EXERCISE 23.14

PAGE NO: 23.102

1. Find the values of α so that the point $P\left(\alpha^{2}, \alpha\right)$ lies inside or on the triangle formed by the lines $x-5 y+6=0, x-3 y+2=0$ and $x-2 y-3=0$.

Solution:

Given:
$x-5 y+6=0, x-3 y+2=0$ and $x-2 y-3=0$ forming a triangle and point $P\left(\alpha^{2}, \alpha\right)$ lies inside or on the triangle
Let ABC be the triangle of sides AB, BC and CA whose equations are $\mathrm{x}-5 \mathrm{y}+6=0$, $x-3 y+2=0$ and $x-2 y-3=0$, respectively.
On solving the equations, we get $\mathrm{A}(9,3), \mathrm{B}(4,2)$ and $\mathrm{C}(13,5)$ as the coordinates of the vertices.

It is given that point $\mathrm{P}\left(\alpha^{2}, \alpha\right)$ lies either inside or on the triangle. The three conditions are given below.
(i) A and P must lie on the same side of BC .
(ii) B and P must lie on the same side of AC .
(iii) C and P must lie on the same side of AB .

If A and P lie on the same side of BC , then
$(9-9+2)\left(\alpha^{2}-3 \alpha+2\right) \geq 0$
$(\alpha-2)(\alpha-1) \geq 0$
$\alpha \in(-\infty, 1] \cup[2, \infty) \ldots(1)$
If B and P lie on the same side of $A C$, then
$(4-4-3)\left(\alpha^{2}-2 \alpha-3\right) \geq 0$
$(\alpha-3)(\alpha+1) \leq 0$
$\alpha \in[-1,3] \ldots(2)$

If C and P lie on the same side of AB , then
$(13-25+6)\left(\alpha^{2}-5 \alpha+6\right) \geq 0$
$(\alpha-3)(\alpha-2) \leq 0$
$\alpha \in[2,3] \ldots$ (3)
From equations (1), (2) and (3), we get $\alpha \in[2,3]$
$\therefore \alpha \in[2,3]$
2. Find the values of the parameter a so that the point $(\mathbf{a}, 2)$ is an interior point of the triangle formed by the lines $x+y-4=0,3 x-7 y-8=0$ and $4 x-y-31=0$. Solutions:
Given:
$x+y-4=0,3 x-7 y-8=0$ and $4 x-y-31=0$ forming a triangle and point $(a, 2)$ is an interior point of the triangle
Let ABC be the triangle of sides AB, BC and CA whose equations are $\mathrm{x}+\mathrm{y}-4=0$, $3 x-7 y-8=0$ and $4 x-y-31=0$, respectively.
On solving them, we get $\mathrm{A}(7,-3)$, B $(18 / 5,2 / 5)$ and $\mathrm{C}(209 / 25,61 / 25)$ as the coordinates of the vertices.
Let $P(a, 2)$ be the given point.

It is given that point $\mathrm{P}(\mathrm{a}, 2)$ lies inside the triangle. So, we have the following:
(i) A and P must lie on the same side of BC .
(ii) B and P must lie on the same side of AC .
(iii) C and P must lie on the same side of AB .

Thus, if A and P lie on the same side of BC , then
$21+21-8-3 a-14-8>0$
a $>22 / 3$
If B and P lie on the same side of $A C$, then

$$
\begin{align*}
& 4 \times \frac{18}{5}-\frac{2}{5}-31-4 a-2-31>0 \\
& a<33 / 4 \ldots(2) \tag{2}
\end{align*}
$$

If C and P lie on the same side of $A B$, then

$$
\begin{aligned}
& \frac{209}{25}+\frac{61}{25}-4-a+2-4>0 \\
& \frac{34}{5}-4-a+2-4>0 \\
& a>2 \ldots(3)
\end{aligned}
$$

From (1), (2) and (3), we get:
$\mathrm{A} \in(22 / 3,33 / 4)$
$\therefore \mathrm{A} \in(22 / 3,33 / 4)$
3. Determine whether the point $(-3,2)$ lies inside or outside the triangle whose sides are given by the equations $x+y-4=0,3 x-7 y+8=0,4 x-y-31=0$.

Solution:

Given:
$\mathrm{x}+\mathrm{y}-4=0,3 \mathrm{x}-7 \mathrm{y}+8=0,4 \mathrm{x}-\mathrm{y}-31=0$ forming a triangle and point $(-3,2)$
Let $A B C$ be the triangle of sides $A B, B C$ and $C A$, whose equations $x+y-4=0,3 x-7 y$ $+8=0$ and $4 x-y-31=0$, respectively.
On solving them, we get $\mathrm{A}(7,-3), \mathrm{B}(2,2)$ and $\mathrm{C}(9,5)$ as the coordinates of the vertices. Let $\mathrm{P}(-3,2)$ be the given point.

The given point $\mathrm{P}(-3,2)$ will lie inside the triangle ABC , if (i) A and P lies on the same side of BC
(ii) B and P lies on the same side of AC
(iii) C and P lies on the same side of AB

Thus, if A and P lie on the same side of BC , then
$21+21+8-9-14+8>0$
$50 \times-15>0$
$-750>0$,
This is false
\therefore The point $(-3,2)$ lies outside triangle ABC .

