

RD Sharma Solutions for Class 11 Maths Chapter 32 – Statistics

EXERCISE 32.7

PAGE NO: 32.47

1. Two plants A and B of a factory show the following results about the number of workers and the wages paid to them

	Plant A	Plant B
No. of	5000	6000
workers		
Average	₹2500	₹2500
monthly		
wages		
The	81	100
variance of		
distribution		
of wages		

In which plant A or B is there greater variability in individual wages? Solution:

Variation of the distribution of wages in plant A ($\sigma^2 = 18$)

So, Standard deviation of the distribution A (σ – 9)

Similarly, the Variation of the distribution of wages in plant B (σ^2 =100) So, Standard deviation of the distribution B (σ – 10)

And, Average monthly wages in both the plants is 2500,

Since, the plant with a greater value of SD will have more variability in salary. \therefore Plant B has more variability in individual wages than plant A

2. The means and standard deviations of heights and weights of 50 students in a class are as follows:

	Weights	Heights
Mean	63.2 kg	63.2 inch
Standard	5.6 kg	11.5 inch
deviation		

Which shows more variability, heights or weights? Solution:

RD Sharma Solutions for Class 11 Maths Chapter 32 – Statistics

Given: The mean and SD is given of 50 students. Let us find which shows more variability, height and weight. By using the formulas,

Coefficient of variations = $\frac{SD}{Mean} \times 100$ Coefficient of variations in weights = $\frac{SD}{Mean} \times 100$ $\frac{5.6}{63.2} \times 100 = 8.86$ The coefficient of variations in weights = $\frac{SD}{Mean} \times 100$ 11.5

$$\frac{11.5}{63.2} \times 100 = 18.19$$

As results clearly show that coefficient of variations in heights is greater than coefficient of variations in weights.

: Heights will show more variability than weights

3. The coefficient of variation of two distribution are 60% and 70%, and their standard deviations are 21 and 16 respectively. What is their arithmetic means? Solution:

Here, the Coefficient of variation for the first distribution is 60 And, Coefficient of variation for the first distribution is 70 SD (σ_1) =21 and SD (σ_2) = 16

We know that, Coefficients of variation $= \frac{SD}{Mean} \times 100$ So, Mean, $\overline{X} = \frac{SD}{CV} \times 100$

For first distribution

$$\overline{\mathbf{X}} = \frac{21}{60} \times 100$$
$$= 35$$

For the second distribution

$$\overline{\mathbf{X}} = \frac{16}{70} \times 100$$
$$= 22.86$$

: Means are 35 and 22.86

4. Calculate coefficient of variation from the following data:

Income	1000-1700	1700-2400	2400-3100	3100-3800	3800-4500	4500-5200
(in ₹):						
No. of	12	18	20	25	35	10
families:						

Solution:

Let us find the standard deviation of the frequency:

Class	Fi	Xi	$u_i = \frac{x_i - mean}{700}$	fiui	f _i u _i ²
1000-1700	12	1350	-2	-24	48
1700-2400	18	2050	-1	-18	18
2400-3100	20	2750	0	0	0
3100-3800	25	3450	1	25	25
3800-4500	35	4150	2	70	140
4500-5200	10	4850	3	30	90
	$\sum f_i = 120$			$\sum u_i f_i = 83$	$\sum u_i^2 f_i = 321$

Now,

N = 120,
$$\Sigma u_i^2 f_i = 321$$

Mean, $\overline{X} = A + h\left(\frac{\Sigma u_i f_i}{N}\right)$
 $\overline{X} = 2750 + 700 \left(\frac{83}{120}\right)$
= 3234.17
Var(X) = h² $\left[\frac{1}{N}\sum_{i=1}^{n} f_i u_i^2 - \left(\frac{1}{N}\sum_{i=1}^{n} u_i f_i\right)^2\right]$
Var(X) = 490000 $\left[\left(\frac{321}{120}\right) - \left(\frac{83}{120}\right)^2\right]$
Variance = 1076332.64
Standard Deviation, $\sigma = \sqrt{1076332.64}$
= 1037.47
Coefficients of variation = $\frac{1037.46}{3234.17} \times 100$
= 32.08
∴ The coefficient variation is 32.08

https://byjus.com

5. An analysis of the weekly wages paid to workers in two firms A and B, belonging to the same industry gives the following results:

	Firm A	Firm B
No. of wage	586	648
earners		
Average weekly	₹52.5	₹47.5
wages		
The variance of	100	121
the distribution		
of wages		

(i) Which firm A or B pays out the larger amount as weekly wages?(ii) Which firm A or B has greater variability in individual wages?Solution:

(i) Average weekly wages = $\frac{\text{Total weekly wages}}{\text{No.of workers}}$

Total weekly wages = (Average weekly wages) × (No. of workers)

Total weekly wages of Firm A = $52.5 \times 586 = \text{Rs} 30765$ Total weekly wages of Firm B = $47.5 \times 648 = \text{Rs} 30780$

Firm B pays a larger amount as Firm A

(ii) Here, SD (firm A) 10 and SD (Firm B) = 11 Coefficient variance (Firm A) = $\frac{10}{52.5} \times 100$ = 19.04 Coefficient variance (Firm B) = $\frac{11}{47.5} \times 100$ = 23.15

: Coefficient variance of firm B is greater than that of firm A, Firm B has greater variability in individual wages.

6. The following are some particulars of the distribution of weights of boys and girls in a class:

https://byjus.com

RD Sharma Solutions for Class 11 Maths Chapter 32 – Statistics

	Boys	Girls
Number	100	50
Mean weight	60 kg	45 kg
Variance	9	4

Which of the distributions is more variable? Solution:

Given: SD (Boys) is 3 and SD (girls) = 2 Coefficient variability = $\frac{SD}{Mean} \times 100$ Coefficient variance (Boys) = $\frac{3}{60} \times 100$ = 5 Coefficient variance (Girls) = $\frac{2}{45} \times 100$ = 4.4

 \therefore Coefficient variance of Boys is greater than Coefficient variance of girls, and then the distribution of weights of boys is more variable than that of girls.

