

EXERCISE 15A

PAGE: 176

State, if the triangles are possible with the following angles :
 (i) 20°, 70° and 90°
 (ii) 40°, 130° and 20°
 (iii) 60°, 60° and 50°
 (iv) 125°, 40° and 15°
 Solution:

In a triangle, the sum of three angles is 180°

(i) 20° , 70° and 90° Sum = $20^{0} + 70^{0} + 90^{0} = 180^{0}$ Here the sum is 180^{0} and therefore it is possible.

(ii) 40° , 130° and 20° Sum = $40^\circ + 130^\circ + 20^\circ = 290^0$ Here the sum is not 180^0 and therefore it is not possible.

(iii) 60° , 60° and 50° Sum = $60^\circ + 60^\circ + 50^\circ = 170^0$ Here the sum is not 180° and therefore it is not possible.

(iv) 125° , 40° and 15° Sum = $125^{\circ} + 40^{\circ} + 15^{\circ} = 180^{0}$ Here the sum is 180^{0} and therefore it is possible.

2. If the angles of a triangle are equal, find its angles. Solution:

In a triangle, the sum of three angles is 180° So each angle = $180^{\circ}/3 = 60^{\circ}$

3. In a triangle ABC, $\angle A = 45^{\circ}$ and $\angle B = 75^{\circ}$, find $\angle C$. Solution:

In a triangle, the sum of three angles is 180° $\angle A + \angle B + \angle C = 180^{\circ}$ Substituting the values $45^{\circ} + 75^{\circ} + \angle C = 180^{\circ}$ By further calculation $120^{\circ} + \angle C = 180^{\circ}$ So we get $\angle C = 180^{\circ} - 120^{\circ} = 60^{\circ}$

4. In a triangle PQR, $\angle P = 60^{\circ}$ and $\angle Q = \angle R$, find $\angle R$. Solution:

Consider $\angle Q = \angle R = x$ $\angle P = 60^{\circ}$

https://byjus.com

We can write it as $\angle P + \angle Q + \angle R = 180^{\circ}$ Substituting the values $60^{\circ} + x + x = 180^{\circ}$ By further calculation $60^{\circ} + 2x = 180^{\circ}$ $2x = 180^{\circ} - 60^{\circ} = 120^{\circ}$ So we get $x = 120^{\circ}/2 = 60^{\circ}$

 $\angle Q = \angle R = 60^{\circ}$ Therefore, $\angle R = 60^{\circ}$.

5. Calculate the unknown marked angles in each figure:

Solution:

In a triangle, the sum of three angles is 180°

(i) From figure (i) $90^{0} + 30^{0} + x = 180^{0}$ By further calculation $120^{0} + x = 180^{0}$ So we get $x = 180^{0} - 120^{0} = 60^{0}$ Therefore, $x = 60^{0}$.

(ii) From figure (ii) $y + 80^{0} + 20^{0} = 180^{0}$ By further calculation $y + 100^{0} = 180^{0}$ So we get $y = 180^{0} - 100^{0} = 80^{0}$ Therefore, $y = 80^{0}$.

(iii) From figure (iii)

 $a + 90^{\circ} + 40^{\circ} = 180^{\circ}$ By further calculation $a + 130^{\circ} = 180^{\circ}$ So we get $a = 180^{\circ} - 130^{\circ} = 50^{\circ}$ Therefore, $a = 50^{\circ}$.

6. Find the value of each angle in the given figures:

7. Find the unknown marked angles in the given figure:

(ii)

Solution:

(i) From the figure (i) $\angle A + \angle B + \angle C = 180^{\circ}$ Substituting the values $b^{\circ} + 50^{\circ} + b^{\circ} = 180^{\circ}$ By further calculation $2b^{\circ} = 180^{\circ} - 50^{\circ} = 130^{\circ}$ $b^{\circ} = 130^{\circ}/2 = 65^{\circ}$ Therefore, $\angle A = \angle C = b^{\circ} = 65^{\circ}$. (ii) From the figure (ii)

 $\Delta A + \Delta B + \Delta C = 180^{\circ}$ Substituting the values $x^{\circ} + 90^{\circ} + x^{\circ} = 180^{\circ}$ By further calculation $2x^{\circ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $x^{\circ} = 90^{\circ}/2 = 45^{\circ}$ Therefore, $\Delta A = \Delta C = x^{\circ} = 45^{\circ}$.

(iii) From the figure (iii) $\angle A + \angle B + \angle C = 180^{\circ}$ Substituting the values $k^{\circ} + k^{\circ} + k^{\circ} = 180^{\circ}$ By further calculation $3k^{\circ} = 180^{\circ}$ $k^{\circ} = 180^{\circ}/3 = 60^{\circ}$ Therefore, $\angle A = \angle B = \angle C = 60^{\circ}$.

(iv) From the figure (iv) $\angle A + \angle B + \angle C = 180^{\circ}$ Substituting the values $(m^{\circ} - 5^{\circ}) + 60^{\circ} + (m^{\circ} + 5^{\circ}) = 180^{\circ}$ By further calculation

 $\begin{array}{l} m^0-5^0+60^0+m^0+5^0=180^0\\ 2m^0=180^0-60^0+5^0=120^0\\ m^0=120^0/2=60^0\\ Therefore,\ \ensuremath{\angle A}=m^0-5^0=60^0-5^0=55^0\\ \ensuremath{\angle C}=m^0+5^0=60^0+5^0=65^0 \end{array}$

8. In the given figure, show that: $\angle a = \angle b + \angle c$ (i) If $\angle b = 60^{\circ}$ and $\angle c = 50^{\circ}$; find $\angle a$. (ii) If $\angle a = 100^{\circ}$ and $\angle b = 55^{\circ}$; find $\angle c$. (iii) If $\angle a = 108^{\circ}$ and $\angle c = 48^{\circ}$; find $\angle b$.

Solution:

```
From the figure

AB || CD

b = c and \angle A = \angle C are alternate angles

In triangle PCD

Exterior \angle APC = \angle C + \angle D

a = b + c
```

(i) If $\angle b = 60^{\circ}$ and $\angle c = 50^{\circ}$ $\angle a = \angle b + \angle c$ Substituting the values $\angle a = 60 + 50 = 110^{\circ}$

(ii) If $\angle a = 100^{\circ}$ and $\angle b = 55^{\circ}$ $\angle a = \angle b + \angle c$ Substituting the values $\angle c = 100 - 55 = 45^{\circ}$

(iii) If $\angle a = 108^{\circ}$ and $\angle c = 48^{\circ}$ $\angle a = \angle b + \angle c$ Substituting the values $\angle b = 108 - 48 = 60^{\circ}$

9. Calculate the angles of a triangle if they are in the ratio 4 : 5 : 6. Solution:

In a triangle, the sum of angles of a triangle is 180° $\angle A + \angle B + \angle C = 180^{\circ}$

https://byjus.com

10. One angle of a triangle is 60°. The, other two angles are in the ratio of 5 : 7. Find the two angles. Solution:

Take $\angle B = 5x$ and $\angle C = 7x$ Substituting the values $5x + 7x = 120^{0}$ $12x = 120^{0}$ $x = 120^{0}/12 = 10^{0}$

So we get $\angle B = 5x = 5 \times 10^{\circ} = 50^{\circ}$ $\angle C = 7x = 7 \times 10^{\circ} = 70^{\circ}$

11. One angle of a triangle is 61° and the other two angles are in the ratio $1\frac{1}{2}$: 1 1/3. Find these angles. Solution:

12. Find the unknown marked angles in the given figures:

https://byjus.com

 $120^{0} = y^{0} + 60^{0}$ By further calculation $y^{0} = 120^{0} - 60^{0} = 60^{0}$

(iii) From the figure (iii) $122^{0} = k^{0} + 35^{0}$ By further calculation $k^{0} = 122^{0} - 35^{0} = 87^{0}$

(iv) From the figure (iv) $135^{0} = a^{0} + 73^{0}$ By further calculation $a^{0} = 135^{0} - 73^{0} = 62^{0}$

(v) From the figure (v) $125^0 = a + c \dots (1)$ $140^0 = a + b \dots (2)$ By adding both the equations $a + c + a + b = 125^0 + 140^0$ On further calculation $a + a + b + c = 265^0$

We know that $a + b + c = 180^{\circ}$ Substituting it in the equation $a + 180^{\circ} = 265^{\circ}$ So we get $a = 265 - 180 = 85^{\circ}$

If $a + b = 140^{\circ}$ Substituting it in the equation $85^{\circ} + b = 140^{\circ}$ So we get $b = 140 - 85 = 55^{\circ}$

If $a + c = 125^{\circ}$ Substituting it in the equation $85^{\circ} + c = 125^{\circ}$ So we get $c = 125 - 85 = 40^{\circ}$

Therefore, $a = 85^{\circ}$, $b = 55^{\circ}$ and $c = 40^{\circ}$.

Selina Solutions Concise Maths Class 7 Chapter 15 -Triangles