

EXERCISE 8(C)

PAGE NO: 71

 Using the common multiple method, find the L.C.M. of the following: (i) 8, 12 and 24
(ii) 10, 15 and 20
(iii) 3, 6, 9 and 12
Solution:
(i) 8, 12 and 24
4 8 12 24
3 2 3 6
2 2 1 2
We get,
$L.C.M = 4 \times 3 \times 2$
= 24
Hence, L.C.M. of 8, 12 and $24 = 24$
(ii) 10, 15 and 20
2 10 15 20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 5 5 5
We get,
$L.C.M = 2 \times 2 \times 3 \times 5$
= 60
Hence, L.C.M. of 10, 15 and $20 = 60$
(iii) 3, 6, 9 and 12
2 3 6 9 12
2 3 3 9 6
3 3 9 3
3 1 1 3 1
We get,
$L.C.M. = 2 \times 2 \times 3 \times 3$
= 36
Hence, L.C.M. of 3, 6, 9 and $12 = 36$

2. Find the L.C.M. of each of the following groups of numbers, using (i) the prime factor method and (ii) the common division method:(i) 18, 24 and 96

https://byjus.com

(ii) 100, 150 and 200 (iii) 14, 21 and 98 (iv) 22, 121 and 33 (v) 34, 85 and 51 Solution: (i) 18, 24 and 96 By using prime factor method, L.C.M. of 18, 24 and 96 are given below Prime factors of $18 = 2 \times 3 \times 3$ Prime factors of $24 = 2 \times 2 \times 2 \times 3$ Prime factors of $96 = 2 \times 2 \times 2 \times 2 \times 3$ \therefore L.C.M. $= 2 \times 2 \times 2 \times 2 \times 3 \times 3$ = 288By using common division method, L.C.M. of 18, 24 and 96 are given below

Djub	ing cor			interior, 2. Chin of 10, 2 tund your griter below
2	18	24	96	
2	9	12	48	Yo . I Yo
2	9	6	24	
2	9	3	12	
2 2 3	9	3	6	
3	9	3	3	
3	3	1	1	
	1	1	1	
∴L.C	M. = 2	$2 \times 2 \times$	2×2	$\times 2 \times 3 \times 3$
= 288				
(ii) 10	00, 150	and 20	00	
By us	ing prin	me fac	tor me	ethod, L.C.M. of 100, 150 and 200 are given below
Prime	factor	of 100	$) = 2 \times$	$\times 2 \times 5 \times 5$
Prime	factor	of 150	$) = 2 \times$	$\times 3 \times 5 \times 5$
Prime	factor	of 200	$) = 2 \times$	$\times 2 \times 2 \times 5 \times 5$
∴L.C	$M_{.} = 2$	$2 \times 2 \times$	2×3	$\times 5 \times 5$
= 600				
		nmon	divisio	on method, L.C.M. of 100, 150 and 200 are given below
2	100	150	200	
2	50	75	100	-
2	25	75	50	-
3	25	75	25	-
				-

5	25	25	25
5	5	5	5
	1	1	1

```
\therefore L.C.M. = 2 \times 2 \times 2 \times 3 \times 5 \times 5
```


Selina Solutions Concise Mathematics Class 6 Chapter 8 H.C.F. And L.C.M.

(iii) 14, 21 and 98 By using prime factor method, L.C.M. of 14, 21 and 98 are given below Prime factor of $14 = 2 \times 7$ Prime factor of $21 = 3 \times 7$ Prime factor of $98 = 2 \times 7 \times 7$ \therefore L.C.M. = $2 \times 3 \times 7 \times 7$ = 294

By using common division method, L.C.M. of 14, 21 and 98 are given below

2 9 40								
2	14	21	98					
3	7	21	49					
7	7	7	49					
7	1	1	7					
	1	1	1					
	2.M.=2	$2 \times 3 \times$	7×7					
= 294								
(iv) 2	2, 121 a	and 33						
By us	ing prin	me fac	tor me	thod, L.C.M. of 22, 121 and 33 are given below				
Prime	e factor	of 22 =	$= 2 \times 1$	11				
Prime	e factor	of 121	= 11	× 11				
Prime	e factor	of 33 =	= 3 × 2	11				
∴L.C	2.M. = 2	$2 \times 3 \times$	$11 \times$	11				
= 726								
By us	ing cor	nmon	divisio	on method, L.C.M. of 22, 121 and 33 are given below				
2	22	121	33					
3	11	121	33					
11	11	121	11					
11	1	11	1					
	1	1	1					
	L.M. = 2	$2 \times 3 \times$	$11 \times$	11				
= 726								
(v) 34	l, 85 an	d 51						
By us	ing pri	me fac	tor me	thod, L.C.M. of 34, 85 and 51 are given below				
Prime factor of $34 = 2 \times 17$								
Prime	Prime factor of $85 = 5 \times 17$							
Prime factor of $51 = 3 \times 17$								
$\therefore \text{ L.C.M.} = 2 \times 3 \times 5 \times 17$								
= 510	= 510							
By us	ing cor	nmon	divisio	on method, L.C.M. of 34, 85 and 51 are given below				
2	C							

https://byjus.com

Selina Solutions Concise Mathematics Class 6 Chapter 8 H.C.F. And L.C.M.

	2	34	85	51		
	3	17	85	51		
	5	17	85	17		
	17	17	17	17		
		1	1	1		
$\therefore L.C.M. = 2 \times 3 \times 5 \times 17$						
-	= 510					

3. The H.C.F. and the L.C.M. of two numbers are 50 and 300 respectively. If one of the numbers is 150, find the other one.

Solution: Given H.C.F. = 50 L.C.M. = 300 One number = 150 We know that, Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers For other number, $50 \times 300 = 150 \times$ other number 15000 / 150 = other number 100 = other number Hence, the other number is 100

4. The product of two numbers is 432 and their L.C.M. is 72. Find their H.C.F. Solution:

Given Product of two numbers = 432 and L.C.M.= 72 We know that, Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers. Now, to find H.C.F H.C.F. \times 72 = 432 H.C.F. = 432 / 72 H.C.F. = 6 Hence, H.C.F. = 6

5. The product of two numbers is 19,200 and their H.C.F. is 40. Find their L.C.M. Solution:

Given Product of two numbers = 19200 and H.C.F. = 40 We know that,

https://byjus.com

Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers Now, to find L.C.M. $40 \times L.C.M. = 19200$ L.C.M. = 19200 / 40 L.C.M. = 480 Hence, L.C.M. = 480

6. Find the smallest number which, when divided by 12, 15, 18, 24 and 36 leaves no remainder.

Solution:

The given numbers L.C.M. will be the least number which is exactly divisible 12, 15, 18, 24 and 36 and leaves no remainder

2	12	15	18	24	36	
2	6	15	9	12	18	
2	3	15	9	6	9	
3	3	15	9	3	9	
3	1	5	3	1	3	
5	1	5	1	1	1	
	1	1	1	1	1	
$L.C.M. = 2 \times 2 \times 2 \times 3 \times 3 \times 5$						
= 360						

Hence, smallest required number = 360

7. Findthe smallest number which, when increased by one is exactly divisible by 12, 18, 24, 32 and 40.

Solution:

First, let us find out the L.C.M. of 12, 18, 24, 32 and 40

					- /		
2	12	18	24	32	40		
2	6	9	12	16	20		
2	3	9	6	8	10		
2	3	9	3	4	5		
2	3	9	3	2	5		
3	3	9	3	1	5		
3	1	3	1	1	5		
5	1	1	1	1	5		
	1	1	1	1	1		
$L.C.M. = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$							
= 1440							
This can be written as							
= 1439 + 1							

Hence, 1439 is the smallest number which, when increased by one is exactly divisible by the given numbers

8. Find the smallest number which, on being decreased by 3, is completely divisible by 18, 36, 32 and 27.

Solution:

First, let us solve for L.C.M. of 18, 36, 32 and 27

2	18	36	32	27				
2	9	18	16	27				
2	9	9	8	27				
2	9	9	4	27				
2	9	9	2	27				
3	9	9	1	27				
3	3	3	1	9				
3	1	1	1	3				
	1	1	1	1				
L.C.N	$L.C.M. = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$							
= 864	= 864							
— 1 ·	1	•						

This can be written as

= 867 - 3

Hence, 867 is the smallest number which, when decreased by 3 is exactly divisible by the given numbers