# EXERCISE 11A PAGE: 121

#### 1. Separate constant terms and variable terms from the following:

$$8, x, 6xy, 6 + x, -5xy^2, 15az^2, 32z/xy, y^2/3x$$

**Solution:** 

The constant term is 8.

The variable terms are x, 6xy, 6 + x,  $-5xy^2$ ,  $15az^2$ , 32z/xy,  $y^2/3x$ .

#### 2. For each expression, given below, state whether it is a monomial, binomial or trinomial:

(i) 
$$2x \div 15$$

(ii) 
$$ax + 9$$

(iii) 
$$3x^2 \times 5x$$

(iv) 
$$5 + 2x - 3b$$

$$(\mathbf{v}) \ 2\mathbf{y} - 7/2\mathbf{z} \div \mathbf{x}$$

(vi) 
$$3p \times q \div z$$

(vii) 
$$12z \div 5x + 4$$

(viii) 
$$12 - 5z - 4$$

(ix) 
$$a^3 - 3ab^2 \times c$$

**Solution:** 

(i) 
$$2x \div 15 = 2x/15$$

It has one term and hence it is a monomial.

(ii) 
$$ax + 9$$

It has two terms and hence it is a binomial.

(iii) 
$$3x^2 \times 5x = 15x^3$$

It has one term and hence it is a monomial.

(iv) 
$$5 + 2x - 3b$$

It has three terms and hence it is a trinomial.

(v) 
$$2y - 7/2z \div x = 2y - 7z/3x$$

It has two terms and hence it is a binomial.

(vi) 
$$3p \times q \div z = 3pq/z$$

It has one term and hence it is a monomial.

(vii) 
$$12z \div 5x + 4 = 12z/5x + 4$$

It has two terms and hence it is a binomial.

(viii) 
$$12 - 5z - 4 = 8 - 5z$$

It has two terms and hence it is a binomial.

(ix) 
$$a^3 - 3ab^2 \times c = a^3 - 3ab^2c$$

It has two terms and hence it is a binomial.

#### 3. Write the coefficient of:

(i) xy in -3axy

## Selina Solutions Concise Maths Class 7 Chapter 11 – **Fundamental Concepts (Including Fundamental Operations)**

(ii) 
$$z^2$$
 in  $p^2yz^2$ 

(iv) 
$$15 \text{ in } -15p^2$$

#### **Solution:**

(i) xy in -3axy

The coefficient of xy in -3axy = -3a

(ii) 
$$z^2$$
 in  $p^2yz^2$ 

The coefficient of  $z^2$  in  $p^2yz^2 = p^2y$ 

#### (iii) mn in – mn

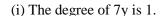
The coefficient of mn in - mn = -1

### (iv) $15 \text{ in } -15p^2$

The coefficient of 15 in  $-15p^2 = -p^2$ 

#### 4. For each of the following monomials, write its degree:

$$(ii) -x^2y$$


$$(ii)$$
  $-x$  y  $(iii)$   $xy^2z$ 

$$(iv) - 9v^2z^3$$

$$(v)$$
 3m<sup>3</sup>n<sup>4</sup>

$$(vi) -2p^2q^3r^4$$

#### **Solution:**



(ii) The degree of 
$$-x^2y = 2 + 1 = 3$$

(iii) The degree of 
$$xy^2z = 1 + 2 + 1 = 4$$

(iv) The degree of 
$$-9y^2z^3 = 2 + 3 = 5$$

(v) The degree of 
$$3m^3n^4 = 3 + 4 = 7$$

(vi) The degree of 
$$-2p^2q^3r^4 = 2 + 3 + 4 = 9$$

#### 5. Write the degree of each of the following polynomials:

(i) 
$$3y^3 - x^2y^2 + 4x$$

(i) 
$$3y - xy + 4x$$
  
(ii)  $p^3q^2 - 6p^2q^5 + p^4q^4$   
(iii)  $-8mn^6 + 5m^3n$ 

(iii) 
$$-8mn^{\circ} + 5m^{\circ}n$$

(iv) 
$$7 - 3x^2y + y^2$$

(v) 
$$3x - 15$$

(v) 
$$3x - 15$$
  
(vi)  $2y^2z + 9yz^3$ 

#### **Solution:**

(i) The degree of  $3y^3 - x^2y^2 + 4x$  is 4

 $x^2y^2$  is the term which has the highest degree.

# Selina Solutions Concise Maths Class 7 Chapter 11 – Fundamental Concepts (Including Fundamental Operations)

(ii) The degree of  $p^3q^2 - 6p^2q^5 + p^4q^4$  is 8  $p^4q^4$  is the term which has the highest degree.

(iii) The degree of  $-8mn^6 + 5m^3n$  is 7 -8mn<sup>6</sup> is the term which has the highest degree.

(iv) The degree of  $7 - 3x^2y + y^2$  is  $3 - 3x^2y$  is the term which has the highest degree.

(v) The degree of 3x - 15 is 1 3x is the term which has the highest degree.

(vi) The degree of  $2y^2z + 9yz^3$  is 4  $9yz^3$  is the term which has the highest degree.

#### 6. Group the like terms together:

(i)  $9x^2$ , xy,  $-3x^2$ ,  $x^2$  and -2xy

(ii) ab,  $-a^2b$ , -3ab,  $5a^2b$  and  $-8a^2b$ .

(iii) 7p, 8pq, -5pq, -2p and 3p Solution:

(i)  $9x^2$ , xy,  $-3x^2$ ,  $x^2$  and -2xy  $9x^2$ ,  $-3x^2$  and  $x^2$  are like terms xy and -2xy are like terms.

(ii) ab,  $-a^2b$ , -3ab,  $5a^2b$  and  $-8a^2b$   $-a^2b$ ,  $5a^2b$  and  $-8a^2b$  are like terms ab and -3ab are like terms.

(iii) 7p, 8pq, -5pq, -2p and 3p 7p, -2p and 3p are like terms 8pq and -5pq are like terms.

### 7. Write the numerical coefficient of each of the following:

(i) y

(ii) - y

(iii)  $2x^2y$ 

 $(iv) -8xy^3$ 

 $(v) 3py^2$ 

 $(vi) -9a^2b^3$ 

#### **Solution:**

(i) The numerical coefficient of y is 1.

(ii) The numerical coefficient of -y is -1.

(iii) The numerical coefficient of  $2x^2y$  is 2.

(iv) The numerical coefficient of  $-8xy^3$  is -8.



# Selina Solutions Concise Maths Class 7 Chapter 11 – Fundamental Concepts (Including Fundamental Operations)

- (v) The numerical coefficient of 3py<sup>2</sup> is 3.
- (vi) The numerical coefficient of -9a<sup>2</sup>b<sup>3</sup> is -9.

# 8. In $-5x^3y^2z^4$ ; write the coefficient of:

- $(i) z^2$
- (ii)  $y^2$
- (iii) yz<sup>2</sup>
- (iv)  $x^3y$
- $(\mathbf{v}) \mathbf{x}\mathbf{y}^2$
- $(vi) 5xy^2z$

Also, write the degree of the given algebraic expression.

#### **Solution:**

- (i) The coefficient of  $z^2$  is  $-5x^3y^2z^2$ .
- (ii) The coefficient of  $y^2$  is  $-5x^3z^4$ .
- (iii) The coefficient of  $yz^2$  is  $-5x^3yz^2$ .
- (iv) The coefficient of  $x^3y$  is  $-5yz^4$ .
- (v) The coefficient of  $-xy^2$  is  $5x^2z^4$ .
- (vi) The coefficient of  $-5xy^2z$  is  $x^2z^3$ .

So the degree of the given algebraic expression = 3 + 2 + 4 = 9.