

Practice Set 5.1

Page 62

1. Diagonals of a parallelogram WXYZ intersect each other at point O. If $\angle XYZ = 135^{\circ}$ then what is the measure of $\angle XWZ$ and $\angle YZW$? If l(OY) = 5 cm then l(WY) = ?

Solution:

2. In a parallelogram ABCD, If $\angle A = (3x + 12)^\circ$, $\angle B = (2x - 32)^\circ$ then find the value of x and then find the measures of $\angle C$ and $\angle D$.

Solution:

Given $\angle A = (3x+12)^{\circ}$

 $\angle B = (2x-32)^{\circ}$ Opposite angles of a parallelogram are equal. $\therefore \angle C = \angle A$(i) $\Rightarrow \angle C = (3x+12)^{\circ}$ $\angle D = \angle B$(ii) $\angle D = (2x-32)^{\circ}$ In a quadrilateral, the sum of all the angles is equal to 360° . \therefore In \square ABCD, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\therefore 3x + 12 + 2x - 32 + 3x + 12 + 2x - 32 = 360$ 10x-40 = 36010x = 360 + 40 = 400 $\Rightarrow x = 400/10 = 40$ $\therefore \angle A = (3x+12)^{\circ}$ $\therefore \angle A = 3 \times 40 + 12$ $\therefore \angle A = 120 + 12$ $\Rightarrow \angle A = 132^{\circ}$ $\therefore \angle C = 132^{\circ}$ [From (i)] $\angle B = (2x-32)^{\circ}$ $\therefore \angle B = 2 \times 40-32$ $\therefore \angle B = 80-32$ $\Rightarrow \angle B = 48^{\circ}$ $\therefore \angle D = 48^{\circ}$ [From (ii)] Hence measure of x is 40. Also, measure of $\angle C$ and $\angle D$ are 132° and 48° respectively.

3. Perimeter of a parallelogram is 150 cm. One of its sides is greater than the other side by 25 cm. Find the lengths of all sides.

Since opposite sides of a parallelogram are equal, PQ = SR PS = QRGiven perimeter of $\Box PQRS = 150$ cm. $\therefore PQ+QR+SR+PS = 150$ x+x+25+x+x+25 = 150 $\therefore 4x+50 = 150$ $\therefore 4x = 150-50$ $\therefore 4x = 100$ $\Rightarrow x = 100/4 = 25$ $\therefore PQ = SR = x = 25$ cm PS = QR = x+25 = 25+25 = 50 cm Hence the lengths of the sides of the parallelogram are 25 cm, 50 cm, 25 cm and 50 cm.

4. If the ratio of measures of two adjacent angles of a parallelogram is 1 : 2, find the measures of all angles of the parallelogram.

5* . Diagonals of a parallelogram intersect each other at point O. If AO = 5, BO = 12 and AB = 13 then show that $\Box ABCD$ is a rhombus.

Solution:

Solution:

In $\Box PQRS$ Given $\angle P = 110^{\circ}$ $\therefore \angle R = \angle P$ [Opposite angles of a parallelogram are equal] $\therefore \angle R = 110^{\circ}$ In $\Box ABCR$, $\angle R = 110^{\circ}$ $\therefore \angle B = \angle R$ [Opposite angles of a parallelogram are equal]

 $\therefore \angle B = 110^{\circ}$ $\angle A + \angle B = 180^{\circ} \text{ [Adjacent angles of a parallelogram are supplementary]}$ $\angle A + 110^{\circ} = 180^{\circ}$ $\angle A = 180 - 110 = 70^{\circ}$ $\therefore \angle C = \angle A \qquad \text{[Opposite angles of a parallelogram are equal]}$ $\therefore \angle C = 70^{\circ}$ Hence, in $\Box ABCR$, $\angle A$ is 70°, $\angle B$ is 110°, $\angle C$ is 70° and $\angle R$ is 110°.

7. In figure 5.13 □ABCD is a parallelogram. Point E is on the ray AB such that BE = AB then prove that line ED bisects seg BC at point F.

Practice Set 5.2

Page 67

1. In figure 5.22, \Box ABCD is a parallelogram, P and Q are midpoints of side AB and DC respectively, then prove \Box APCQ is a parallelogram

Solution:

Proof: $AP = \frac{1}{2}AB$ [P is the midpoint of AB] $OC = \frac{1}{2}DC$ [Q is the midpoint of DC] Given ABCD is a parallelogram [Opposite sides of a parallelogram are equal] So AB = DC $\therefore \frac{1}{2} AB = \frac{1}{2} DC$ $\Rightarrow AP = QC...(iii)$ [from (i) and (ii)] [Opposite sides of parallelogram are parallel] AB || DC \therefore AP II QC....(iv) \therefore \Box APCQ is a parallelogram. [From (iii) and (iv)] Hence proved.

2. Using opposite angles test for parallelogram, prove that every rectangle is a parallelogram.

Proof:

 $\Box PQRS \text{ is a rectangle.}$ $\angle P = \angle R = 90^{\circ}$ $\angle Q = \angle S = 90^{\circ}$ Here opposite angles of the quadrilateral are congruent.

A quadrilateral is a parallelogram if its pairs of opposite angles are congruent.

Hence rectangle PQRS is a parallelogram. Hence proved.

3. In figure 5.23, G is the point of concurrence of medians of \triangle DEF. Take point H on ray DG such that D-G-H and DG = GH, then prove that \Box GEHF is a parallelogram.

Let ray DH intersect seg EF at point A such that E-A-F. \therefore seg DA is the median of \triangle DEF. \therefore EA = FA(i) Point G is the centroid of \triangle DEF. Since, the centroid divides each median in the ratio 2:1 DG/GA = 2/1 \therefore DG = 2(GA)

 $\begin{array}{ll} \therefore \ GH = 2(GA) & [Given DG = GH] \\ \therefore \ GA + HA = 2(GA) & [G-A-H] \\ \therefore \ HA = 2(GA) - GA \\ \therefore \ HA = GA \dots (ii) \\ A \ quadrilateral is a parallelogram, if its diagonals bisect each other. \\ From (i) \ and (ii), \\ \Box GEHF \ is a \ parallelogram. \\ Hence \ proved. \end{array}$

4. Prove that quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle. (Figure 5.24)

Solution:

Given ABCD is a parallelogram. DC II AB. DA is the transversal. $\therefore \angle A + \angle D = 180^{\circ}$ [Corresponding angles on same side of transversal are supplementary] Multiply both sides by $\frac{1}{2}$ $\frac{1}{2} \angle A + \frac{1}{2} \angle D = 90^{\circ} \dots (i)$ Let $\frac{1}{2} \angle A = e$ and $\frac{1}{2} \angle D = f$ $\frac{1}{2} \angle A = \angle SAD = \angle RAB = e$ [\cdot AS is the angle bisector of $\angle A$.] $\frac{1}{2} \angle D = \angle SDA = \angle SDC = f$ [\therefore DS is the angle bisector of \angle D.] $\therefore \angle SAD + \angle SDA = 90^{\circ}$ [From (i)] e + f = 90 $\therefore \angle ASD = 90^{\circ}$ [Sum of all angles in $\triangle ASD$ is 180°] $\therefore \angle PSR = \angle ASD$ $\therefore \angle PSR = 90^{\circ}$ [Vertically opposite angles]

AD **II** BC. AB is the transversal.

 $\angle A + \angle B = 180^{\circ} [Corresponding angles on same side of transversal are supplementary]$ Multiply both sides by ¹/₂ $\frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ} \dots (ii)$ Let ¹/₂ $\angle B = g$ $\frac{1}{2} \angle A = \angle SAD = \angle RAB = e \qquad [\because AS \text{ is the angle bisector of } \angle A.]$ $\frac{1}{2} \angle B = \angle ABR = \angle CBR = g \qquad [\because BR \text{ is the angle bisector of } \angle B.]$ $\therefore \angle SAD + \angle ABR = 90^{\circ} \qquad \text{from (ii)}$

i.e, $e+g = 90^{\circ}$ In $\triangle ARB$, $\angle ARB + \angle RAB + \angle ABR = 180^{\circ}$ $\angle ARB = \angle SRQ$ $\angle SRQ + e+g = 180$ $\therefore \angle SRQ = 90^{\circ} \ [\because e+g = 90]$

DC II AB. BC is the transversal. $\therefore \angle B + \angle C = 180^{\circ}$ [Corresponding angles on same side of transversal are supplementary] Multiply both sides by 1/2 $\frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^{\circ} \dots (ii)$ $\frac{1}{2} \angle B = \angle QBC = \angle ABR$ [\cdot BQ is the angle bisector of \angle B.] $\frac{1}{2} \angle C = \angle QCB$ [\cdot CQ is the angle bisector of \angle C.] $\therefore \angle QBC + \angle QCB = 90^{\circ}$ [From (ii)] $\therefore \angle BQC = 90^{\circ}$ [Sum of all angles in \triangle BQC is 180°] $\therefore \angle PQR = \angle BQC = 90^{\circ}$ [Vertically opposite angles] $\therefore \angle PQR = 90^{\circ}$

Similarly, we can prove that $QPS = \angle 90^{\circ}$

Here $\angle QRS = \angle PRS = \angle SRQ = \angle QPS = 90^{\circ}$ Hence PQRS is a quadrilateral whose angles are 90° each. \therefore PQRS is a rectangle. Hence proved.

5. In figure 5.25, if points P, Q, R, S are on the sides of parallelogram such that AP = BQ = CR = DS then prove that $\Box PQRS$ is a parallelogram.

Fig. 5.25

Solution:Given : ABCD is a parallelogram.AP = BQ = CR = DSTo prove : PQRS is a parallelogram.Proof:AB = DC(Opposite sides of a parallelogram are equal] $\therefore AP+BP = DR+CR$ $\therefore AP+BP = DR+AP$ (Given AP = CR] $\therefore BP = DR$ \dots (i)

 $\angle B = \angle D$...(ii) [Opposite angles of a parallelogram are equal]

In \triangle BPQ and \triangle DR	S,
$BP \cong DR$	[from (i)]
$BQ \cong DS$	[Given]
$\angle B \cong \angle D$	[from (ii)]
\therefore By SAS test \triangle BPQ $\cong \triangle$ DRS.	
\therefore SR = PQ(iii)	[c.s.c.t]

Similarly we can prove that $\triangle PAS \cong \triangle RCQ$. $\therefore PS = RQ \dots(iv)$

From (iii) and (iv)

□PQRS is a parallelogram [If opposite sides of a quadrilateral are equal, then it is a parallelogram] Hence proved.

Practice Set 5.3

Page 69

1. Diagonals of a rectangle ABCD intersect at point O. If AC = 8 cm then find BO and if $\angle CAD = 35^{\circ}$ then find $\angle ACB$.

Solution:

Given AC = 8cmDiagonals of a rectangle are congruent. $\therefore AC = BD$ $\Rightarrow BD = 8cm$ $BO = \frac{1}{2} BD$ [Diagonals of a rectangle bisect each other] $\therefore BO = \frac{1}{2} \times 8 = 4 cm$ Given $\angle CAD = 35^{\circ}$ $\angle CAD = \angle ACB$ [Alternate interior angles] $\therefore \angle ACB = 35^{\circ}$ Hence measure of BO is 4 cm and $\angle ACB$ is 35°.

2. In a rhombus PQRS if PQ = 7.5 then find QR. If \angle QPS = 75° then find the measure of \angle PQR and \angle SRQ. Solution:

Given PQ = 7.5 \therefore QR = PQ = 7.5 [All sides of rhombus are equal] \angle QPS = 75° $\therefore \angle$ SRQ = \angle QPS [Opposite angles of a rhombus are equal] $\therefore \angle$ SRQ = 75° \angle QPS+ \angle PQR = 180° [Adjacent angles of a rhombus are supplementary]

 $\therefore 75^{\circ} + \angle PQR = 180^{\circ}$ $\therefore \angle PQR = 180 - 75 = 105^{\circ}$

Hence the measure of \angle PQR and \angle SRQ are 105° and 75° respectively.

3. Diagonals of a square IJKL intersects at point M, Find the measures of ∠IMJ, ∠JIK and ∠LJK.

Solution:

4. Diagonals of a rhombus are 20 cm and 21 cm respectively, then find the side of rhombus and its perimeter.

Solution:

Let PQRS be the rhombus. Let PR = 20 cm

OS = 21 cmPO = PR/2[Diagonals of a rhombus bisect each other] $\therefore PO = 20/2 = 10 cm$ [Diagonals of a rhombus bisect each other] QO = QS/2 \therefore QO = 21/2 = 10.5 cm $\angle POO = 90^{\circ}$ [Diagonals of a rhombus are perpendicular bisectors of each other] In $\triangle POQ$, $PQ^2 = PO^2 + QO^2$ [Pythagoras theorem] $\therefore PO^2 = (20/2)^2 + (21/2)^2$ $\therefore PQ = \sqrt{(400+441)/4}$: PO = $\sqrt{(841/4)}$ $\therefore PO = 29/2 = 14.5 \text{ cm}$ Perimeter = $4 \times PQ = 4 \times 14.5 = 58$ cm Hence side and perimeter of the rhombus are 14.5 cm and 58 cm respectively.

5. State with reasons whether the following statements are 'true' or 'false'.

- (i) Every parallelogram is a rhombus.
- (ii) Every rhombus is a rectangle.
- (iii) Every rectangle is a parallelogram.
- (iv) Every square is a rectangle.
- (v) Every square is a rhombus.
- (vi) Every parallelogram is a rectangle.

Solution:

(i) All the sides of a rhombus are congruent, while the opposite sides of a parallelogram are congruent. Hence the statement is false.

(ii) All the angles of a rectangle are congruent, while the opposite angles of a rhombus are congruent. Hence the statement is false.

(iii) The opposite sides of a rectangle are parallel and congruent. All its angles are congruent.

The opposite sides of a parallelogram are parallel and congruent. Its opposite angles are congruent. Hence the statement is true.

(iv) All the sides of a square are parallel and congruent. Also, all its angles are congruent.

The opposite sides of a rectangle are parallel and congruent. Also, all its angles are congruent. Hence the statement is true.

(v) All the sides of a square are congruent. Also, its diagonals are perpendicular bisectors of each other. All the sides of a rhombus are congruent. Also, its diagonals are perpendicular bisectors of each other. Hence the statement is true.

(vi) All the angles of a rectangle are congruent, while the opposite angles of a parallelogram are congruent. Hence the statement is false.

Practice Set 5.4

Page 71

1. In \Box IJKL, side IJ || side KL \angle I = 108° \angle K = 53° then find the measures of \angle J and \angle L.

Solution:

2. In \Box ABCD, side BC || side AD, side AB \cong side DC If \angle A = 72° then find the measures of \angle B, and \angle D.

Solution:

Construction: Draw seg CQ \perp side AD. Draw seg BP \perp side AD.

3. In □ABCD, side BC < side AD (Figure 5.32) side BC || side AD and if side BA ≅ side CD then prove that ∠ABC ≅ ∠DCB.

Solution: Given: side BC < side AD

Practice set 5.5

Page 73

Solution:

Given AC = 9 cm

X and Y are the midpoints of side AB and BC.

The segment joining midpoints of any two sides of a triangle is parallel to the third side and half of it.

 \therefore XY = $\frac{1}{2}$ AC

 $\therefore XY = \frac{1}{2} \times 9 = 4.5 \text{ cm}$

Given AB = 5 cm

Z and Y are the midpoints of side AC and BC.

The segment joining midpoints of any two sides of a triangle is parallel to the third side and half of it.

 \therefore YZ = $\frac{1}{2}$ AB

 $\therefore YZ = \frac{1}{2} \times 5 = 2.5 \text{ cm}$

Given BC = 11 cm

Z and X are the midpoints of side AC and AB.

The segment joining midpoints of any two sides of a triangle is parallel to the third side and half of it.

 \therefore XZ = $\frac{1}{2}$ BC

 \therefore XZ = $\frac{1}{2} \times 11 = 5.5$ cm

Hence the measures of XY, YZ and XZ are 4.5 cm, 2.5 cm and 5.5 cm.

2. In figure 5.39,□PQRS and □MNRL are rectangles. If point M is the midpoint of side PR then prove that,
(i) SL = LR,
(ii) LN = ½ SQ.

Solution:

(i)Given PQRS and MNRL are rectangles. $\angle S = 90^{\circ}$ [Angle of rectangle]

 $/L = 90^{\circ}$ [Angle of rectangle] RN || LM ...(i) [Opposite sides of rectangle MNRL] RN II SP(ii) [Opposite sides of rectangle PQRS] From (i) and (ii) LM II SP(iii) In \triangle PRS, M is the midpoint of PR. [Given] LM II SP [From (iii) ...(iv) [Converse of midpoint theorem] \therefore L is the midpoint of SR \therefore SL = LR Hence proved.

(ii)Similarly for \triangle PQR we can prove that N is the midpoint of QR(v). So in \triangle RSQ, N and L are the midpoints of RQ and SR respectively. [From (iv) and (v)] \therefore LN = ½ SQ [Midpoint theorem] Hence proved.

3. In figure 5.40, \triangle ABC is an equilateral triangle. Points F,D and E are midpoints of side AB, side BC, side AC respectively. Show that \triangle FED is an equilateral triangle.

Solution: Proof: Given ABC is an equilateral triangle. $\therefore AB = AC = BC...(i)$ Points F,D and E are midpoints of side AB, side BC, side AC respectively. D and E are the midpoints of side BC and side AC respectively. \therefore DE = $\frac{1}{2}$ AB....(ii) [Midpoint theorem] D and F are the midpoints of side BC and side AB respectively. \therefore DF = $\frac{1}{2}$ AC....(iii) [Midpoint theorem] F and E are the midpoints of side AB and side AC respectively. \therefore FE = $\frac{1}{2}$ BC....(iv) [Midpoint theorem] Since AB = AC = BC, DE = DF = FE[From (ii),(iii) and (iv)] $\therefore \triangle$ FED is an equilateral triangle. Hence proved.

4. In figure 5.41, seg PD is a median of \triangle PQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that PM/PR = 1/3 . [Hint : draw DN || QM.]

Solution:

Given: PD is a median. T is the midpoint of PD. QT intersects PR at M To prove : PM/PR = 1/3Proof: In \triangle PDN, Point T is the midpoint of seg PD Given seg TM II seg DN [DN || OM and O-T-M] [Construction and Q-T-M] \therefore Point M is the midpoint of seg PN. \therefore PM = MN(i) [Converse of midpoint theorem] In $\triangle OMR$, Point D is the midpoint of seg QR and seg DN II seg QM [Construction] \therefore Point N is the midpoint of seg MR. [Converse of midpoint theorem] \therefore MN = NR(ii) \therefore PM = MN = RN(iii) [From (i) and (ii)] Now, PR = PM + MN + RN[P-M-R] [From (iii)] \therefore PR = PM + PM + PM \therefore PR = 3PM PM/PR = 1/3Hence proved.

Problem set 5

Page 73

1. Choose the correct alternative answer and fill in the blanks.

(i) If all pairs of adjacent sides of a quadrilateral are congruent then it is called

(A) rectangle (B) parallelogram (C) trapezium, (D) rhombus

Solution:

If all the pairs of adjacent sides of a quadrilateral are congruent, then it is a rhombus. Hence Option D is the answer.

(ii) If the diagonal of a square is $12\sqrt{2}$ cm then the perimeter of square is (A) 24 cm (B) 24 2 cm (C) 48 cm (D) 48 2 cm

Solution:

Hence Option C is the answer.

(iii) If opposite angles of a rhombus are $(2x)^{\circ}$ and $(3x - 40)^{\circ}$ then value of x is ... (A) 100 ° (B) 80 ° (C) 160 ° (D) 40

Solution: 2x = 3x-40 [Opposite angles of rhombus are equal] 2x-3x = -40 $\therefore x = 40^{\circ}$

Hence Option D is the answer.

2. Adjacent sides of a rectangle are 7 cm and 24 cm. Find the length of its diagonal.

Solution:

Given PQ = 24 cm QR = 7 cm In \triangle PQR, $\angle Q = 90^{\circ}$ [Angle in a rectangle] PR² = PQ²+QR² [Pythagoras theorem] PR² = 24²+7² PR² = 576+49 PR² = 625 Taking square root on both sides, PR = 25 Hence the diagonal is 25 cm long.

3. If diagonal of a square is 13 cm then find its side.

Solution:

 $\begin{array}{ll} Given \ SQ = 13 \ cm \\ R = 90^{\circ} & [Each \ angle \ of \ a \ square \ is \ 90^{\circ}] \\ SR = QR & [All \ sides \ of \ a \ square \ are \ equal] \\ In \ \bigtriangleup SRQ \ , \\ SQ^2 = SR^2 + QR^2 \\ SQ^2 = SR^2 + SR^2 & [SR = QR] \\ SQ^2 = 2SR^2 \end{array}$

Taking square root on both sides $SQ = SR \times \sqrt{2}$ $13 = SR \times \sqrt{2}$ $SR = 13/\sqrt{2} = 13 \times \sqrt{2}/(\sqrt{2} \times \sqrt{2})$ $= 13\sqrt{2}/2 = 6.5\sqrt{2}$ cm Hence length of side is $6.5\sqrt{2}$ cm.

4. Ratio of two adjacent sides of a parallelogram is 3 : 4, and its perimeter is 112 cm. Find the length of its each side.

Solution:

5. Diagonals PR and QS of a rhombus PQRS are 20 cm and 48 cm respectively. Find the length of side PQ.

Solution:

Given PR = 20 QS = 48 \therefore QT = QS/2 = 48/2 = 24

[Diagonals of a rhombus bisect each other]

PT = PR/2 = 20/2 = 10 [Diagonals of a rhombus bisect each other] In $\triangle PQT$, $\angle PTQ = 90^{\circ}$ [Diagonals of a rhombus are perpendicular bisectors of each other.] $\therefore PQ^2 = PT^2 + QT^2$ $\therefore PQ^2 = 10^2 + 24^2$ $\therefore PQ^2 = 100 + 576$ $\therefore PQ^2 = 676$ Taking square root on both sides, PQ = 26 Hence measure of side PQ is 26 cm.

6. Diagonals of a rectangle PQRS are intersecting in point M. If $\angle QMR = 50^{\circ}$ then find the measure of $\angle MPS$.

Solution:

Given $\angle QMR = 50^{\circ}$ $\therefore \angle SMP = 50^{\circ}$ PR = SQ ...(i) PM = ½ PR ...(ii) MS = ½ SQ....(iii) $\therefore PM = MS...(iv)$ $\therefore \angle MSP = \angle MPS...(v)$ In $\triangle SMP$, $\angle MSP + \angle MPS + \angle SMP = 180^{\circ}$ $\therefore \angle MPS + \angle MPS + 50^{\circ} = 180^{\circ}$ $2\angle MPS = 180-50 = 130^{\circ}$ $\Rightarrow \angle MPS = 130/2 = 65^{\circ}$ Hence measure of $\angle MPS$ is 65°.

[Vertically opposite angles] [Diagonals of a rectangle are congruent] [Diagonals of a rectangle bisect each other] [Diagonals of a rectangle bisect each other] [From (i) ,(ii) and (iii)] [Isoceles triangle theorem]

[Angle sum property of triangle] [From (i) and (v)]

7. In the adjacent Figure 5.42, if seg AB || seg PQ, seg AB @ seg PQ, seg AC || seg PR, seg AC \cong seg PR then prove that, seg BC || seg QR and seg BC \cong seg QR.

Solution: Given: seg AB II seg PQ, seg AB \cong seg PQ seg AC II seg PR seg AC II seg PR To prove: seg BC II seg QR and seg BC \cong seg QR Proof: In **DABQP** [Given] seg AB II seg PQ seg AB \cong seg PQ [Given] \therefore \Box ABQP is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent] ∴ segAP II segBQ(i) \therefore seg AP \cong seg BQ(ii) [Opposite sides of a parallelogram are congruent] In □ACRP, seg AC II seg PR [Given] seg AC \cong seg PR [Given] \therefore \Box ACRP is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent] ∴seg AP II seg CR ...(iii) [Opposite sides of a parallelogram are congruent] \therefore seg AP \cong seg CR(iv)

In \square BCRQ, seg BQ \cong seg CR $\therefore \square$ BCRQ is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent] \therefore seg BC II seg QR \therefore seg BC \cong seg QR [Opposite sides of a parallelogram are congruent] Hence Proved.

8* . In the Figure 5.43,□ABCD is a trapezium. AB || DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that, PQ || AB and PQ = ½ (AB + DC)

Construction: Join BP and extend it to meet CD produced at R. To prove: PQ II AB and PQ = $\frac{1}{2}$ (AB+DC) Proof: In \triangle ABP and \triangle DRP, $\angle APB = \angle DPR$ [Vertically opposite angles] $\angle PDA = \angle PAB$ [Alternate interior angles] AP = PD[P is the mid point of DA] $\angle APB = \angle DPR$ [Vertically opposite angles] $\angle PDA = \angle PAB$ [Alternate interior angles] AP = PD[P is the mid point of DA]

By ASA test $\triangle ABP \cong \triangle DRP$.


```
\therefore PB = PR
                         [c.s.c.t]
AB = RD
                         [c.s.c.t]
In \triangle BRC,
Given Q is the mid point of BC
P is the mid point of BR
                                       [: PB = PR]
So, by midpoint theorem, PQ II RC
⇒⇒PQ ∥DC
Given AB II DC
So, PQ II AB.
Also, PQ = \frac{1}{2} RC
PQ = \frac{1}{2}(RD+DC)
PQ = \frac{1}{2}(AB+DC)
                                  [::AB = RD]
Hence proved.
```

9. In the adjacent figure 5.44, �ABCD is a trapezium. AB || DC. Points M and N are midpoints of diagonal AC and DB respectively then prove that MN || AB.

Fig. 5.44

Solution:

Given: \Box ABCD is a trapezium. AB || DC. Points M and N are midpoints of diagonals AC and DB respectively. To prove: MN || AB Construction: Join D and M. Extend seg DM to meet seg AB at point E such that A-E-B. Proof: Given seg AB || seg DC seg AC is their transversal. $\therefore \angle$ CAB $\cong \angle$ ACD [Alternate interior angles] $\therefore \angle$ MAE $\cong \angle$ MCD(i) [C-M-A, A-E-B] In \triangle AME and \triangle CMD,

