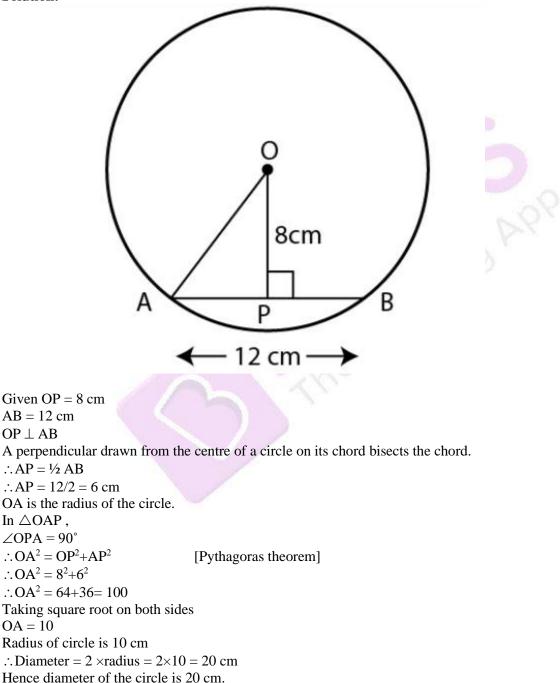


Practice Set 6.1

Page 79

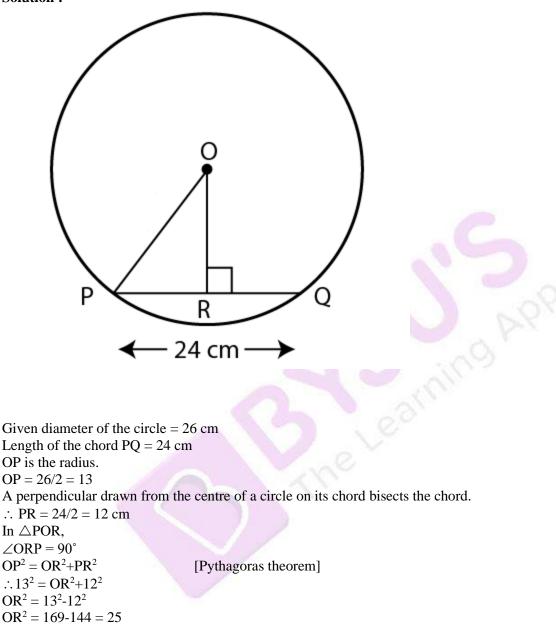
1. Distance of chord AB from the centre of a circle is 8 cm. Length of the chord AB is 12 cm. Find the diameter of the circle.

Solution:



2. Diameter of a circle is 26 cm and length of a chord of the circle is 24 cm. Find the distance of the chord from the centre.

Solution :



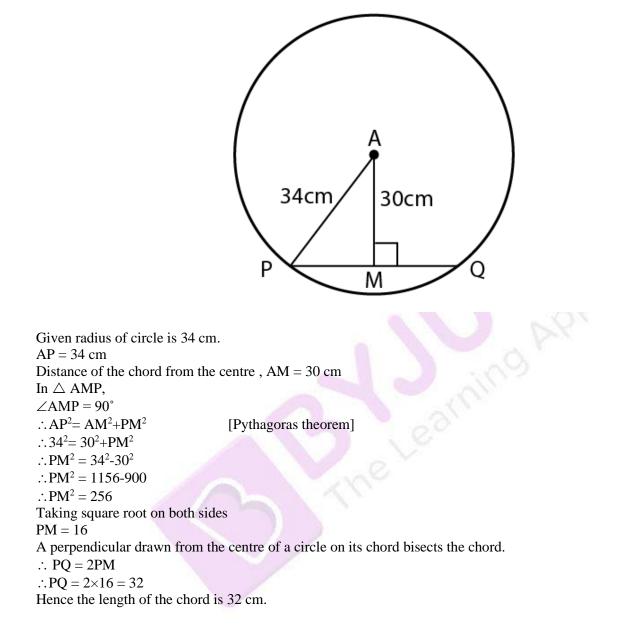
Taking square root on both sides,

OR = 5

Hence distance of the chord from the centre is 5 cm.

3. Radius of a circle is 34 cm and the distance of the chord from the centre is 30 cm, find the length of the chord.

Solution



4. Radius of a circle with centre O is 41 units. Length of a chord PQ is 80 units, find the distance of the chord from the centre of the circle. Solution:

in'i Ρ 0 M - 80 units → Given radius of the circle, OP = 41Length of the chord, PQ = 80A perpendicular drawn from the centre of a circle on its chord bisects the chord. \therefore PM = PQ/2 \therefore PM = 80/2 = 40 In $\triangle OMP$, $\angle OMP = 90^{\circ}$ $OP^2 = OM^2 + PM^2$ [Pythagoras theorem] $41^2 = OM^2 + 40^2$ $\therefore OM^2 = 41^2 - 40^2$ $\therefore OM^2 = 1681-1600$ $\therefore OM^2 = 81$ Taking square root on both sides OM = 9Hence the distance of the chord from the centre of the circle is 9 units.

5. In figure 6.9, centre of two circles is O. Chord AB of bigger circle intersects the smaller circle in points P and Q. Show that AP = BQ

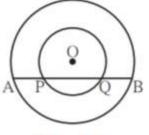
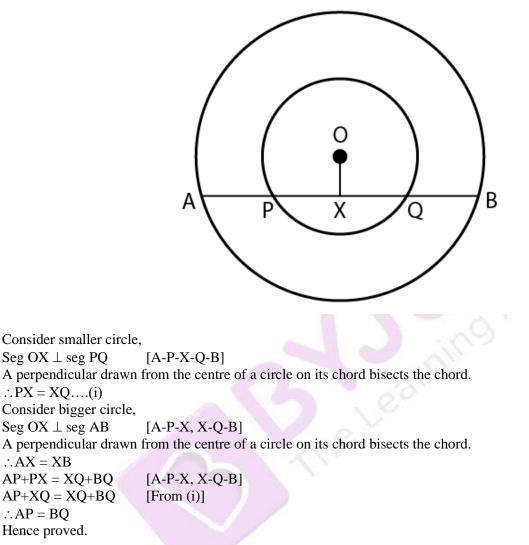


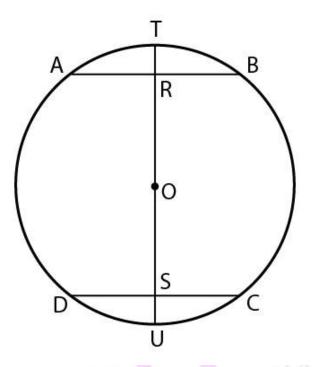
Fig. 6.9

Solution:

Draw OX perpendicular to AB.



6. Prove that, if a diameter of a circle bisects two chords of the circle then those two chords are parallel to each other. Solution:



Let AB and CD are the two chords.

Let PQ be the diameter passing through centre of circle O.

PQ meets AB at R.

PQ meets DC at S.

When a line passing through centre of circle bisects the chord, then it is perpendicular to the chord.

 $\therefore \angle ARO = \angle CSO = 90^{\circ}$

For chord AB and CD, PQ act as a transversal.

Also $\angle ARO = \angle CSO = 90^{\circ}$

So alternate interior angles are equal.

Hence we can say chord AB and CD are parallel.

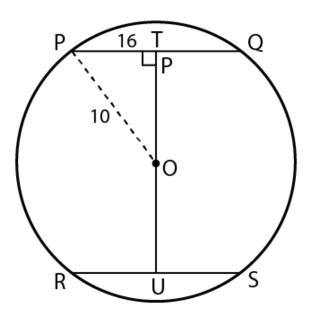
Hence proved.

Practice set 6.2

Page 82

1. Radius of circle is 10 cm. There are two chords of length 16 cm each. What will be the distance of these chords from the centre of the circle ?

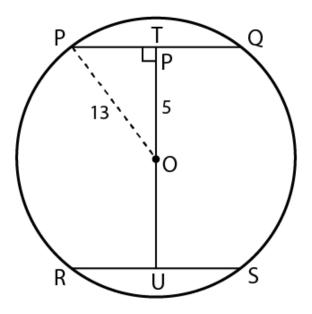
Solution:



Given radius of circle, OP = 10 cm Length of chord, PQ = 16 cm Equal chords of a circle are at equal distance from the centre. \therefore OT = OU(i) [A perpendicular drawn from the centre of a circle on its chord bisects the chord] PT = PO/2PT = 16/2 = 8 cmIn \triangle PTO, $\angle PTO = 90^{\circ}$ $\therefore OP^2 = PT^2 + OT^2$ [Pythagoras theorem] $\therefore 10^2 = 8^2 + OT^2$ $\therefore OT^2 = 10^2 - 8^2$ $\therefore OT^2 = 100-64$ $\therefore OT^2 = 36$ Taking square root on both sides, OT = 6OT = OU[From (i)] Hence the distance of the chords from the centre of circle is 6 cm.

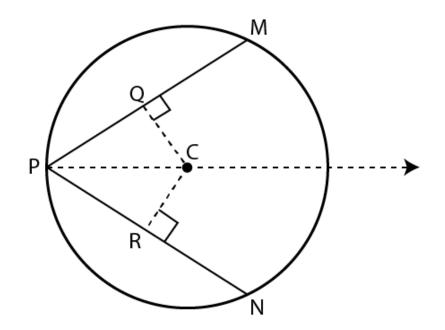
2. In a circle with radius 13 cm, two equal chords are at a distance of 5 cm from the centre. Find the lengths of the chords.

Solution:



Given radius of the circle OP = 13 cm Distance of the chord from the centre, OT = 5 cm The chords equidistant from the centre of a circle are congruent. \therefore PQ = RS....(i) In \triangle PTO, $\angle PTO = 90^{\circ}$ $\therefore OP^2 = PT^2 + OT^2$ [Pythagoras theorem] $\therefore 13^2 = PT^2 + 5^2$ $\therefore PT^2 = 13^2 - 5^2$ $\therefore PT^2 = 169-25$ $\therefore \mathbf{PT}^2 = 144$ Taking square root on both sides, PT = 12PT = PQ/2 [A perpendicular drawn from the centre of a circle on its chord bisects the chord] $\therefore PQ = 2PT$ \therefore PQ = 2×12 = 24 \therefore RS = 24 [From (i)] Hence the lengths of the chords are 24 cm.

3. Seg PM and seg PN are congruent chords of a circle with centre C. Show that the ray PC is the bisector of ∠NPM Solution:



Given $PM \cong PN$ Congruent chords of a circle are equidistant from the centre of the circle. \therefore seg CQ \cong seg CR(i) In \triangle CQP and \triangle CRP , seg CQ \cong seg CR [From (i)] $\angle CQP = \angle CRP = 90^{\circ}$ seg PC \cong seg PC [Common side] ...By hypotenuse side test, $\triangle CQP \cong \triangle CRP$ $\angle QPC \cong \angle RPC$ [c.a.c.t] [N-R-P, M-Q-P] \angle MPC $\cong \angle$ NPC \therefore PC is the bisector of \angle NPM. Hence proved.

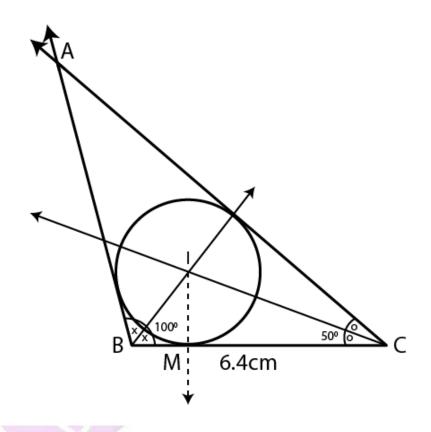
Practice set 6.3

Page 86

1. Construct \triangle ABC such that \angle B =100°, BC = 6.4 cm, \angle C = 50° and construct its incircle.

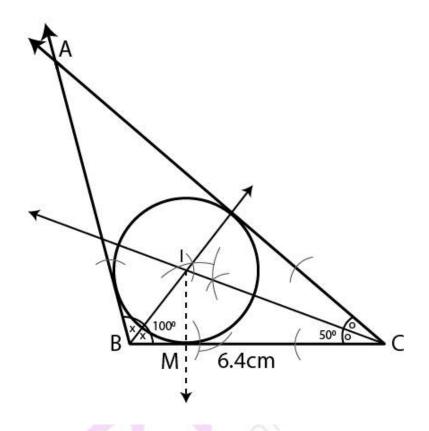
Solution:

Draw a rough figure and show all measures in it.



Steps of construction :

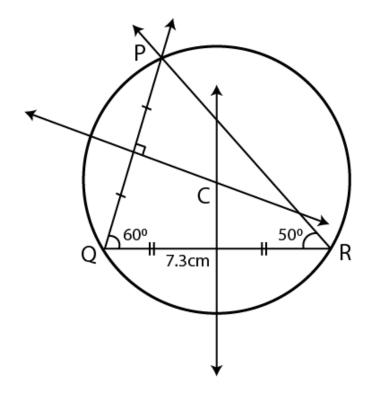
- (1) Draw \triangle ABC of given measures.
- (2) Draw angle bisectors of B and C
- (3) Name the point of intersection of angle bisectors as I.
- (4) Draw a perpendicular IM on side BC. Point M is the foot of the perpendicular.
- (5) With I as centre and IM as radius, draw a circle which touches all sides of triangle.



2. Construct \triangle PQR such that $\angle P = 70^{\circ}$, $\angle R = 50^{\circ}$, QR = 7.3 cm. and construct its circumcircle.

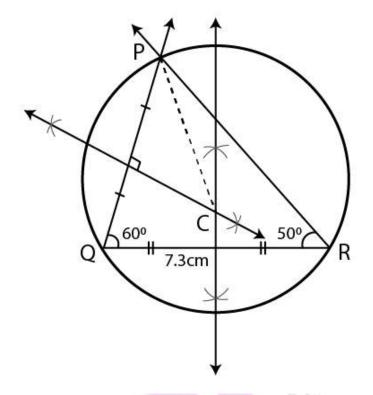
Solution:

Given $\angle P = 70^\circ$, $\angle R = 50^\circ$ $P+Q+R = 180^\circ$ $70+Q+50 = 180^\circ$ $\therefore \angle Q = 180-120 = 60^\circ$ Draw a rough figure and show all measures in it.



Steps of construction :

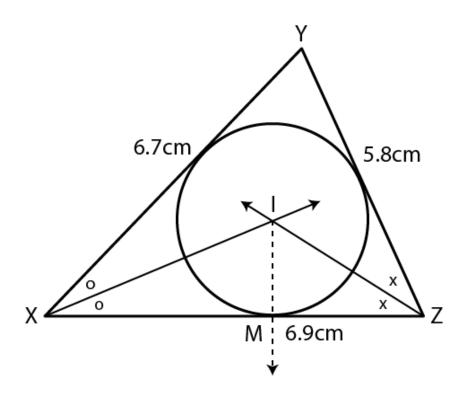
- (1) Draw \triangle PQR of given measures.
- (2) Draw perpendicular bisectors of PQ and QR.
- (3) Name the point of intersection of perpendicular bisectors as C.
- (4) Join seg CP.
- (5) Draw circle with centre C and radius CP.



3. Construct \triangle XYZ such that XY = 6.7 cm, YZ = 5.8 cm, XZ = 6.9 cm. Construct its incircle.

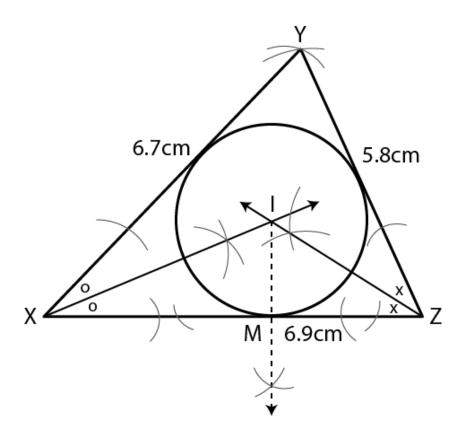
Solution:

Draw a rough figure and show all measures in it.



Steps of construction:

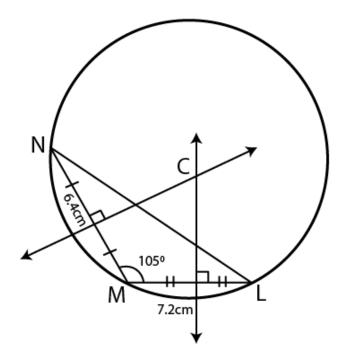
- 1.Construct \triangle XYZ of the given measures.
- 2. Draw the bisectors of $\angle X$ and $\angle Z$. Let these bisectors intersect at point I.
- 3. Draw a perpendicular IM on side XZ. Point M is the foot of the perpendicular.
- 4. With I as centre and IM as radius, draw a circle which touches all the three sides of the triangle.



4. In \triangle LMN, LM = 7.2 cm, \angle M = 105°, MN = 6.4 cm, then draw \triangle LMN and construct its circumcircle.

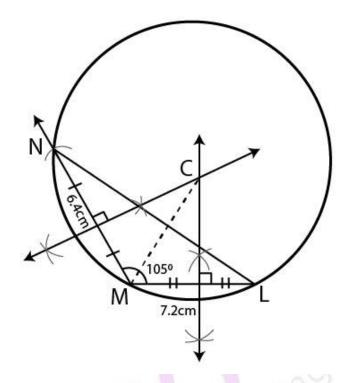
Solution:

Draw a rough figure and show all measures in it.



Steps of construction :

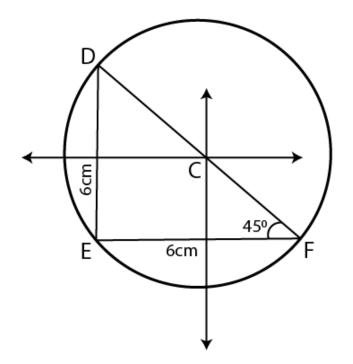
- (1) Draw \triangle LMN of given measures.
- (2) Draw perpendicular bisectors of ML and MN.
- (3) Name the point of intersection of perpendicular bisectors as C.
- (4) Join seg CM.
- (5) Draw circle with centre C and radius CM which touches all the three vertices of the triangle.



5. Construct \triangle DEF such that DE = EF = 6 cm, \angle F = 45° and construct its circumcircle.

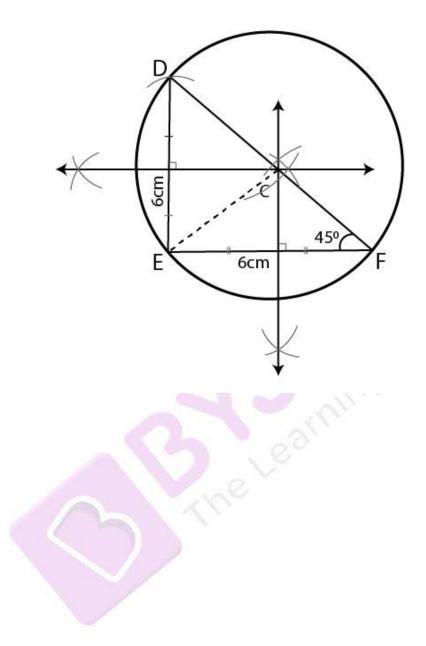
Solution:

Draw a rough figure and show all measures in it.



Steps of construction :

- (1) Draw \triangle DEF of given measures.
- (2) Draw perpendicular bisectors of DE and EF.
- (3) Name the point of intersection of perpendicular bisectors as C.
- (4) Join seg CE.
- (5) Draw circle with centre C and radius CE which touches all the three vertices of the triangle.



Problem Set 6

Page 86

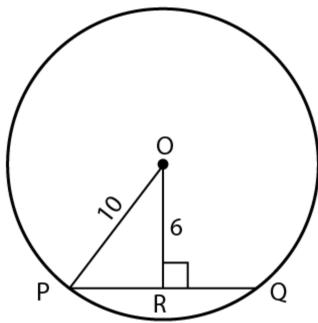
1. Choose correct alternative answer and fill in the blanks.

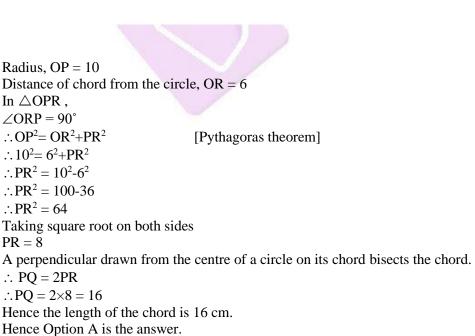
(i) Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm.

Hence the length of the chord is

(A) 16 cm (B) 8 cm (C) 12 cm (D) 32 cm

Solution:





(ii) The point of concurrence of all angle bisectors of a triangle is called the(A) centroid (B) circumcentre (C) incentre (D) orthocentre

Solution:

The point of concurrence of all angle bisectors of a triangle is called the incentre. Hence Option C is the answer.

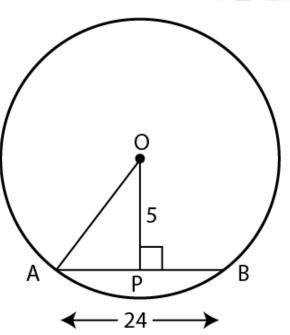
(iii) The circle which passes through all the vertices of a triangle is called(A) circumcircle (B) incircle (C) congruent circle (D) concentric circle

Solution:

The circle which passes through all the vertices of a triangle is called circumcircle. Hence Option A is the answer.

(iv) Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is

(A) 12 cm (B) 13 cm (C) 14 cm (D) 15 cm Solution:



Given length of the chord, AB = 24 cmDistance of the chord from the circle, OP = 5 cm AP = AB/2 [A perpendicular drawn from the centre of a circle on its chord bisects the chord] AP = 24/2 = 12 cmIn $\triangle OAP$, $\angle OPA = 90^{\circ}$ $\therefore OA^2 = OP^2 + AP^2$ [Pythagoras theorem] $\therefore OA^2 = 5^2 + 12^2$ $\therefore OA^2 = 25 + 144$ $\therefore OA^2 = 169$ Taking square root on both sides OA = 13

So radius is 13 cm. Hence Option B is the answer.

(v) The length of the longest chord of the circle with radius 2.9 cm is (A) 3.5 cm (B) 7 cm (C) 10 cm (D) 5.8 cm

Solution:

Diameter is the longest chord of a circle. Radius = 2.9 cm ∴ Diameter = $2 \times 2.9 = 5.8$ Hence Option D is the answer.

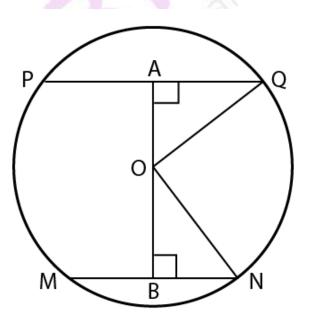
(vi) Radius of a circle with centre O is 4 cm. If *l*(OP) = 4.2 cm, say where point P will lie. (A) on the centre (B) Inside the circle (C) outside the circle(D) on the circle

Solution:

l(OP) > radius So the point P lies outside the circle. Hence Option C is the answer.

(vii) The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is
(A) 2 cm (B) 1 cm (C) 8 cm (D) 7 cm

Solution:



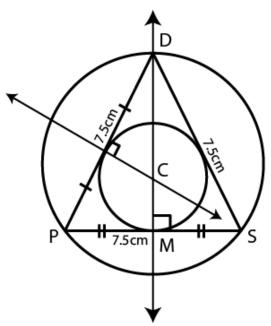
Radius OQ = ON = 5 cmMN = 6 cm \therefore BN = 3 cm PQ = 8 cm,

 $\therefore AQ = 4 \text{ cm}$ In $\triangle OBN$, $ON^2 = OB^2 + BN^2$ $\therefore 5^2 = OB^2 + 3^2$ $\therefore OB^2 = 25 - 9 = 16$ Taking square roots on both sides OB = 4 cmIn $\triangle OAQ$, $OQ^2 = OA^2 + AQ^2$ $5^2 = OA^2 + 4^2$ $\therefore OA^2 = 25 - 16 = 9$ Taking square roots on both sides $\therefore OA = 3$ So AB = OA + OB = 3 + 4 = 7 cmHence Option D is the answer.

2. Construct incircle and circumcircle of an equilateral \triangle DSP with side 7.5 cm. Measure the radii of both the circles and find the ratio of radius of circumcircle to the radius of incircle.

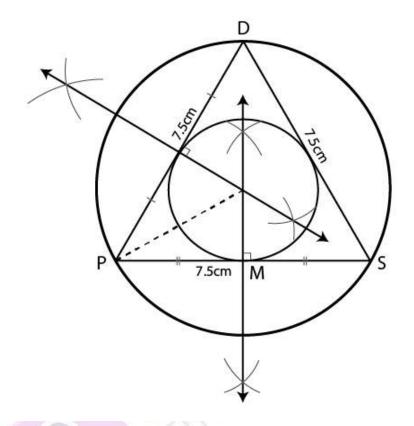
Solution:

Draw a rough figure and show all measures in it.



Steps of construction :

- (1) Draw \triangle DSP of given measures.
- (2) Draw perpendicular bisectors of DP and PS.
- (3) Mark the point of intersection of perpendicular bisectors as C.
- (4) Join seg CP.
- (5) Draw circle with centre C and radius CP which touches all the three vertices of the triangle.
- (6) Draw circle with centre C and radius CM which touches all the three sides of the triangle.

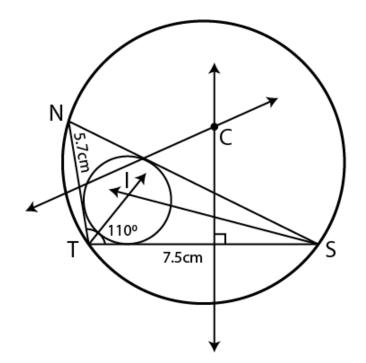


Radius of circumcircle = 4.4 Radius of incircle = 2.2 Radius of circumcircle / Radius of incircle = 4.4/2.2 = 2/1Hence the ratio of radius of circumcircle to the radius of incircle is 2:1.

3. Construct \triangle NTS where NT = 5.7 cm, TS = 7.5 cm and \angle NTS = 110° and draw incircle and circumcircle of it.

Solution:

Draw a rough figure and show all measures in it.



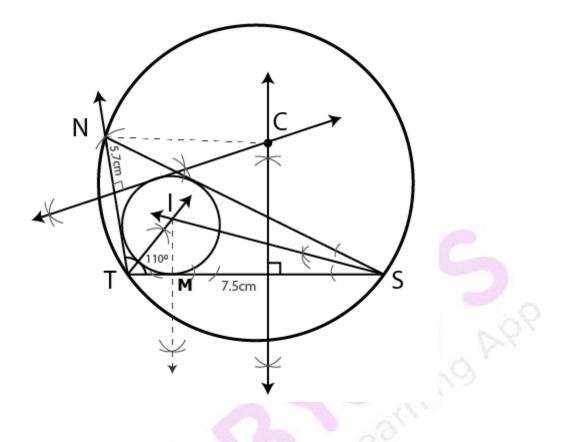
Steps of construction :

For incircle

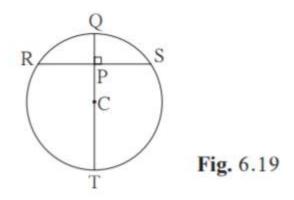
- 1.Construct \triangle NTS of the given measures.
- 2. Draw the bisectors of $\angle T$ and $\angle S$. Let these bisectors intersect at point I.
- 3. Draw a perpendicular IM on side TS. Point M is the foot of the perpendicular.
- 4. With I as centre and IM as radius, draw a circle which touches all the three sides of the triangle.

For circumcircle.

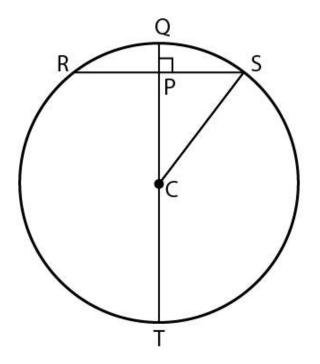
- (1) Draw perpendicular bisectors of NT and TS.
- (2) Mark the point of intersection of perpendicular bisectors as C.
- (3) Join seg CN.
- (4) Draw circle with centre C and radius CN which touches all the three vertices of the triangle.



4. In the figure 6.19, C is the centre of the circle. seg QT is a diameter CT = 13, CP = 5, find the length of chord RS.

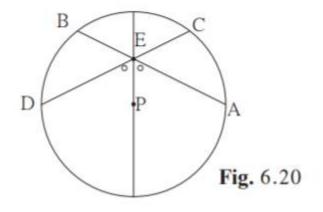


Solution: Join CS. CS is also a radius.



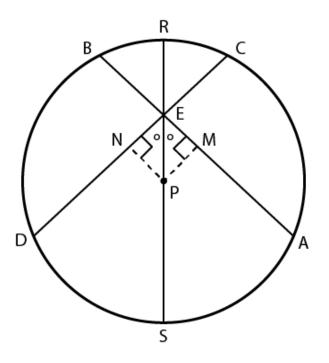
Given QT is the diameter. C is the centre of circle. CT is the radius. CT = 13 \therefore CS = 13 CP = 5In \triangle CPS, $\angle CPS = 90^{\circ}$ $\therefore CS^2 = CP^2 + PS^2$ [Pythagoras theorem] $13^2 = 5^2 + PS^2$ $PS^2 = 13^2 - 5^2$ $PS^2 = 169-25$ $PS^2 = 144$ Taking square root on both sides PS = 12 \therefore RS = 2PS [A perpendicular drawn from the centre of a circle on its chord bisects the chord] $\therefore RS = 2 \times 12 = 24$ Hence the length of the chord is 24 units.

5. In the figure 6.20, P is the centre of the circle. chord AB and chord CD intersect on the diameter at the point E If $\angle AEP \cong \angle DEP$ then prove that AB = CD.



Solution:

Given P is the centre of the circle. $\angle AEP \cong \angle DEP$ Construction: Draw PN \perp chord CD and PM \perp chord AB. To prove : AB = CD Proof:



In \triangle EMP and \triangle ENP, \angle EMP $\cong \angle$ ENP = 90° \angle AEP $\cong \angle$ DEP [Given] EP \cong EP [common side] \therefore By AAS congruency test

 $\triangle EMP \cong \triangle ENP$ $\therefore PM \cong PN \qquad [c.s.c.t]$ i.e, Two chords are at equal distance from the centre of the circle. $<math display="block"> \therefore AB = CD \qquad [The chords equidistant from the centre of a circle are congruent]$ Hence proved.

6. In the figure 6.21, CD is a diameter of the circle with centre O. Diameter CD is perpendicular to chord AB at point E. Show that \triangle ABC is an isosceles triangle.

