

EXERCISE 32.1

PAGE NO: 32.6

1. Calculate the mean deviation about the median of the following observation : (i) 3011, 2780, 3020, 2354, 3541, 4150, 5000

(ii) 38, 70, 48, 34, 42, 55, 63, 46, 54, 44

(iii) 34, 66, 30, 38, 44, 50, 40, 60, 42, 51

(iv) 22, 24, 30, 27, 29, 31, 25, 28, 41, 42

(v) 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

Solution:

(i) 3011, 2780, 3020, 2354, 3541, 4150, 5000

To calculate the Median (M), let us arrange the numbers in ascending order.

Median is the middle number of all the observation.

2354, 2780, 3011, 3020, 3541, 4150, 5000

So, Median = 3020 and n = 7

By using the formula to calculate Mean Deviation,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Xi	$ d_i = x_i - 3020 $
3011	9
2780	240
3020	0
2354	666
3541	521
4150	1130
5000	1980
Total	4546

 $MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$ $= \frac{1}{7} \times 4546$ = 649.42

 \therefore The Mean Deviation is 649.42.

(ii) 38, 70, 48, 34, 42, 55, 63, 46, 54, 44

To calculate the Median (M), let us arrange the numbers in ascending order.

Median is the middle number of all the observation.

34, 38, 42, 44, 46, 48, 54, 55, 63, 70

Here the Number of observations are Even then Median = (46+48)/2 = 47

Median = 47 and n = 10

By using the formula to calculate Mean Deviation,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Xi	$\left d_{i}\right =\left x_{i}-47\right $
38	9
70	23
48	1
34	13
42	5
42 55	8
63	16
46	1
54 44	7
44	3
Total	86

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= 1/10 \times 86$$
$$= 8.6$$

(iii) 34, 66, 30, 38, 44, 50, 40, 60, 42, 51

To calculate the Median (M), let us arrange the numbers in ascending order. Median is the middle number of all the observation.

30, 34, 38, 40, 42, 44, 50, 51, 60, 66

Here the Number of observations are Even then Median = (42+44)/2 = 43Median = 43 and n = 10

By using the formula to calculate Mean Deviation,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Xi	$ d_i = x_i - 43 $
30	13
30 34 38 40	9
38	5
40	3
42	1

 $[\]therefore$ The Mean Deviation is 8.6.

44	1
50	7
51	8
60 66	17
66	23
Total	87

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 87$$
$$= 8.7$$

 \therefore The Mean Deviation is 8.7.

(iv) 22, 24, 30, 27, 29, 31, 25, 28, 41, 42

To calculate the Median (M), let us arrange the numbers in ascending order. Median is the middle number of all the observation.

22, 24, 25, 27, 28, 29, 30, 31, 41, 42

Here the Number of observations are Even then Median = (28+29)/2 = 28.5Median = 28.5 and n = 10

By using the formula to calculate Mean Deviation,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Xi	$ d_i = x_i - 28.5 $	
22	6.5	
24	4.5	
30	1.5	
27	1.5	
29	0.5	
31	2.5	
25	3.5	
28	0.5	
41	12.5	
42	13.5	
Total	47	

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 47$$
$$= 4.7$$

 \therefore The Mean Deviation is 4.7.

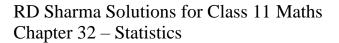
(v) 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

To calculate the Median (M), let us arrange the numbers in ascending order. Median is the middle number of all the observation.

34, 38, 43, 44, 47, 48, 53, 55, 63, 70

Here the Number of observations are Even then Median = (47+48)/2 = 47.5Median = 47.5 and n = 10

By using the formula to calculate Mean Deviation,


$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Xi	$ d_i = x_i - 47.5 $	
38	9.5	-
70	22.5	-
48	0.5	5
34	13.5	. Y
63	15.5	2
42	5.5	
55	7.5	
44	3.5	
53	5.5	
47	0.5	
Total	84	

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= 1/10 \times 84$$
$$= 8.4$$

 \therefore The Mean Deviation is 8.4.

2. Calculate the mean deviation from the mean for the following data :
(i) 4, 7, 8, 9, 10, 12, 13, 17
(ii) 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
(iii) 38, 70, 48, 40, 42, 55, 63, 46, 54, 44
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
(v) 57, 64, 43, 67, 49, 59, 44, 47, 61, 59
Solution:
(i) 4, 7, 8, 9, 10, 12, 13, 17

We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - x|$ So, let 'x' be the mean of the given observation. x = [4 + 7 + 8 + 9 + 10 + 12 + 13 + 17]/8= 80/8= 10

Number of observations, n' = 8

Xi	$ d_i = x_i - 10 $	
4	6	-
7	3	
8	2	1
9	1	
10	0	5
12	2	1.1
13	3	5
17	7	
Total	24	

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{8} \times 24$$
$$= 3$$

 \therefore The Mean Deviation is 3.

(**ii**) 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17 We know that,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Where, $|d_i| = |x_i - x|$ So, let 'x' be the mean of the given observation. x = [13 + 17 + 16 + 14 + 11 + 13 + 10 + 16 + 11 + 18 + 12 + 17]/12= 168/12= 14Number of observations, 'n' = 12

Xi	$ d_i = x_i - 14 $	
13	1	
17	3	
16	2	
14	0	
11	3	
13	1	
10	4	
16	2	
11	3	
18	4	
12	2	
17	3	
Total	28	- C

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{12} \times 28$$
$$= 2.33$$

 \therefore The Mean Deviation is 2.33.

(iii) 38, 70, 48, 40, 42, 55, 63, 46, 54, 44 We know that,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

x = [38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44]/10

= 50

Number of observations, n' = 10

Xi	$\left d_{i}\right =\left x_{i}-50\right $
38	12
70	20
48	2
40	10
42	8

55	5
63	13
46	4
54	4
44	6
Total	84

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= 1/10 \times 84$$
$$= 8.4$$

 \therefore The Mean Deviation is 8.4.

(**iv**) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49 We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

x = [36 + 72 + 46 + 42 + 60 + 45 + 53 + 46 + 51 + 49]/10

= 500/10

= 50

Number of observations, n' = 10

	Xi	$\left d_{i}\right =\left x_{i}-50\right $
	36	14
	72	22
1	46	4
	42	8
	60	10
	45	5
	53	3
	46	4
	51	1
	49	1
	Total	72

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 72$$
$$= 7.2$$

 \therefore The Mean Deviation is 7.2.

(**v**) 57, 64, 43, 67, 49, 59, 44, 47, 61, 59 We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

x = [57 + 64 + 43 + 67 + 49 + 59 + 44 + 47 + 61 + 59]/10

Number of observations, n' = 10

11	10	
	Xi	$ d_i = x_i - 55 $
	57	2
	64	9
	43	12
	67	12
	49	6
	59	4
	59 44	11
	47	8
	61	6
	59	4
	Total	74

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 74$$
$$= 7.4$$

 \therefore The Mean Deviation is 7.4.

3. Calculate the mean deviation of the following income groups of five and seven

members from their medians:

Ι	II
Income in ₹	Income in ₹
4000	3800
4200	4000
4400	4200
4600	4400
4800	4600
	4800
	5800

Solution:

Let us calculate the mean deviation for the first data set. Since the data is arranged in ascending order, 4000, 4200, 4400, 4600, 4800 Median = 4400 Total observations = 5 We know that,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Where, $|d_i| = |x_i - M|$

	Xi	$ d_i = x_i - 4400 $
	4000	400
	4200	200
	4400	0
9	4600	200
	4800	400
ł	Total	1200

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{5} \times 1200$$
$$= 240$$

Let us calculate the mean deviation for the second data set. Since the data is arranged in ascending order, 3800, 4000, 4200, 4400, 4600, 4800, 5800 Median = 4400

Total observations = 7 We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - M|$

Xi	$ d_i = x_i - 4400 $	
3800	600	
4000	400	
4200	200	
4400	0	
4600	200	
4800	400	
5800	1400	
Total	3200	
Total	3200	

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{7} \times 3200$$
$$= 457.14$$

: The Mean Deviation of set 1 is 240 and set 2 is 457.14

4. The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
(i) Find the mean deviation from the median.
(ii) Find the mean deviation from the mean also.

Solution:

(i) Find the mean deviation from the median

Let us arrange the data in ascending order,

15.2, 27.9, 30.2, 32.5, 40.0, 52.3, 52.8, 55.2, 72.9, 79.0 We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - M|$ The number of observations are Even then Median = (40+52.3)/2 = 46.15Median = 46.15 Number of observations, 'n' = 10

Xi	$ d_i = x_i - 46.15 $
40.0	6.15
52.3	6.15
55.2	9.05
72.9	26.75
52.8	6.65
79.0	32.85
32.5	13.65
15.2	30.95
27.9	19.25
30.2	15.95
Total	167.4

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

= 1/10 × 167.4
= 16.74

 \therefore The Mean Deviation is 16.74.

(ii) Find the mean deviation from the mean also. We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

 $\begin{aligned} \mathbf{x} &= [40.0 + 52.3 + 55.2 + 72.9 + 52.8 + 79.0 + 32.5 + 15.2 + 27.9 + 30.2]/10 \\ &= 458/10 \end{aligned}$

Number of observations, n' = 10

Xi	$ d_i = x_i - 45.8 $
40.0	5.8
52.3	6.5
55.2	9.4
72.9	27.1
52.8	7
79.0	33.2
32.5	13.3

15.2	30.6
27.9	17.9
30.2	15.6
Total	166.4

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

= 1/10 × 166.4
= 16.64

 \therefore The Mean Deviation is 16.64

5. In question 1(iii), (iv), (v) find the number of observations lying

between \overline{X} – M.D. and \overline{X} + M.D., where M.D. is the mean deviation from the mean.

Solution:

(**iii**) 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 We know that,

$$MD = rac{1}{n}\sum_{i=1}^n |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

x = [34 + 66 + 30 + 38 + 44 + 50 + 40 + 60 + 42 + 51]/10

$$=455/10$$

Number of observations, n' = 10

Xi	$ d_i = x_i - 45.5 $
34	11.5
66	20.5
30	15.5
38	7.5
44	1.5
50	4.5
40	5.5
60	14.5
42	3.5
51	5.5
Total	90

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 90$$
$$= 9$$

$$\overline{X} - M.D. = 45.5 - 9 = 36.5$$

 $\overline{X} + M.D. = 45.5 + 9 = 54.5$

So, There are total 6 observation between $\overline{X} - M.D.$ and $\overline{X} + M.D.$

(**iv**) 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 We know that,

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$

Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

 $\mathbf{x} = [22 + 24 + 30 + 27 + 29 + 31 + 25 + 28 + 41 + 42]/10$

= 299/10

Number of observations, n' = 10

	Xi	$ d_i = x_i - 29.9 $
2	22	7.9
	24	5.9
0	30	0.1
	27	2.9
Ż	29	0.9
	31	1.1
	25	4.9
	28	1.9
	41	11.1
	42	12.1
	Total	48.8

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= 1/10 \times 48.8$$
$$= 4.88$$

Now

 $\overline{X} - M.D. = 29.9 - 4.88 = 25.02$ $\overline{X} + M.D. = 29.9 + 4.88 = 34.78$

So, There are total 5 observation between $\overline{X} - M.D.$ and $\overline{X} + M.D.$

(v) 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 We know that, $MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$ Where, $|d_i| = |x_i - x|$

So, let 'x' be the mean of the given observation.

x = [38 + 70 + 48 + 34 + 63 + 42 + 55 + 44 + 53 + 47]/10

= 494/10

Number of observations, n' = 10

$ d_i = x_i - 49.4 $
11.4
20.6
1.4
15.4
13.6
7.4
5.6
5.4
3.6
2.4
86.8

$$MD = \frac{1}{n} \sum_{i=1}^{n} |d_i|$$
$$= \frac{1}{10} \times 86.8$$
$$= 8.68$$

Now

 $\overline{X} - M.D. = 49.4 - 8.68 = 40.72$ $\overline{X} + M.D. = 49.4 + 8.68 = 58.08$

So, There are total 6 observation between $\overline{X} - M.D.$ and $\overline{X} + M.D.$