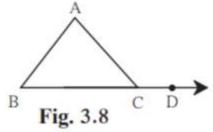


Practice Set 3.1

Page 27

1. In figure 3.8, \angle is an exterior angle of \triangle ABC. \angle B = 40°, \angle A = 70°. Find the measure of \angle ACD.



Solution: Given $\angle B = 40^{\circ}$ $\angle A = 70^{\circ}$ $\therefore \angle ACD = \angle A + \angle B$ [Exterior angle] $\therefore \angle ACD = 70 + 40 = 110^{\circ}$. Hence measure of $\angle ACD$ is 110°.

2. In \triangle PQR, \angle P = 70°, \angle Q = 65° then find \angle R.

Solution:

Given $\angle P = 70^{\circ}$ $\angle Q = 65^{\circ}$ $\angle P + \angle Q + \angle R = 180^{\circ}$ [Angle sum property of triangle] $70+65+\angle R = 180$ $\therefore \angle R = 180-(70+65)$ $= 180-135 = 45^{\circ}$ Hence measure of $\angle R$ is 45° .

3. The measures of angles of a triangle are x°, (x-20)°, (x-40)°. Find the measure of each angle.

Solution:

Given measures of angles of a triangle are x°, $(x-20)^\circ$, $(x-40)^\circ$. The sum of angles of a triangle is equal to 180° . $\therefore x+x-20+x-40 = 180$ $\therefore 3x-60 = 180$ 3x = 180+60 = 240 $x = 240/3 = 80^\circ$ $\therefore x-20 = 80-20 = 60^\circ$ $\therefore x-40 = 80-40 = 40^\circ$ Hence the measures of angles of a triangle are 80° , 60° and 40° .

4. The measure of one of the angles of a triangle is twice the measure of its smallest angle and the measure of the other is thrice the measure of the smallest angle. Find the measures of the three angles.

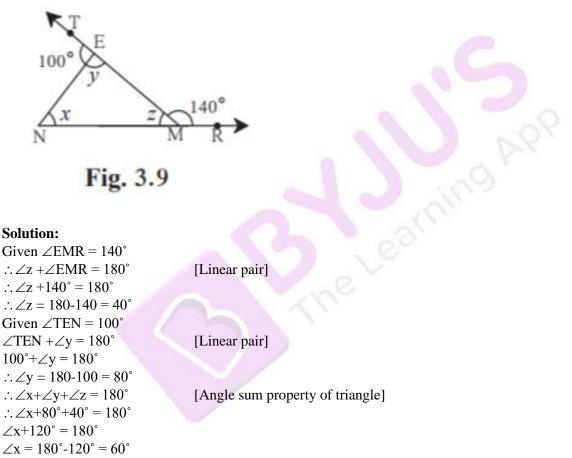
Solution: Let the smallest angle be x.

Then measure of second angle = 2x [Given measure of third angle = 3x. $\therefore x+2x+3x = 180^{\circ}$ [Angle sum $6x = 180^{\circ}$ $x = 180/6 = 30^{\circ}$ $\therefore 2x = 2 \times 30 = 60^{\circ}$ $\therefore 3x = 3 \times 30 = 90^{\circ}$

[Given measure of one angle is twice the smallest angle] [Given measure of other angle is thrice the smallest angle] [Angle sum property of a triangle]

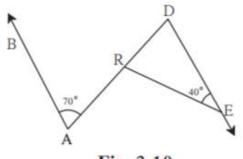
Hence the measures of the angles are 30° , 60° and 90° .

5. In figure 3.9, measures of some angles are given. Using the measures find the values of x, y, z.



Hence the measures of the angles x, y and z are 60° , 80° and 40° respectively.

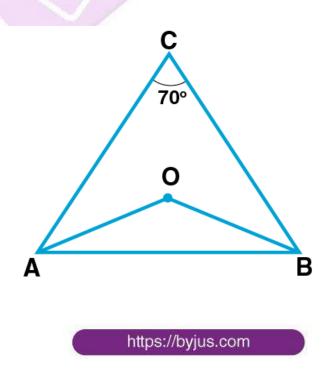
6. In figure 3.10, line AB || line DE. Find the measures of ∠DRE and ∠ARE using given measures of some angles.



Solution: Given AB || DE. \therefore AD is the transversal. Given $\angle BAD = 70^{\circ}$ $\therefore \angle RDE = 70^{\circ}$ [Alternate interior angles] Given $\angle DER = 40^{\circ}$ In \triangle RDE $\angle RDE + \angle DRE + \angle DER = 180^{\circ}$ [Angle Sum Property of triangle] $70^{\circ} + \angle DRE + 40^{\circ} = 180^{\circ}$ $110^{\circ} + \angle DRE = 180^{\circ}$ $\therefore \angle DRE = 180-110 = 70^{\circ}$ $\angle ARE + \angle DRE = 180^{\circ}$ [Linear pair] $\angle ARE+70^{\circ} = 180^{\circ}$ $\angle ARE = 180-70 = 110^{\circ}$ Hence measures of \angle DRE and \angle ARE are 70° and 110° respectively.

7. In \triangle ABC, bisectors of \angle A and \angle B intersect at point O. If \angle C = 70°. Find measure of \angle AOB.

Solution:



Given $\angle C = 70^{\circ}$ $\angle OAB = \frac{1}{2} \angle CAB \dots$ (i) $\angle OBA = \frac{1}{2} \angle CBA \dots$ (ii) In $\triangle ABC$ $\angle CAB + \angle CBA + \angle C = 180^{\circ}$ $\angle CAB + \angle CBA + 70^{\circ} = 180^{\circ}$ $\angle CAB + \angle CBA = 180^{\circ} - 70^{\circ}$ $\angle CAB + \angle CBA = 110$ Multiply both sides by 1/2 $\frac{1}{2} \angle CAB + \frac{1}{2} \angle CBA = 55^{\circ}$ $\therefore \angle OAB + \angle OBA = 55^{\circ} \dots (iii)$ In $\triangle AOB$ $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$ $\angle AOB+55^{\circ} = 180^{\circ}$ $\therefore \angle AOB = 180^{\circ} - 55^{\circ} = 125^{\circ}$ Hence measure of $\angle AOB$ is 125°.

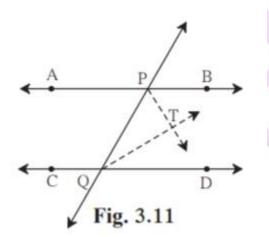
[AO is the bisector of \angle CAB] [BO is the bisector of \angle CBA]

[Angle sum property of triangle]

[From (i) and (ii)]

[Angle sum property of triangle] [From (iii)]

8. In Figure 3.11, line AB || line CD and line PQ is the transversal. Ray PT and ray QT are bisectors of \angle BPQ and \angle PQD respectively. Prove that m \angle PTQ = 90°.

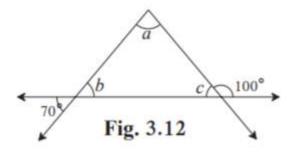


Solution:

Given : AB II CD . PQ is the transversal. To prove: $m \angle PTQ = 90^{\circ}$ Proof: $\angle QPT = \frac{1}{2} \angle BPQ$ (i) [PT is the bisector of $\angle BPQ$] $\angle PQT = \frac{1}{2} \angle PQD$ (ii) [QT is the bisector of $\angle PQD$] Given AB II CD . PQ is the transversal. $\therefore \angle BPQ + \angle PQD = 180^{\circ}$ [Interior angles on same side of transversal are supplementary] Multiply both side by $\frac{1}{2}$. $\frac{1}{2} \angle BPQ + \frac{1}{2} \angle PQD = 90^{\circ}$ $\therefore \angle QPT + \angle PQT = 90^{\circ}$ (iii) [From (i) and (ii)] In $\triangle PTQ$

 $\angle QPT + \angle PQT + \angle PTQ = 180^{\circ}$ $\therefore 90^{\circ} + \angle PTQ = 180^{\circ}$ $\Rightarrow \angle PTQ = 180^{\circ} - 90^{\circ}$ $\Rightarrow \angle PTQ = 90^{\circ}$ Hence proved. [Angle sum property of triangle] [From (iii)]

9. Using the information in figure 3.12, find the measures of $\angle a$, $\angle b$ and $\angle c$.

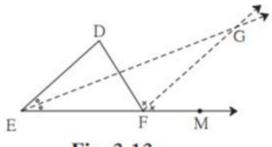


Solution:

 $\angle b = 70^{\circ} \qquad [Vertically opposite angles] \\ \angle c+100^{\circ} = 180^{\circ} \qquad [Linear pair] \\ \therefore \angle c = 180 - 100 = 80^{\circ} \\ \angle a + \angle b + \angle c = 180^{\circ} \qquad [Angle sum property of triangle] \\ \therefore \angle a + 70^{\circ} + 80^{\circ} = 180^{\circ} \\ \therefore \angle a + 150^{\circ} = 180^{\circ} \\ \Rightarrow \angle a = 180 - 150 = 30^{\circ} \\ Hence \angle a = 30^{\circ}, \angle b = 70^{\circ} \text{ and } \angle c = 80^{\circ}.$

10. In figure 3.13, line DE || line GF ray EG and ray FG are bisectors of ∠DEF and ∠DFM respectively. Prove that,
(i) ∠DEG = ½ ∠EDF

(ii) $\mathbf{EF} = \mathbf{FG}$



Solution:

(i)Given DE II GF $\angle DEG = \angle GEF = \frac{1}{2} \angle DEF$(i) $\angle DFG = \angle GFM = \frac{1}{2} \angle DFM$(ii)

[Ray EG bisects ∠DEF] [Ray FG bisects ∠DFM]

ED II FG $\therefore \angle DFG = \angle EDF$ (iii) In $\triangle DEF$ $\angle DFM = \angle DEF + \angle EDF$ $2\angle EDF = \angle DEF + \angle EDF$ $2\angle EDF - \angle EDF = \angle DEF$ $\angle EDF = \angle DEF$ $\therefore \angle EDF = 2\angle DEG$ $\therefore \angle DEG = \frac{1}{2} \angle EDF$ Hence proved.

(ii) Given DE II GF. EG is the transversal. $\therefore \angle DEG = \angle EGF$ (iv) $\therefore \angle EGF = \angle GEF$ $\therefore EF = FG$ Hence proved. [Alternate interior angles]

[Exterior angle of a triangle is equal to the sum of remote interior angles] [From (ii) and (iii)]

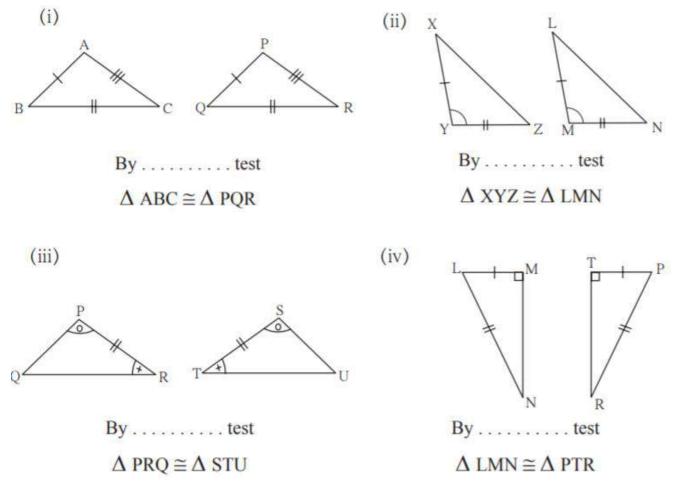
[From (i)]

[Alternate interior angles][From (i) and (iv)][Sides opposite to equal angles of a triangle are equal]

Practice Set 3.2

Page 31

1. In each of the examples given below, a pair of triangles is shown. Equal parts of triangles in each pair are marked with the same signs. Observe the figures and state the test by which the triangles in each pair are congruent.



Solution:

(i)From the figure , we know that the three sides of \triangle ABC are equal to the three sides of \triangle PQR.

 \therefore By SSS test, \triangle ABC $\cong \triangle$ PQR

(ii)From the figure , we know that the two sides and the included angle of $\triangle XYZ$ are equal to the two sides and the included angle of $\triangle LMN$.

 \therefore By SAS test, \triangle XYZ $\cong \triangle$ LMN.

(iii) From the figure , we know that the two angles and the included side of \triangle PRQ are equal to the two angles and the included side of \triangle STU.

 \therefore By ASA test, \triangle PRQ $\cong \triangle$ STU.

(iv) From the figure , we know that the right angles ,hypotenuse and a side of \triangle LMN are equal to the right angle, hypotenuse and a side of \triangle PTR.

 \therefore By Hypotenuse side test, \triangle LMN $\cong \triangle$ PTR.

2. Observe the information shown in pairs of triangles given below. State the test by which the two triangles are congruent. Write the remaining congruent parts of the triangles.

(i)

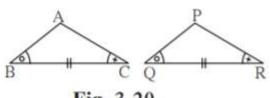
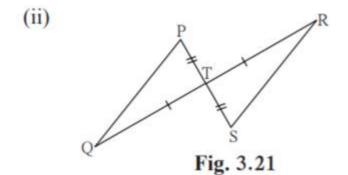


Fig. 3.20

From the information shown in the figure, in $\triangle ABC$ and $\triangle PQR$ seg BC \cong seg QR $\angle ACB \cong \angle PRQ$ $\triangle ABC \cong \triangle PQR$ ______ test $\therefore \angle BAC \cong ________ corresponding angles of congruent triangles.$ $seg AB <math>\cong$ ______ and _____ \cong seg PR {corresponding sides of congruent triangles}

Solution:

From the information shown in the figure, in $\triangle ABC$ and $\triangle PQR$ $\angle ABC \cong \angle PQR$ seg BC \cong seg QR $\angle ACB \cong \angle PRQ$ $\triangle ABC \cong \triangle PQR..... ASA$ test $\therefore \angle BAC \cong \angle QPR$ corresponding angles of congruent triangles. seg AB \cong seg PQ and seg AC \cong seg PR {corresponding sides of congruent triangles}



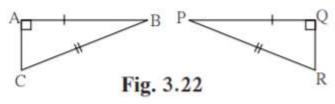
From the information shown in the figure,, In \triangle PTQ and \triangle STR seg PT \cong seg ST \angle PTQ $\cong \angle$ STR....vertically opposite angles seg TQ \cong seg TR

∴ △ PTQ ≅ △ STR..... ____ test
∴ ∠TPQ ≅ _____
and ___ ≅ ∠TRS {corresponding angles of congruent triangles.}
seg PQ ≅ _____corresponding sides of congruent triangles.

Solution:

From the information shown in the figure,, In \triangle PTQ and \triangle STR seg PT \cong seg ST \angle PTQ $\cong \angle$ STR....vertically opposite angles seg TQ \cong seg TR $\therefore \triangle$ PTQ $\cong \triangle$ STR...... SAS test $\therefore \angle$ TPQ $\cong \angle$ TSR and \angle TQP $\cong \angle$ TRS {corresponding angles of congruent triangles.} seg PQ \cong seg SR corresponding sides of congruent triangles.

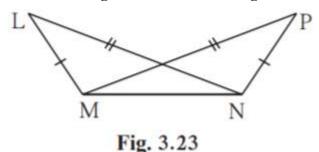
3. From the information shown in the figure, state the test assuring the congruence of \triangle ABC and \triangle PQR. Write the remaining congruent parts of the triangles.



Solution:

From given figure, seg AB \cong seg QP seg BC \cong seg PR $\angle A = \angle Q = 90^{\circ}$ \therefore By Hypotenuse side test, $\triangle ABC \cong \triangle QPR$ \therefore seg AC \cong seg QR [c.s.c.t] $\angle C = \angle R$ [c.a.c.t] $\angle B = \angle P$ [c.a.c.t]

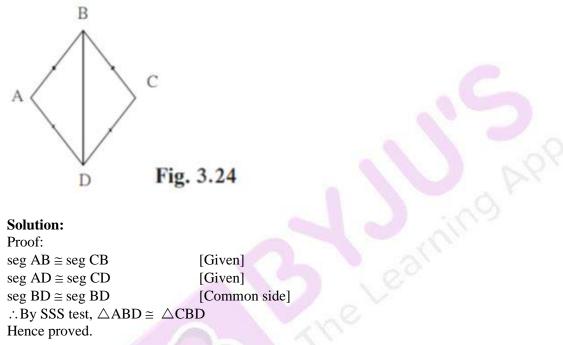
4. As shown in the following figure, in \triangle LMN and \triangle PNM, LM = PN, LN = PM. Write the test which assures the congruence of the two triangles. Write their remaining congruent parts.



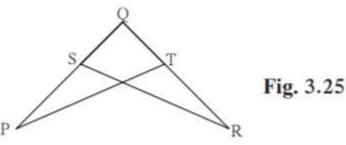
Solution:

Given LM = PN LN = PM $MN \cong NM$ [Common side] $\therefore By SSS test \triangle LMN \cong \triangle PNM$ $\therefore \angle LMN \cong \angle PNM$ [c.a.c.t] $\angle MNL \cong \angle MPP$ [c.a.c.t] $\angle NLM \cong \angle MPN$ [c.a.c.t]

5. In figure 3.24, seg AB \cong seg CB and seg AD \cong seg CD. Prove that \triangle ABD \cong \triangle CBD



6. In figure 3.25, $\angle P \cong \angle R$, seg PQ \cong seg RQ Prove that, \triangle PQT $\cong \triangle$ RQS



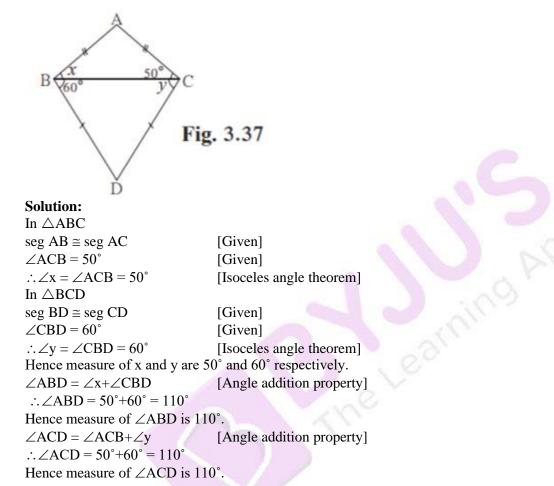
Solution:

 $\angle P \cong \angle R \qquad [Given]$ seg PQ \cong seg RQ [Given] $\angle Q = \angle Q \qquad [common angle]$ \therefore By ASA test, \triangle PQT $\cong \triangle$ RQS Hence proved.

Practice Set 3.3

Page 38

1. Find the values of x and y using the information shown in figure 3.37. Find the measure of $\angle ABD$ and $\angle ACD$.



2. The length of hypotenuse of a right angled triangle is 15. Find the length of median of its hypotenuse.

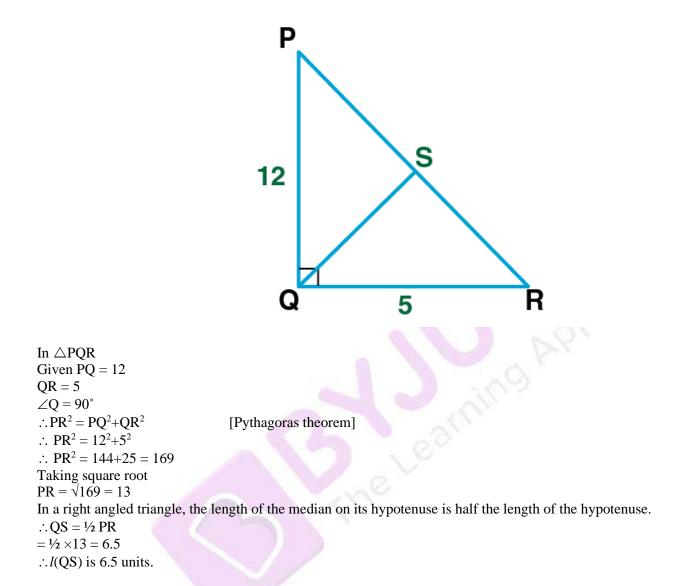
Solution:

In a right angled triangle, the length of the median on its hypotenuse is half the length of the hypotenuse. Given length of hypotenuse = 15 \therefore Length of median on its hypotenuse = 15/2 = 7.5

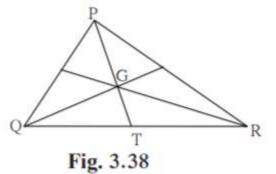
Hence the length of median on its hypotenuse is 7.5 units.

3. In \triangle PQR, \angle Q = 90°, PQ = 12, QR = 5 and QS is a median. Find *l*(QS).

Solution:



4. In figure 3.38, point G is the point of concurrence of the medians of \triangle PQR . If GT = 2.5, find the lengths of PG and PT.



Solution:

Given G is the point of concurrence of the medians of \triangle PQR. The point of concurrence of medians of a triangle divides each median in the ratio 2 : 1.

 $\therefore PG:GT = 2:1$ PG/GT = 2/1PG/2.5 = 2/1Given GT = 2.5] $\Rightarrow PG = 2.5 \times 2 = 5$ PT = PG+GT $\therefore PT = 5+2.5 = 7.5$ Hence length of PG and PT are 5 and 7.5 units respectively.

Practice Set 3.4

Page 43

1. In figure 3.48, point A is on the bisector of $\angle XYZ$. If AX = 2 cm then find AZ.

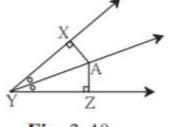
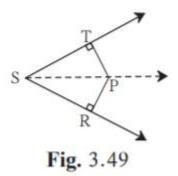


Fig. 3.48

Solution:

Given AX = 2 cmPoint A is on the bisector of $\angle XYZ$. Every point on the bisector of an angle is equidistant from the sides of the angle. $\therefore AZ = AX = 2 \text{cm}$. Hence length of AZ is 2cm.

2. In figure 3.49, $\angle RST = 56^\circ$, seg PT \perp ray ST, seg PR \perp ray SR and seg PR \cong seg PT Find the measure of $\angle RSP$. State the reason for your answer.

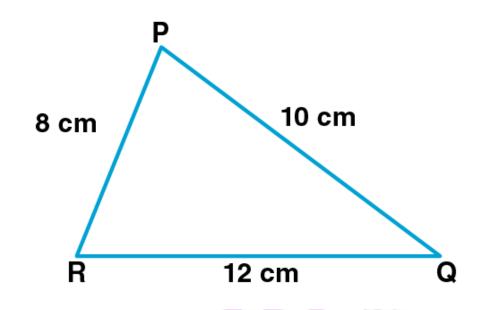


Solution:

Given seg PT \perp ray ST seg PR \perp ray SR seg PR \cong seg PT Any point equidistant from sides of an angle is on the bisector of the angle. \therefore P is a point on the bisector of \angle TSR. \angle RST = 56° [Given] $\therefore \angle$ RSP = $\frac{1}{2} \angle$ RST [Bisector of an angle divides it into two equal angles] $\therefore \angle$ RSP = $\frac{1}{2} \times 56^\circ = 28^\circ$ Hence measure of \angle RSP is 28°.

3. In \triangle PQR, PQ = 10 cm, QR = 12 cm, PR = 8 cm. Find out the greatest and the smallest angle of the triangle.

Solution:



Given PQ = 10 cm, QR = 12 cm, PR = 8 cm.

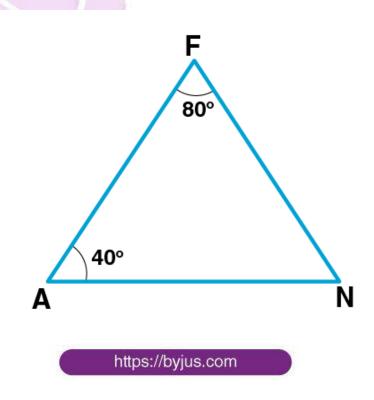
Here QR is the longest side and PR is the shortest side.

The angle opposite to the longest side is the largest angle and the angle opposite to the smallest side is the smallest angle .

 $\therefore \angle RPQ$ is the largest angle and $\angle PQR$ is the smallest angle.

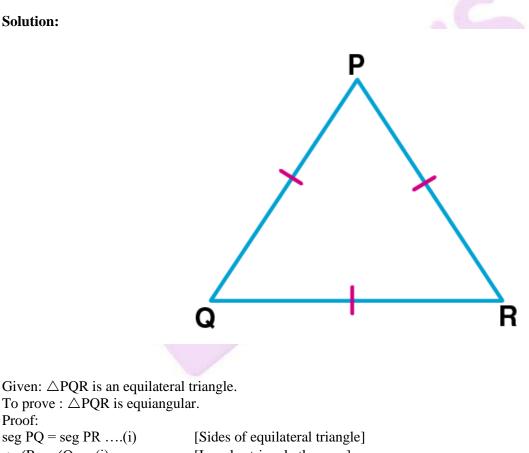
4. In \triangle FAN, \angle F = 80°, \angle A = 40°. Find out the greatest and the smallest side of the triangle. State the reason.

Solution:



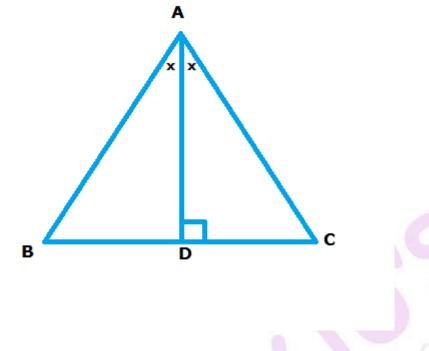
Given $\angle F = 80^{\circ}$ $\angle A = 40^{\circ}$ $\angle F + \angle A + \angle N = 180^{\circ}$ [Angle sum property of triangle] $80^{\circ} + 40^{\circ} + \angle N = 180^{\circ}$ $120^{\circ} + \angle N = 180^{\circ}$ $\therefore \angle N = 180^{\circ} - 120^{\circ} = 60^{\circ}$ The side opposite to the largest angle is the largest side and the side opposite to the smallest angle is the smallest side. Since $80^{\circ} > 60^{\circ} > 40^{\circ}$ $\angle F > \angle N > \angle A$ \therefore AN is the largest side and FN is the smallest side.

5. Prove that an equilateral triangle is equiangular.



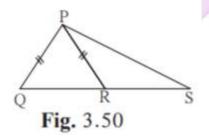
seg PQ = seg PR(i) $\therefore \angle R = \angle Q$(i) seg PQ = seg QR $\therefore \angle R = \angle P$(ii) $\therefore \angle R = \angle Q = \angle P$ Hence $\triangle PQR$ is equiangular. [Sides of equilateral triangle] [Isoceles triangle theorem] [Sides of equilateral triangle] [Isoceles triangle theorem] [From (i) and (ii)]

6. Prove that, if the bisector of $\angle BAC$ of $\triangle ABC$ is perpendicular to side BC, then $\triangle ABC$ is an isosceles triangle. Solution:



Given AD bisects $\angle BAC$. AD $\perp BC$ In $\triangle ADB$ and $\triangle ADC$, $\angle BAD \cong \angle CAD$ [AD bisects $\angle BAC$] AD $\cong AD$ [Common side] $\angle ADB \cong \angle ADC$ [$\because AD \perp BC$] $\therefore By ASA \text{ test}$, $\triangle ADB \cong \triangle ADC$. $\therefore AB \cong AC$ [c.s.c.t] $\therefore \triangle ABC$ is an isosceles triangle. Hence proved.

7. In figure 3.50, if seg PR \cong seg PQ, show that seg PS > seg PQ.

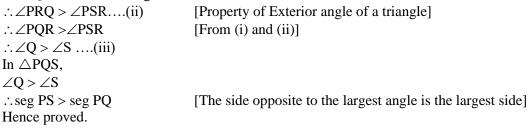


Solution:

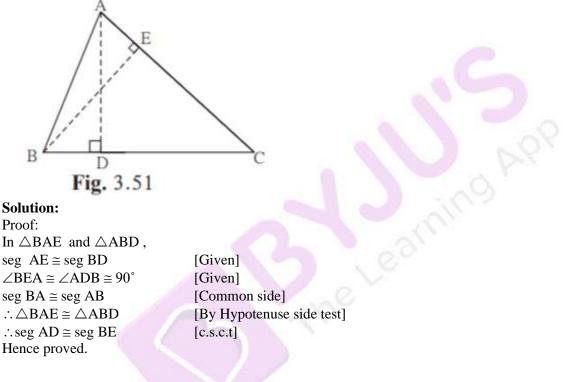
Given: seg PR \cong seg PQ To prove: seg PS > seg PQ Proof: seg PQ \cong seg PR \angle PQR $\cong \angle$ PRQ....(i)

[Given] [Isoceles triangle theorem]

 \angle PRQ is the exterior angle of \triangle PRS.



8. In figure 3.51, in \triangle ABC, seg AD and seg BE are altitudes and AE = BD. Prove that seg AD \cong seg BE.



Practice Set 3.5

Page 47

1. If \triangle XYZ ~ \triangle LMN, write the corresponding angles of the two triangles and also write the ratios of corresponding sides.

Solution:

Given $\triangle XYZ \sim \triangle LMN$ \therefore Corresponding angles are $\angle X \cong \angle L$ $\angle Y \cong \angle M$ $\angle Z \cong \angle N$ Ratio of corresponding sides = XY/LM = YZ/MN = XZ/LN

2. In \triangle XYZ, XY = 4 cm, YZ = 6 cm, XZ = 5 cm, If \triangle XYZ ~ \triangle PQR and PQ = 8 cm then find the lengths of remaining sides of \triangle PQR.

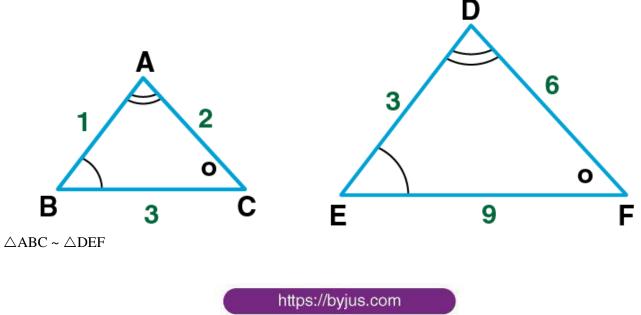
Solution:

Given $\triangle XYZ \sim \triangle PQR$ If two triangles are similar then their corresponding sides are in proportion and corresponding angles are congruent. $\therefore XY/PQ = YZ/QR = XZ/PR$ [Corresponding sides of similar triangles] 4/8 = 6/QR = 5/PR....(i) 4/8 = 6/QR $\therefore 4 \times QR = 8 \times 66$ $\Rightarrow QR = 8 \times 6/4 = 48/4 = 12cm$ Also, 4/8 = 5/PR [From (i)] $\therefore 4 \times PR = 8 \times 5$ $\Rightarrow PR = 8 \times 5/4 = 40/4 = 10cm$ Hence measure of QR and PR are 12cm and 10cm respectively.

3. Draw a sketch of a pair of similar triangles. Label them. Show their corresponding angles by the same signs. Show the lengths of corresponding sides by numbers in proportion.

Solution:

Two similar triangles are shown below.



Problem Set 3

Page 49

Solution:

The sum of any two sides of a triangle is greater than the third side. Here 1.5 + 3.4 = 4.9 < 5. $\therefore 3.4$ cm cannot be length of third side. Hence Option D is the answer.

(ii) In \triangle PQR, If $\angle R > \angle Q$ then (A) QR > PR (B) PQ > PR (C) PQ < PR (D) QR < PR

Solution:

The side opposite to the largest angle is the largest side. \therefore If $\angle R > \angle Q$, then PQ>PR. Hence Option B is the answer.

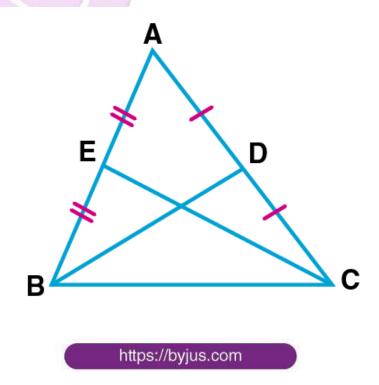
(iii) In \triangle TPQ, \angle T = 65°, \angle P = 95° which of the following is a true statement ? (A) PQ < TP (B) PQ < TQ (C) TQ < TP < PQ (D) PQ < TP < TQ

Solution:

The angle opposite to the largest side is the largest angle. \therefore PQ < TQ Hence Option B is the answer.

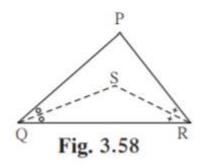
2. \triangle ABC is isosceles in which AB = AC. Seg BD and seg CE are medians. Show that BD = CE.

Solution:



Given: \triangle ABC is an isosceles triangle. AB = ACBD and CE are the medians. To Prove: BD = CEProof: $AD = \frac{1}{2} AC \dots(i)$ [D is the midpoint of AC] $AE = \frac{1}{2} AB \dots$ (ii) [E is the midpoint of AB] Given AB = AC...(iii) $\therefore AE = AD....$ (iv) [From (i), (ii) and (iii)] In \triangle ABD and \triangle ACE seg AB = seg AC[Given] $\angle BAD = \angle CAE$ [Common angle] seg AE = seg AD[From (iv)] \therefore By SAS test \triangle ABD $\cong \triangle$ ACE. \therefore BD = CE [c.s.c.t]Hence proved.

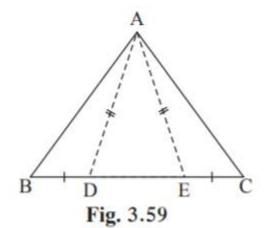
3. In \triangle PQR, If PQ > PR and bisectors of \angle Q and \angle R intersect at S. Show that SQ > SR.



Solution:

Given: In \triangle PQR, PQ > PR and bisectors of \angle Q and \angle R intersect at S. To prove: SQ > SR Proof: \angle SQR = $\frac{1}{2} \angle$ PQR(i) [QS is the bisector of $\angle Q$] [RS is the bisector of $\angle R$] \angle SRQ = $\frac{1}{2} \angle$ PRQ(ii) In \triangle PQR, PQ > PR[Given] [Angle opposite to larger side is larger.] $\therefore \angle R > \angle O$ Multiply both sides by 1/2 $\therefore \frac{1}{2} (\angle R) > \frac{1}{2} (\angle Q)$ $\therefore \angle SRQ > \angle SQR \dots$ (iii) [From (i) and (ii)] In \triangle SQR, from (iii) \therefore SQ > SR [Side opposite to larger angle is larger] Hence proved.

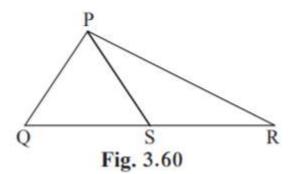
4. In figure 3.59, point D and E are on side BC of \triangle ABC, such that BD = CE and AD = AE. Show that \triangle ABD $\cong \triangle$ ACE.



Solution:

Given : Point D and E are on side BC of \triangle ABC BD = CEAD = AETo Prove: ABD $\cong \triangle$ ACE Proof: In $\triangle ADE$ Given seg AD = seg AE[Isoceles triangle theorem] $\therefore \angle ADE = \angle AED \dots (i)$ $\angle ADB + \angle ADE = 180^{\circ}...(ii)$ [Linear Pair] $\angle AED + \angle AEC = 180^{\circ}....(iii)$ [Linear Pair] Equate (ii) and (iii) $\angle ADB + \angle ADE = \angle AED + \angle AEC....(iv)$ Substitute (i) in (iv) $\angle ADB + \angle AED = \angle AED + \angle AEC$ $\Rightarrow \angle ADB = \angle AEC \dots (v)$ In \triangle ABD and \triangle ACE, seg BD \cong seg CE [Given] $\angle ADB = \angle AEC$ [from(v)] seg AD \cong seg AE [Given] \therefore By SAS test, ABD $\cong \triangle$ ACE. Hence proved.

5. In figure 3.60, point S is any point on side QR of \triangle PQR Prove that : PQ + QR + RP > 2PS.



Solution:

In \triangle PSR, RP+SR > PS ...(i) [Sum of any two sides of a triangle is greater than the third side] In \triangle PQS, PQ+QS > PS ...(ii) [Sum of any two sides of a triangle is greater than the third side] Adding (i) and (ii) \therefore RP+SR+PQ+QS > PS+PS \therefore RP+PQ+QR > 2PS [QS+SR = QR Q-S-R] Re-arranging the terms PQ+QR+RP > 2PS Hence proved.

6. In figure 3.61, bisector of ∠BAC intersects side BC at point D. Prove that AB > BD

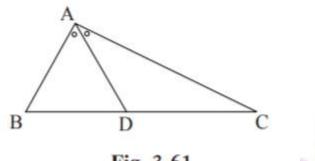


Fig. 3.61

Solution:

Given: Bisector of \angle BAC intersects side BC at point D. To prove : AB>BD Proof: [AD bisects ∠BAC] $\angle DAB = \angle CAD \dots(i)$ \angle ADB is the exterior angle of \triangle ADC. [Property of exterior angle of triangle] Also $\angle ADB > \angle DAB \dots$ (iii) [From (i) and (ii)] In $\triangle ABD$, $\angle ADB > \angle DAB$ [From (iii)] $\therefore AB > BD$ [Side opposite to larger angle is larger] Hence proved.

7.In figure 3.62, seg PT is the bisector of \angle QPR. A line through R intersects ray QP at point S. Prove that PS = PR

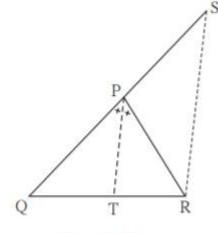


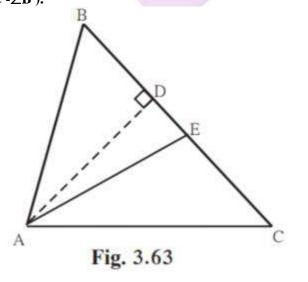
Fig. 3.62

Solution:

Given : seg PT is the bisector of $\angle QPR$ To Prove : PS = PR Proof: PT II SR, PR is the transversal. [From figure] $\therefore \angle RPT = \angle PRS \dots(i)$ PT II SR, PS is the transversal. $\therefore \angle TPQ = \angle PSR \dots$ (ii) Given seg PT is the bisector of \angle QPR. $\therefore \angle TPQ = \angle RPT \dots$ (iii) From (i) and (ii) $\angle PSR = \angle PRS$ \therefore PR = PS \Rightarrow PS = PR Hence proved.

[Alternate interior angles] [From figure] [Corresponding angles]

8. In figure 3.63, seg AD \perp seg BC. seg AE is the bisector of \angle CAB and C - E - D. Prove that \angle DAE = $\frac{1}{2}$ (∠C -∠B).



Solution:

 $\angle CAE = \frac{1}{2} \angle A$(i) In $\triangle DAE$, $\angle DAE + \angle AED + 90^{\circ} = 180^{\circ}$ $\angle DAE = 180^{\circ}-90^{\circ}-\angle AED$ $=90^{\circ}$ - $\angle AED$(ii) In $\triangle ACE$, $\angle ACE + \angle CEA + \angle CAE = 180^{\circ}$ $\angle C + \frac{1}{2} \angle A + \angle AED = 180^{\circ}$ $[AED = AEC \quad Since C-D-E]$ $\angle AED = 180^{\circ} - \angle C - \frac{1}{2} \angle A$(iii) Substitute ∠AED in (ii) $\angle DAE = 90^{\circ} - (180^{\circ} - \angle C - \frac{1}{2} \angle A)$ $= -90^{\circ} + \angle C + \frac{1}{2} \angle A$(iv) In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ Divide both sides by 2. $\frac{1}{2}(\angle A + \angle B + \angle C) = 90^{\circ}$ $\frac{1}{2} \angle A = 90^{\circ} - \frac{1}{2} \angle B - \frac{1}{2} \angle C$...(v) Substitute (v) in (iv) $\angle DAE = -90^{\circ} + \angle C + 90^{\circ} - \frac{1}{2} \angle B - \frac{1}{2} \angle C$ $= \frac{1}{2} \angle C - \frac{1}{2} \angle B$ $= \frac{1}{2} (\angle C - \angle B)$ Hence proved.