1. A line passes through a point $A(1,2)$ and makes an angle of 60° with the x-axis and intercepts the line $x+y=6$ at the point P. Find AP.

Solution:

Given:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{A}(1,2), \theta=60^{\circ}$
Let us find the distance AP.
By using the formula,
The equation of the line is given by:

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

Now, substitute the values, we get

$$
\begin{aligned}
& \frac{x-1}{\cos 60 \circ}=\frac{y-2}{\sin 60 \circ}=r \\
& \frac{x-1}{\frac{1}{2}}=\frac{y-2}{\frac{\sqrt{3}}{2}}=r
\end{aligned}
$$

Here, r represents the distance of any point on the line from point $\mathrm{A}(1,2)$.
The coordinate of any point P on this line are $(1+r / 2,2+\sqrt{ } 3 r / 2)$
It is clear that, P lies on the line $x+y=6$
So,

$$
\begin{aligned}
& 1+\frac{r}{2}+2+\frac{\sqrt{3}}{2} r=6 \\
& \frac{\sqrt{3}}{2} r+\frac{r}{2}=3 \\
& r(\sqrt{3}+1)=6 \\
& r=\frac{6}{\sqrt{3}+1}=3(\sqrt{3}-1)
\end{aligned}
$$

\therefore The value of AP is $3(\sqrt{ } 3-1)$
2. If the straight line through the point $P(3,4)$ makes an angle $\pi / 6$ with the x-axis and meets the line $12 x+5 y+10=0$ at Q, find the length $P Q$.

Solution:

Given:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{A}(3,4), \theta=\pi / 6=30^{\circ}$
Let us find the length PQ.
By using the formula,
The equation of the line is given by:

$$
\frac{\mathrm{x}-\mathrm{x}_{1}}{\cos \theta}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\sin \theta}=\mathrm{r}
$$

Now, substitute the values, we get

$$
\begin{aligned}
& \frac{x-3}{\cos 300}=\frac{y-4}{\sin 30 \circ}=r \\
& \frac{x-3}{\frac{\sqrt{3}}{2}}-\frac{y-4}{\frac{1}{2}}=r \\
& x-\sqrt{ } 3 y+4 \sqrt{ } 3-3=0
\end{aligned}
$$

Let $\mathrm{PQ}=\mathrm{r}$
Then, the coordinate of Q are given by

$$
\frac{x-3}{\cos 30^{\circ}}=\frac{y-4}{\sin 30^{\circ}}=r
$$

$$
x=3+\frac{\sqrt{3}}{2} r, y=4+\frac{r}{2}
$$

The coordinate of point Q is $\left(3+\frac{\sqrt{3}}{2} r, 4+\frac{r}{2}\right)$
It is clear that, Q lies on the line $12 \mathrm{x}+5 \mathrm{y}+10=0$
So,
$12\left(3+\frac{\sqrt{3}}{2} r\right)+5\left(4+\frac{r}{2}\right)+10=0$
$66+\frac{12 \sqrt{3}+5}{2} \mathrm{r}=0$
$r=-\frac{132}{5+12 \sqrt{3}}$
$\mathrm{PQ}=|\mathrm{r}|=\frac{132}{5+12 \sqrt{3}}$
\therefore The value of $P Q$ is $\frac{132}{5+12 \sqrt{3}}$
3. A straight line drawn through the point $A(2,1)$ making an angle $\pi / 4$ with positive $x-$ axis intersects another line $x+2 y+1=0$ in the point B. Find length AB.

Solution:

Given:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{A}(2,1), \theta=\pi / 4=45^{\circ}$
Let us find the length AB .
By using the formula,
The equation of the line is given by:

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

Now, substitute the values, we get

$$
\frac{x-2}{\cos 45^{\circ}}=\frac{y-1}{\sin 45^{\circ}}=r
$$

$$
\frac{\mathrm{x}-2}{\frac{1}{\sqrt{2}}}=\frac{\mathrm{y}-1}{\frac{1}{\sqrt{2}}}=\mathrm{r}
$$

$\mathrm{x}-\mathrm{y}-1=0$
Let $A B=r$
Then, the coordinate of B is given by

$$
\begin{aligned}
& \frac{x-2}{\cos 45 \circ}=\frac{y-1}{\sin 45 \circ}=r \\
& x=2+\frac{1}{\sqrt{2}} r, y=1+\frac{r}{\sqrt{2}}
\end{aligned}
$$

The coordinate of point B is $\left(2+\frac{1}{\sqrt{2}} r, 1+\frac{r}{\sqrt{2}}\right)$
It is clear that, B lies on the line $x+2 y+1=0$

$$
\begin{aligned}
& 2+\frac{1}{\sqrt{2}} r+2\left(1+\frac{r}{\sqrt{2}}\right)+1=0 \\
& 5+\frac{3 r}{\sqrt{2}} r=0 \\
& r=\frac{5 \sqrt{2}}{3}
\end{aligned}
$$

\therefore The value of $A B$ is $\frac{5 \sqrt{2}}{3}$
4. A line a drawn through $A(4,-1)$ parallel to the line $3 x-4 y+1=0$. Find the coordinates of the two points on this line which are at a distance of 5 units from A. Solution:
Given:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{A}(4,-1)$
Let us find Coordinates of the two points on this line which are at a distance of 5 units from A.
Given: Line $3 \mathrm{x}-4 \mathrm{y}+1=0$
$4 y=3 x+1$
$y=3 x / 4+1 / 4$
Slope $\tan \theta=3 / 4$
So,
Sin $\theta=3 / 5$
$\operatorname{Cos} \theta=4 / 5$

The equation of the line passing through $\mathrm{A}(4,-1)$ and having slope $3 / 4$ is
By using the formula,
The equation of the line is given by:
$\frac{x-x_{1}}{\cos \theta}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\sin \theta}$
Now, substitute the values, we get
$\frac{x-4}{\frac{4}{5}}=\frac{y+1}{\frac{3}{5}}$
$3 x-4 y=16$
Here, $\mathrm{AP}=\mathrm{r}= \pm 5$
Thus, the coordinates of P are given by
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\cos \theta}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\sin \theta}=\mathrm{r}$
$\frac{\mathrm{x}-4}{\frac{4}{5}}=\frac{\mathrm{y}+1}{\frac{3}{5}}=\mathrm{r}$
$x=\frac{4 r}{5}+4$ and $y=\frac{3 r}{5}-1$
$x=\frac{4(\pm 5)}{5}+4$ and $y=\frac{3(\pm 5)}{5}-1$
$\mathrm{x}= \pm 4+4$ and $\mathrm{y}= \pm 3-1$
$x=8,0$ and $y=2,-4$
\therefore The coordinates of the two points at a distance of 5 units from A are $(8,2)$ and $(0,-4)$.
5. The straight line through $P\left(x_{1}, y_{1}\right)$ inclined at an angle θ with the x-axis meets the line $a x+b y+c=0$ in Q. Find the length of PQ.

Solution:

Given:

The equation of the line that passes through $P\left(x_{1}, y_{1}\right)$ and makes an angle of θ with the $x-$ axis.
Let us find the length of PQ.
We know that,

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}
$$

Let $P Q=r$
Then, the coordinates of Q are given by
By using the formula,
The equation of the line is given by:

$$
\begin{aligned}
& \frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r \\
& x=x_{1}+r \cos \theta, y=y_{1}+r \sin \theta
\end{aligned}
$$

Thus, the coordinates of Q are $\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right)$ It is clear that, Q lies on the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$.
So,

$$
\begin{aligned}
& a\left(x_{1}+r \cos \theta\right)+b\left(y_{1}+r \sin \theta\right)+c=0 \\
& r=P Q=\left|\frac{a x_{1}+b y_{1}+c}{a \cos \theta+b \sin \theta}\right|
\end{aligned}
$$

\therefore The value of PQ is $\left|\frac{a x_{1}+\mathrm{by}_{1}+\mathrm{c}}{\mathrm{a} \cos \theta+\mathrm{b} \sin \theta}\right|$

