EXERCISE 23.12

1. Find the equation of a line passing through the point $(2,3)$ and parallel to the line $3 x-4 y+5=0$.

Solution:

Given:
The equation is parallel to $3 x-4 y+5=0$ and pass through $(2,3)$
The equation of the line parallel to $3 x-4 y+5=0$ is
$3 x-4 y+\lambda=0$,
Where, λ is a constant.
It passes through $(2,3)$.
Substitute the values in above equation, we get
$3(2)-4(3)+\lambda=0$
$6-12+\lambda=0$
$\lambda=6$
Now, substitute the value of $\lambda=6$ in $3 x-4 y+\lambda=0$, we get
$3 x-4 y+6$
\therefore The required line is $3 x-4 y+6=0$.
2. Find the equation of a line passing through ($3,-2$) and perpendicular to the line x $-3 y+5=0$.
Solution:
Given:
The equation is perpendicular to $x-3 y+5=0$ and passes through $(3,-2)$
The equation of the line perpendicular to $x-3 y+5=0$ is
$3 \mathrm{x}+\mathrm{y}+\lambda=0$,
Where, λ is a constant.
It passes through $(3,-2)$.
Substitute the values in above equation, we get
$3(3)+(-2)+\lambda=0$
$9-2+\lambda=0$
$\lambda=-7$
Now, substitute the value of $\lambda=-7$ in $3 x+y+\lambda=0$, we get
$3 \mathrm{x}+\mathrm{y}-7=0$
\therefore The required line is $3 \mathrm{x}+\mathrm{y}-7=0$.
3. Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3,1).
Solution:

Given:
A $(1,3)$ and $B(3,1)$ be the points joining the perpendicular bisector
Let C be the midpoint of AB .
So, coordinates of $\mathrm{C}=[(1+3) / 2,(3+1) / 2]$

$$
=(2,2)
$$

Slope of $\mathrm{AB}=[(1-3) /(3-1)]$

$$
=-1
$$

Slope of the perpendicular bisector of $\mathrm{AB}=1$
Thus, the equation of the perpendicular bisector of $A B$ is given as,
$y-2=1(x-2)$
$y=x$
$x-y=0$
\therefore The required equation is $\mathrm{y}=\mathrm{x}$.
4. Find the equations of the altitudes of a $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(1,4), B(-3,2)$ and $C(-5,-3)$.

Solution:

Given:
The vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(1,4), \mathrm{B}(-3,2)$ and $\mathrm{C}(-5,-3)$.
Now let us find the slopes of $\triangle A B C$.

Slope of $A B=[(2-4) /(-3-1)]$

$$
=1 / 2
$$

Slope of BC $=[(-3-2) /(-5+3)]$

$$
=5 / 2
$$

Slope of CA $=[(4+3) /(1+5)]$

$$
=7 / 6
$$

Thus, we have:

Slope of CF $=-2$
Slope of AD $=-2 / 5$
Slope of BE $=-6 / 7$
Hence,
Equation of CF is:
$y+3=-2(x+5)$
$y+3=-2 x-10$
$2 x+y+13=0$
Equation of AD is:
$y-4=(-2 / 5)(x-1)$
$5 \mathrm{y}-20=-2 \mathrm{x}+2$
$2 x+5 y-22=0$
Equation of BE is:
$y-2=(-6 / 7)(x+3)$
$7 \mathrm{y}-14=-6 \mathrm{x}-18$
$6 x+7 y+4=0$
\therefore The required equations are $2 x+y+13=0,2 x+5 y-22=0,6 x+7 y+4=0$.
5. Find the equation of a line which is perpendicular to the line $\sqrt{ } 3 x-y+5=0$ and which cuts off an intercept of 4 units with the negative direction of y-axis. Solution:

Given:

The equation is perpendicular to $\sqrt{ } 3 x-y+5=0$ equation and cuts off an intercept of 4 units with the negative direction of y-axis.
The line perpendicular to $\sqrt{ } 3 x-y+5=0$ is $x+\sqrt{ } 3 y+\lambda=0$
It is given that the line $x+\sqrt{ } 3 y+\lambda=0$ cuts off an intercept of 4 units with the negative direction of the y-axis.
This means that the line passes through $(0,-4)$.
So,
Let us substitute the values in the equation $x+\sqrt{ } 3 y+\lambda=0$, we get
$0-\sqrt{ } 3(4)+\lambda=0$
$\lambda=4 \sqrt{ } 3$
Now, substitute the value of λ back, we get
$x+\sqrt{ } 3 y+4 \sqrt{ } 3=0$
\therefore The required equation of line is $x+\sqrt{ } 3 y+4 \sqrt{ } 3=0$.

