

EXERCISE 14A

PAGE: 162

1. State, true or false: (i) A line segment 4 cm long can have only 2000 points in it. (ii) A ray has one end point and a line segment has two end-points. (iii) A line segment is the shortest distance between any two given points. (iv) An infinite number of straight lines can be drawn through a given point. (v) Write the number of end points in (a) a line segment AB (b) a ray AB (c) a line AB (vi) Out of \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} and \overrightarrow{AB} which one has a fixed length? (vii) How many rays can be drawn through a fixed point O? (viii) How many lines can be drawn through three (a) collinear points? (b) non-collinear points? (ix) Is 40° the complement of 60° ? (x) Is 45° the supplement of 45° ? Solution: (i) False.

It contains infinite number of points.

(ii) True.

(iii) True.

(iv) True.

(v) (a) 2 (b) 1 (c) 0

(vi) AB has fixed length.

(vii) Infinite rays can be drawn through a fixed point O.

(viii) (a) 1 line can be drawn through three collinear points.(b) 3 lines can be drawn through three non-collinear points.

(ix) False. 40° is the complement of 50° as $40^{\circ} + 50^{\circ} = 90^{\circ}$

(x) False.

 45° is the supplement of 135° not 45° .

2. In which of the following figures, are ∠AOB and ∠AOC adjacent angles? Give, in each case, reason for your answer.

(i) C B A

Solution:

If ∠AOB and ∠AOC are adjacent angle, they have OA as their common arm. (i) From the figure OB is the common arm ∠AOB and ∠AOC are not adjacent angles. (ii) From the figure OC is the common arm ∠AOB and ∠AOC are not adjacent angles.

(iii) From the figureOA is the common arm∠AOB and ∠AOC are adjacent angles.

(iv) From the figureOB is the common arm∠AOB and ∠AOC are not adjacent angles.

3. In the given figure, B AC is a straight line. Find: (i) x (ii) ∠AOB (iii) ∠BOC

Solution:

We know that ∠AOB and ∠COB are linear pairs It can be written as

 $\angle AOB + \angle COB = 180^{\circ}$ Substituting the values $x + 25^{\circ} + 3x + 15^{\circ} = 180^{\circ}$ By further calculation $4x + 40^{\circ} = 180^{\circ}$ So we get

 $4x = 180 - 40 = 140^{\circ}$

(i) $x = 140/4 = 35^{\circ}$

Selina Solutions Concise Maths Class 7 Chapter 14 – Lines and Angles (Including Construction of Angles)

5. In the given figure, find $\angle PQR$.

Here SQR is a straight line We can write it as \angle SQT + \angle TQP + \angle PQR = 180° Substituting the values

Therefore, $p^{\circ} = q^{\circ} = r^{\circ} = 60^{\circ}$

7. In the given figure, if x = 2y, find x and y.

Solution:

It is given that x = 2yFor a straight angle $x^{\circ} + y^{\circ} = 180^{\circ}$ Substituting the values 2y + y = 180By further calculation 3y = 180 $y = 180/3 = 60^{\circ}$ $x = 2y = 2 \times 60^{\circ} = 120^{\circ}$

8. In the adjoining figure, if $b^{o} = a^{o} + c^{o}$, find b.

C0

bº

aº

Solution:

It is given that $b^{\circ} = a^{\circ} + c^{\circ}$ For a straight angle $a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}$ Substituting the values $b^{\circ} + b^{\circ} = 180^{\circ}$ $2b^{\circ} = 180^{\circ}$ $b^{\circ} = 180/2 = 90^{\circ}$

9. In the given figure, AB is perpendicular to BC at B.Find : (i) the value of x.(ii) the complement of angle x.

(i) From the figure AB || BC at B Here $\angle ABC = 90^{\circ}$ Substituting the values x + 20 + 2x + 1 + 7x - 11 = 90By further calculation 10x + 10 = 90 10x = 90 - 10 = 80 $x = 80/10 = 8^{\circ}$

(ii) The complement of angle x = 90 - xSo we get $= 90 - 8 = 82^{\circ}$

10. Write the complement of:
(i) 25°
(ii) 90°
(iii) a°
(iv) (x + 5)°
(v) (30 - a)°
(vi) ½ of a right angle
(vii) 1/3 of 180°
(viii) 21° 17'
Solution:

(i) The complement of $25^{\circ} = 90^{\circ} - 25^{\circ} = 65^{\circ}$

(ii) The complement of $90^{\circ} = 90^{\circ} - 90^{\circ} = 0$

(iii) The complement of $a^{\circ} = 90^{\circ} - a^{\circ}$

(iv) The complement of $(x + 5)^{\circ} = 90^{\circ} - (x + 5)^{\circ}$ By further calculation $= 90^{\circ} - x - 5^{\circ}$ $= 85^{\circ} - x$

(v) The complement of $(30 - a)^{\circ} = 90^{\circ} - (30 - a)^{\circ}$

By further calculation = $90^{\circ} - 30^{\circ} + a^{\circ}$ = $60^{\circ} + a^{\circ}$

(vi) The complement of $\frac{1}{2}$ of a right angle = $90^{\circ} - \frac{1}{2}$ of a right angle So we get = $90^{\circ} - \frac{1}{2} \times 90^{\circ}$ = $90^{\circ} - 45^{\circ}$ = 45°

(vii) The complement of 1/3 of $180^\circ = 90^\circ - 1/3$ of 180° By further calculation $= 90^\circ - 60^\circ$ $= 30^\circ$

(viii) The complement of $21^{\circ} 17' = 90^{\circ} - 21^{\circ} 17'$ So we get = $68^{\circ} 43'$

11. Write the supplement of:

(i) 100°
(ii) 0°
(iii) x°
(iv) (x + 35)°
(v) (90 +a + b)°
(vi) (110 - x - 2y)°
(vii) 1/5 of a right angle
(viii) 80° 49' 25"
Solution:

(i) The supplement of $100^\circ = 180 - 100 = 80^\circ$

- (ii) The supplement of $0^\circ = 180 0 = 180^\circ$
- (iii) The supplement of $x^{\circ} = 180^{\circ} x^{\circ}$

(iv) The supplement of $(x + 35)^\circ = 180^\circ - (x + 35)^\circ$ We can write it as = 180 - x - 35 $= 145^\circ - x^\circ$

(v) The supplement of $(90 + a + b)^{\circ} = 180^{\circ} - (90 + a + b)^{\circ}$ We can write it as = 180 - 90 - a - bSo we get = $90^{\circ} - a^{\circ} - b^{\circ}$ = $(90 - a - b)^{\circ}$

(vi) The supplement of $(110 - x - 2y)^{\circ} = 180^{0} - (110 - x - 2y)^{\circ}$ We can write it as

= 180 - 110 + x + 2y= 70⁰ + x⁰ + 2y⁰

(vii) The supplement of 1/5 of a right angle = $180^{\circ} - 1/5$ of a right angle We can write it as = $180^{\circ} - 1/5 \times 90^{\circ}$ So we get = $180^{\circ} - 18^{\circ}$ = 162°

(viii) The supplement of $80^{\circ} 49' 25'' = 180^{\circ} - 80^{\circ} 49' 25''$ We know that $1^{\circ} = 60'$ and 1' = 60''So we get = $99^{\circ} 10' 35''$

12. Are the following pairs of angles complementary?
(i) 10° and 80°
(ii) 37° 28' and 52° 33'
(iii) (x+ 16)°and (74 - x)°
(iv) 54° and 2/5 of a right angle.
Solution:

(i) 10° and 80° Yes, they are complementary angles as their sum = $10^{\circ} + 80^{\circ} = 90^{\circ}$

(ii) 37° 28' and 52° 33' No, they are not complementary angles as their sum is not equal to 90° 37° 28' + 52° 33' = $90^{\circ}1$ '

(iii) $(x+16)^{\circ}$ and $(74 - x)^{\circ}$ Yes, they are complementary angles as their sum = $x + 16 + 74 - x = 90^{\circ}$

(iv) 54° and 2/5 of a right angle We can write it as = 54° and $2/5 \times 90^{\circ}$ = 54° and 36° Yes, they are complementary angles as their sum = $54 + 36 = 90^{\circ}$

13. Are the following pairs of angles supplementary?
(i) 139° and 39°
(ii) 26°59' and 153°1'
(iii) 3/10 of a right angle and 4/15 of two right angles
(iv) 2x° + 65° and 115° - 2x°
Solution:

(i) 139° and 39° No, they are not supplementary angles as their sum is not equal to 180° $139^{\circ} + 39^{\circ} = 178^{\circ}$

(ii) 26°59' and 153°1'

Yes, they are supplementary angles as their sum = $26^{\circ}59' + 153^{\circ}1' = 180^{\circ}$

(iii) 3/10 of a right angle and 4/15 of two right angles We can write it as = 3/10 of 90° and 4/15 of 180° = 27° and 48°

No, they are not supplementary angles as their sum is not equal to 180°

 $27^0 + 48^0 = 75^0$

(iv) $2x^{\circ} + 65^{\circ}$ and $115^{\circ} - 2x^{\circ}$ Yes they are supplementary angles as their sum = $2x + 65 + 115 - 2x = 180^{\circ}$

14. If $3x + 18^{\circ}$ and $2x + 25^{\circ}$ are supplementary, find the value of x. Solution:

It is given that $3x + 18^{\circ}$ and $2x + 25^{\circ}$ are supplementary We can write it as $3x + 18^{\circ} + 2x + 25^{\circ} = 180^{\circ}$ By further calculation $5x + 43^{\circ} = 180^{\circ}$ So we get $5x = 180 - 43 = 137^{\circ}$ $x = 137/5 = 27.4^{\circ}$ or $27^{\circ} 24^{\circ}$

15. If two complementary angles are in the ratio 1:5, find them. Solution:

It is given that two complementary angles are in the ratio 1:5 Consider x and 5x as the angles We can write it as $x + 5x = 90^{0}$ $6x = 90^{0}$ So we get $x = 90/6 = 15^{0}$ Here the angles will be 15^{0} and $15 \times 5 = 75^{0}$

