR \cong \angle XYZ$

[Corresponding angles]

[Corresponding angles] [From (i) and (ii)]

Hence proved.

5. In figure 2.9, line AB || line CD and line PQ is transversal. Measure of one of the angles is given. Hence find the measures of the following angles.

(i) ∠ART (ii) ∠CTQ

(ii) $\angle CTQ$ (iii) $\angle DTQ$

- (iv) ∠PRB

Solution:

Given line AB II line CD. PQ is the transversal. (i) \angle BRT = 105° \angle ART = 180-105 = 75° Hence \angle ART is 75°.

(ii)∠RTD = 75° ∴∠CTQ = 75° Hence ∠CTQ is 75° . $[\angle ART \text{ and } \angle BRT \text{ form linear pair}]$

[Given in figure]

 $[\angle ART \text{ and } \angle RTD \text{ are alternate interior angles}]$ $[\angle RTD \text{ and } \angle CTQ \text{ are vertically opposite angles}]$

(iii) $\therefore \angle DTQ = 180 - \angle CTQ$ $\therefore \angle DTQ = 180 - 75 = 105^{\circ}$ Hence $\angle DTQ$ is 105°. $[\angle DTQ \text{ and } \angle CTQ \text{ form linear pair}]$

(iv)∠PRB = 180-∠BRT ∴∠PRB = 180- $105 = 75^{\circ}$ Hence ∠PRB is 75° .

 $[\angle PRB \text{ and } \angle BRT \text{ form a linear pair}]$

Practice Set 2.2

Page 21

1. In figure 2.18, $y = 108^{\circ}$ and $x = 71^{\circ}$ Are the lines m and n parallel ? Justify ?

Solution:

Given $y = 108^{\circ}$ $x = 71^{\circ}$ If lines m and n are

If lines m and n are parallel, then angles x and y are supplementary.

[Interior angles test]

Here $x+y = 71+108 = 179 \neq 180$ So angles x and y are not supplementary.

Angles x and y fail the interior angle test for parallel lines. Hence m and n are not parallel.

2. In figure 2.19, if $\angle a \cong \angle b$ then prove that line $l \parallel$ line m.

Solution:

Given $\angle a \cong \angle b$ To prove : line *l* II line m. Proof:

 \angle b and \angle x are corresponding angles on line *l* and m where n is the transversal. \therefore line *l* || line m. [Corresponding angle test] Hence proved.

3. In figure 2.20, if $\angle a \cong \angle b$ and $\angle x \cong \angle y$ then prove that line $l \parallel$ line n.

Fig. 2.20

Solution:

Given $\angle a \cong \angle b$ and $\angle x \cong \angle y$ To prove: line 1 II line n Proof: $\angle a \cong \angle b$ [Given] But $\angle a$ and $\angle b$ are corresponding angles formed by a transversal K of line *m* and line *l*. [corresponding angles test] \therefore line *m* || line *l*(i) Also we have, $\angle x\cong \angle y$ $\therefore m \angle x = m \angle y$ But $\angle x$ and $\angle y$ are alternate interior angles formed by a transversal OP of line *m* and line *n*. \therefore line *m* || line *n*.....(ii) [alternate angles test] From (i) and (ii) line $m \parallel$ line l and line $m \parallel$ line n. If two lines are both parallel to a third line, then they are also parallel to each other. \therefore line *l* || line *n* Hence proved.

4. In figure 2.21, if ray BA || ray DE, $\angle C = 50^{\circ}$ and $\angle D = 100^{\circ}$. Find the measure of $\angle ABC$. (Hint : Draw a line passing through point C and parallel to line AB.)

Fig. 2.21

Solution:

Draw a line passing XY through point C and parallel to line AB.

line XY II ray AB Given ray AB II ray DE \therefore line XY II ray DE DC is the transversal. $\angle DCX = \angle CDE = 100^{\circ}$ $\angle DCX = \angle DCB + \angle BCX$ $\therefore 100 = 50 + \angle BCX$ $\angle BCX = 100-50 = 50^{\circ}$ Consider line XY parallel ray AB. BC is the transversal.

[Alternate interior angles] [Angle addition property] $[\angle DCB = 50^{\circ}]$

 \angle BCX+ \angle ABC = 180° $\therefore \angle$ ABC = 180- \angle BCX = 180-50 = 130° Hence \angle ABC is 130°. [Interior angles are supplementary]

5. In figure 2.22, ray AE || ray BD, ray AF is the bisector of ∠EAB and ray BC is the bisector of ∠ABD. Prove that line AF || line BC.

6. A transversal EF of line AB and line CD intersects the lines at point P and Q respectively. Ray PR and ray QS are parallel and bisectors of \angle BPQ and \angle PQC respectively. Prove that line AB || line CD.

Fig. 2.23

Solution:

Given : Ray PR II Ray QS Ray PR is the bisector of $\angle BPQ$. Ray QS is the bisector of \angle PQC. To Prove : Line AB II line CD Proof: Ray PR II Ray QS PQ is the transversal. [Alternate interior angles] $\therefore \angle QPR = \angle PQS....(i)$ $\angle QPR = \frac{1}{2} \angle BPQ....(ii)$ [Ray PR is the bisector of \angle BPQ] $\angle PQS = \frac{1}{2} \angle PQC.....(iii)$ [Ray QS is the bisector of $\angle PQC$] Substitute (ii) and (iii) in (i) $\frac{1}{2} \angle BPQ = \frac{1}{2} \angle PQC$ $\therefore \angle BPQ = \angle PQC$ \angle BPQ and \angle PQC are alternate interior angles on AB and CD when line EF is the transversal. ∴line AB II line CD [Alternate angles test] Hence proved.

Problem Set 2

Page 22

Solution:

The sum of interior angles on the same side of the transversal is 180° . Hence Option C is the answer.

(ii) The number of angles formed by a transversal of two lines is (A) 2 (B) 4 (C) 8 (D) 16

Solution:

The number of angles formed by a transversal of two lines is 8. Hence Option C is the answer.

Solution:

Corresponding angles formed by transversal of two parallel lines are equal in measure. \therefore Measure of corresponding angle is 40°.

Hence Option A is the answer.

(iv) In $\triangle ABC$, $\angle A = 76^{\circ}$, $\angle B = 48^{\circ}$, $\therefore \angle C =$ (A) 66° (B) 56° (C) 124° (D) 28°

Solution:

Sum of angles of a triangle is equal to 180° . Given $\angle A = 76^{\circ}$ and $\angle B = 48^{\circ}$ $\therefore \angle A + \angle B + \angle C = 180^{\circ}$ $76 + 48 + \angle C = 180$ $\angle C = 180 - (76 + 48) = 180 - 124 = 56^{\circ}$ Hence Option B is the answer.

Solution:

The alternate interior angles formed by a transversal of two parallel lines are of equal measure. So measure of other angle is 75° . Hence Option C is the answer.

2* . Ray PQ and ray PR are perpendicular to each other. Points B and A are in the interior and exterior of ∠QPR respectively. Ray PB and ray PA are perpendicular to each other. Draw a figure showing all these

rays and write -

- (i) A pair of complementary angles
- (ii) A pair of supplementary angles.
- (iii) A pair of congruent angles.

Solution:

(i) Two angles are complementary if their sum is equal to 90° Ray PR \perp Ray PQ $\therefore \angle RPQ = 90^{\circ}$ $\angle RPB + \angle BPQ = 90^{\circ}$ [Angle addition property] $\therefore \angle RPB$ and $\angle BPQ$ are a pair of complementary angles.

(ii) Two angles are supplementary if their sum is equal to 180° . Ray PA \perp Ray PB [Given] $\therefore \angle APB = 90^{\circ}$ $\angle APB + \angle RPQ = 90 + 90 = 180^{\circ}$ $\therefore \angle APB$ and $\angle RPQ$ are a pair of supplementary angles.

(iii) Two angles are congruent if they have same measures. $\angle RPQ = \angle APB = 90^{\circ}$ $\therefore \angle RPQ \cong \angle APB$ $\therefore \angle RPQ$ and $\angle APB$ are a pair of congruent angles.

3. Prove that, if a line is perpendicular to one of the two parallel lines, then it is perpendicular to the other line also.

Solution:

Construction:

Draw two parallel lines AB and CD. Draw line XY intersects them at E and F.

Given : Line AB II line CD. Line XY intersects them at E and F respectively. Line XY \perp line AB To prove: Line XY \perp line CD Proof: Given line XY \perp line AB $\therefore \angle XEB = 90^{\circ} \dots$ (i) Line AB II line CD and XY is the transversal. $\therefore \angle XEB = \angle EFD \dots$ (ii) [corresponding angles] $\therefore \angle EFD = 90^{\circ}$ [From (i) and (ii)] \therefore line XY \perp line CD Hence proved.

4. In figure 2.24, measures of some angles are shown. Using the measures find the measures of $\angle x$ and $\angle y$ and hence show that line l || line m

Here $\angle ABD + \angle CDB = 130+50 = 180$ But, $\angle ABD$ and $\angle CDB$ are a pair of interior angles on lines 1 and m when line n is the transversal. \therefore line *l* II line m [Interior angles test] Hence proved.

5. Line AB || line CD || line EF and line QP is their transversal. If y : z = 3 : 7 then find the measure of $\angle x$. (See figure 2.25.)

Solution:

Given y:z = 3:7Let k be a common multiple. \therefore y = 3k z = 7k....(i)Given line AB II line EF. PQ is the transversal. $\therefore \angle x = \angle z$ [Alternate interior angles] $\therefore x = 7k....(ii)$ Given line AB II line CD. PQ is the transversal. $\therefore x+y = 180^{\circ}$ [Interior angles on same side of transversal are supplementary] 7k+3k = 18010k = 180 \Rightarrow k = 180/10 = 18 $\therefore \angle x = 7k$ [From (ii)] $= 7 \times 18 = 126^{\circ}$ Hence measure of $\angle x$ is 126°.

6. In figure 2.26, if line q || line r, line p is their transversal and if a = 80° find the values of f and g.

Solution:

Given line q II line r. Line p is the transversal. $\angle a = 80^{\circ}$ $\therefore \angle c = \angle a = 80^{\circ}$ [a and c are vertically opposite angles] $\angle f + \angle c = 180$ [f and c are interior angles on same side of transversal] $\therefore \angle f = 180 \cdot 80 = 100^{\circ}$ $\angle g + \angle f = 180$ [Linear pair] $\therefore \angle g = 180 \cdot 100 = 80^{\circ}$ Hence measure of f and g are 100° and 80° respectively.

7. In figure 2.27, if line AB || line CF and line BC || line ED then prove that ∠ABC = ∠FDE

Solution:

Given: Line AB II line CF and BC is their transversal. To prove : $\angle ABC = \angle FDE$ Proof: Given line AB II line CF and BC is their transversal.

 $\therefore \angle ABC = \angle DCB \dots (i) \qquad [Alternate interior angles]$ Given line BC II line ED and CD is their transversal. $\therefore \angle DCB = \angle FDE \dots (ii) \qquad [Corresponding angles]$ $\therefore \angle ABC = \angle FDE \qquad [from (i) and (ii)]$ Hence proved.

8. In figure 2.28, line PS is a transversal of parallel line AB and line CD. If Ray QX, ray QY, ray RX, ray RY are angle bisectors, then prove that \Box QXRY is a rectangle.

Solution:

Given PS is a transversal of parallel line AB and CD. Ray QX, ray QY, ray RX, ray RY are angle bisectors. To Prove: QXRY is a rectangle. Proof:

 $\angle XQA = \angle XQR = x^{\circ}...(i)$ [Ray QX bisects ∠AQR] $\angle YQR = \angle YQB = y^{\circ}...(ii)$ [Ray QY bisects \angle BQR] $\angle XRQ = \angle XRC = u^{\circ} \dots$ (iii) [Ray RX bisects ∠CRQ] \angle YRQ = \angle YRD = v° ...(iv) [Ray RY bisects ∠DRQ] line AB II line CD. Line PS is their transversal. $\angle AQR + \angle CRQ = 180^{\circ}$ [Interior angles on same side of transversal] $\angle AQR = \angle XQA + \angle XQR$ [Angle addition property] $\angle CRQ = \angle XRC + \angle XRQ$ [Angle addition property] $\therefore (\angle XQA + \angle XQR) + (\angle XRC + \angle XRQ) = 180^{\circ}$ $(x+x)+(u+u) = 180^{\circ}$ [From (i) and (ii)] $\therefore 2x+2u = 180^{\circ}$ $\therefore 2(x+u) = 180^{\circ}$ \Rightarrow x+u = 90°(v) In $\triangle XQR$ $\angle XQR + \angle XRQ + \angle QXR = 180^{\circ}$ [Angle sum property of triangle] \therefore x+u + \angle QXR = 180° [From (i) and (iii)] $\therefore 90 + \angle QXR = 180^{\circ}$ [From (v)] $\therefore \angle QXR = 180^{\circ}-90^{\circ}$ $\therefore \angle QXR = 90^{\circ} \dots (vi)$ Similarly we can prove that, \therefore y+v = 90°

Hence $\angle QYR = 90^{\circ} \dots (vii)$ Now, $\angle AQR + \angle BQR = 180^{\circ}$ $\angle AQR = \angle XQA + \angle XQR$ $\angle BQR = \angle YQR + \angle YQB$ $\therefore (\angle XQA + \angle XQR) + (\angle YQR + \angle YQB) = 180^{\circ}$

[Linear pair] [Angle addition property] [Angle addition property]

 \therefore (x+x)+(y+y) = 180° [From (i) and (ii)] $\therefore 2x + 2y = 180^{\circ}$ $\therefore 2(x+y) = 180^{\circ}$ $\Rightarrow x+y = 90^{\circ}$ i.e. $\angle XQR + \angle YQR = 90^{\circ}$ [From (i) and (ii)] $\therefore \angle XQY = 90^{\circ} \dots (viii)$ [Angle addition property] Similarly we can prove that, $\angle XRY = 90^{\circ} \dots (ix)$ In $\Box QXRY$ $\angle QXR = \angle QYR = \angle XQY = \angle XRY = 90^{\circ}$ [From (vi), (vii), (viii) and (ix)] \therefore \Box QXRY is a parallelogram with all angles are right angles. Rectangle is a parallelogram in which all angles are right angles. \Box QXRY is a rectangle. Hence proved.