

EXERCISE 5(F) PAGE NO: 46

1. For each pattern, given below, write the next three steps:

- (i) $1 \times 9 + 1 = 10$ $12 \times 9 + 2 = 110$ $123 \times 9 + 3 = 1110$
- (ii) $9 \times 9 + 7 = 88$ $98 \times 9 + 6 = 888$ $987 \times 9 + 5 = 8888$
- (iii) $1 \times 8 + 1 = 9$ $12 \times 8 + 2 = 98$ $123 \times 8 + 3 = 987$
- (iv) $111 \div 3 = 37$ $222 \div 6 = 37$ $333 \div 9 = 37$

Solution:

- (i) $1 \times 9 + 1 = 10$ $12 \times 9 + 2 = 110$ $123 \times 9 + 3 = 1110$ $1234 \times 9 + 4 = 11110$ $12345 \times 9 + 5 = 111110$ $123456 \times 9 + 6 = 1111110$
- (ii) $9 \times 9 + 7 = 88$ $987 \times 9 + 6 = 888$ $9876 \times 9 + 5 = 8888$ $9876 \times 9 + 4 = 88888$ $98765 \times 9 + 3 = 888888$ $987654 \times 9 + 2 = 8888888$
- (iii) $1 \times 8 + 1 = 9$ $12 \times 8 + 2 = 98$ $123 \times 8 + 3 = 987$ $1234 \times 8 + 4 = 9876$ $12345 \times 8 + 5 = 98765$ $123456 \times 8 + 6 = 987654$
- (iv) $111 \div 3 = 37$ $222 \div 6 = 37$ $333 \div 9 = 37$ $444 \div 12 = 37$ $555 \div 15 = 37$ $666 \div 18 = 37$

2. Complete each of the following magic squares:

(i)

6	7	
	5	9
8		4

(ii)

4,		8
	7	
		10

(iii)

16	2	
	10	
		4

Solution:

(i) Sum for row-wise is as follows

$$6 + 7 + 2 = 15$$

$$1 + 5 + 9 = 15$$

$$8 + 3 + 4 = 15$$

Sum for column wise is as follows

$$6 + 1 + 8 = 15$$

$$7 + 5 + 3 = 15$$

$$2 + 9 + 4 = 15$$

Sum for diagonal wise is as follows

$$6 + 5 + 4 = 15$$

$$2 + 5 + 8 = 15$$

Hence, the magic square is

6	7	2
1	5	9
8	3	4

(ii) Row wise sum is as follows:

$$4 + 9 + 8 = 21$$

$$11 + 7 + 3 = 21$$

$$6 + 5 + 10 = 21$$

Column wise sum is as follows

$$4 + 11 + 6 = 21$$

$$9 + 7 + 5 = 21$$

$$8 + 3 + 10 = 21$$

Diagonal wise sum is as follows

$$4 + 7 + 10 = 21$$

$$8 + 7 + 6 = 21$$

Hence, the magic square is

4	9	8
11	7	. 3
6	5	10

(iii) Row wise sum is as follows

$$16 + 2 + 12 = 30$$

$$6 + 10 + 14 = 30$$

$$8 + 18 + 4 = 30$$

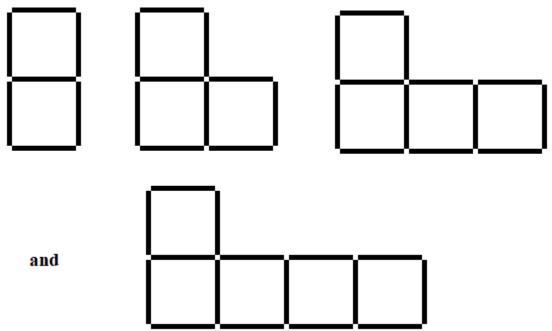
Column wise sum is as follows

$$16 + 6 + 8 = 30$$

$$2 + 10 + 18 = 30$$

$$12 + 14 + 4 = 30$$

Diagonal wise sum is as follows


$$16 + 10 + 4 = 30$$

$$12 + 10 + 8 = 30$$

Hence, the magic square is

16	,2	12
6	10	. 14
8	18	4

3. See the following pattern carefully:

- (i) If n denotes the number of figures and S denotes the number of matchsticks; find S in terms of \mathbf{n} .
- (ii) Find how many matches are required to make the:
- (1) 15th figure
- (2) 40th figure
- (iii) Write a description of the pattern in words,

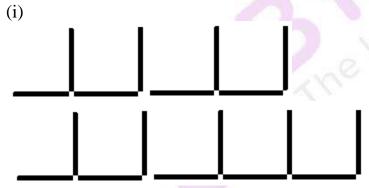
Solution:

The table is

1110 (40010 15				
n	1	2	3	4
S	7	10	13	16

S = 3n + 4

(ii) (1) 15^{th} figure has = $3 \times 15 + 4$


= 49 matches

- (2) 40^{th} figure has = $3 \times 40 + 4$
- = 124 matches
- (iii) It is clear that each time the figure (n) is increased by 4, the number of matches (S) are increased by 3.
- 4. (i) In the following pattern, draw the next two figures.

- (ii) Construct a table to describe the figures in the above pattern.
- (iii) If n denotes the number of figures and \boldsymbol{L} denotes the number of matchsticks, find \boldsymbol{L} in terms of n.
- (iv) Find how many matchsticks are required to make the:
- (1) 12th figure
- (2) 20th figure

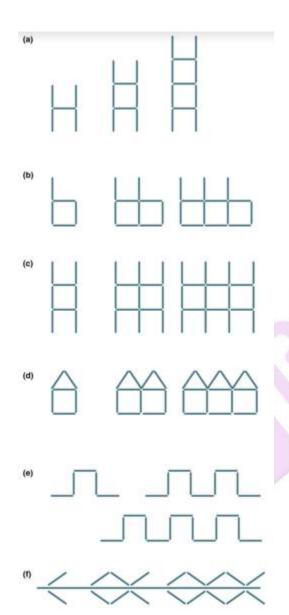
Solution:

(ii) The table is

()					
n	1	2	3	4	5
L	2	4	6	8	10

(iii) Hence, the value of L is

L = 2n

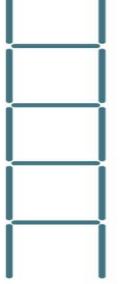

(iii) (1) Number of matchsticks in 12^{th} figure = 2×12

= 24

- (2) Number of matchsticks in 20^{th} figure = 2×20 = 40
- 5. In each of the following patterns, construct next figure.
- (i) In each case, if n denotes the number of figures and F denotes the number of

matchsticks used, find F in terms of n.

(ii) Also find, in each case, how many matchsticks are required to make the: 16^{th} figure and 30^{th} figure.



Solution:


(a)

Selina Solutions Concise Mathematics Class 6 Chapter 5 Natural Numbers And Whole Numbers

(e)

(f)

(i) (a)
$$F = 3n + 2$$

(b)
$$F = 4n + 1$$

(c)
$$F = 5n + 3$$

(d)
$$F = 5n + 1$$

(e)
$$F = 4n + 1$$

(f)
$$F = 4n - 2$$

16th figure

(a)
$$3 \times 16 + 2$$

$$= 48 + 2$$

(b)
$$F = 4 \times 16 + 1$$

$$= 64 + 1$$

(c)
$$F = 5 \times 16 + 3$$

$$= 80 + 3$$

(d)
$$F = 5 \times 16 + 1$$

$$= 80 + 1$$

$$=81$$

Selina Solutions Concise Mathematics Class 6 Chapter 5 Natural Numbers And Whole Numbers

- (e) $F = 4 \times 16 + 1$
- = 64 + 1
- = 65
- (f) $F = 4 \times 16 2$
- = 64 2
- = 62

30th figure

- (a) $F = 3 \times 30 + 2$
- = 90 + 2
- = 92
- (b) $F = 4 \times 30 + 1$
- = 120 + 1
- = 121
- (c) $F = 5 \times 30 + 3$
- = 150 + 3
- = 153
- (d) $F = 5 \times 30 + 1$
- = 150 + 1
- = 151
- (e) $F = 4 \times 30 + 1$
- = 120 + 1
- = 121
- (f) $F = 4 \times 30 2$
- = 120 2
- = 118