

EXERCISE 14B

PAGE: 166

1. In questions 1 and 2, given below, identify the given pairs of angles as corresponding angles, interior alternate angles, exterior alternate angles, adjacent angles, vertically opposite angles or allied angles: (i) $\angle 3$ and $\angle 6$

- (i) $\angle 3$ and $\angle 0$ (ii) $\angle 2$ and $\angle 4$
- (iii) $\angle 3$ and $\angle 7$
- (iv) $\angle 2$ and $\angle 7$
- (v) $\angle 4$ and $\angle 6$
- (vi) $\angle 1$ and $\angle 8$
- (vii) $\angle 1$ and $\angle 5$
- (viii) $\angle 1$ and $\angle 4$
- (ix) $\angle 5$ and $\angle 7$

Solution:

- (i) $\angle 3$ and $\angle 6$ are interior alternate angles.
- (ii) $\angle 2$ and $\angle 4$ are adjacent angles.
- (iii) $\angle 3$ and $\angle 7$ are corresponding angles.
- (iv) $\angle 2$ and $\angle 7$ are exterior alternate angles.
- (v) $\angle 4$ and $\angle 6$ are allied or co-interior angles.
- (vi) $\angle 1$ and $\angle 8$ are exterior alternate angles.
- (vii) $\angle 1$ and $\angle 5$ are corresponding angles.
- (viii) $\angle 1$ and $\angle 4$ are vertically opposite angles.
- (ix) $\angle 5$ and $\angle 7$ are adjacent angles.

2. (i) ∠1 and ∠4 (ii) ∠4 and ∠7 (iii) ∠10 and ∠12 (iv) ∠7 and ∠13 (v) ∠6 and ∠8 (vi) ∠11 and ∠8 (vii) ∠7 and ∠9 (viii) ∠4 and ∠5

Solution:

- (i) $\angle 1$ and $\angle 4$ are vertically opposite angles.
- (ii) $\angle 4$ and $\angle 7$ are interior alternate angles.
- (iii) $\angle 10$ and $\angle 12$ are vertically opposite angles.
- (iv) $\angle 7$ and $\angle 13$ are corresponding angles.
- (v) $\angle 6$ and $\angle 8$ are vertically opposite angles.
- (vi) $\angle 11$ and $\angle 8$ are allied or co-interior angles.
- (vii) $\angle 7$ and $\angle 9$ are vertically opposite angles.
- (viii) $\angle 4$ and $\angle 5$ are adjacent angles.
- (ix) $\angle 4$ and $\angle 6$ are allied or co-interior angles.
- (x) $\angle 6$ and $\angle 7$ are adjacent angles.
- (xi) $\angle 2$ and $\angle 13$ are allied or co-interior angles.

3. In the following figures, the arrows indicate parallel lines. State which angles are equal. Give reasons.

Solution:

(i) From the figure (i) a = b are corresponding angles b = c are vertically opposite angles a = c are alternate angles So we get $\mathbf{a} = \mathbf{b} = \mathbf{c}$ (ii) From the figure (ii) x = y are vertically opposite angles y = l are alternate angles x = 1 are corresponding angles 1 = n are vertically opposite angles n = r are corresponding angles So we get x = y = 1 = n = rSimilarly m = k are vertically opposite angles k = q are corresponding angles

Hence, m = k = q.

4. In the given figure, find the measure of the unknown angles:

From the figure a = d are vertically opposite angles d = f are corresponding angles $f = 110^{0}$ are vertically opposite angles So we get $a = d = f = 110^{0}$ We know that $e + 110^{0} = 180^{0}$ are co-interior angles $e = 180 - 110 = 70^{0}$

b = c are vertically opposite angles b = e are corresponding angles e = g are vertically opposite angles So we get $b = c = e = g = 70^{0}$

Therefore, $a = 110^{0}$, $b = 70^{0}$, $c = 70^{0}$, $d = 110^{0}$, $e = 110^{0}$, $f = 110^{0}$ and $g = 70^{0}$.

5. Which pair of the dotted line, segments, in the following figures, are parallel. Give reason:

V)

Solution:

(i) From the figure (i) If the lines are parallel we get $120 + 50 = 180^{\circ}$ There are co-interior angles where $170^{\circ} = 180^{\circ}$ It is not true.

50°

800

Therefore, they are not parallel lines.

(ii) From the figure (ii) $\angle 1 = 45^{\circ}$ are vertically opposite angles We know that the lines are parallel if $\angle 1 + 135^{\circ} = 180^{\circ}$ are co-interior angles Substituting the values $45^{\circ} + 135^{\circ} = 180^{\circ}$ $180^{\circ} = 180^{\circ}$ which is true Therefore, the lines are parallel.

(iii) From the figure (iii) The lines are parallel if corresponding angles are equal Here $120^0 = 130^0$ is not correct Hence, lines are not parallel.

(iv) $\angle 1 = 110^{\circ}$ are vertically opposite angles We know that if lines are parallel $\angle 1 + 70^{\circ} = 180^{\circ}$ are co-interior angles Substituting the values $110^{\circ} + 70^{\circ} = 180^{\circ}$ $180^{\circ} = 180^{\circ}$ which is correct

Therefore, the lines are parallel.

(v) $\angle 1 + 100^{0} = 180^{0}$ So we get $\angle 1 = 180^{0} - 100^{0} = 80^{0}$ which is a linear pair Here the lines 1 and 2 are parallel if $\angle 1 = 70^{0}$ $80^{0} = 70^{0}$ is not true So the $\angle 1$ and $\angle 2$ are not parallel $\angle 3$ and $\angle 5$ will be parallel if $80^{0} = 70^{0}$ are corresponding angle which is not true. Hence, $\angle 3$ and $\angle 5$ are not parallel.

We know that $\angle 1 = 80^{\circ}$ are alternate angles $80^{\circ} = 80^{\circ}$ which is true Hence, $\angle 2$ and $\angle 4$ are parallel.

(vi) Two lines are parallel if alternate angles are equal $50^0 = 40^0$ which is not true Hence, the lines are not parallel.

6. In the given figures, the directed lines are parallel to each other. Find the unknown angles.

Solution:

(i) If the lines are parallel a = b are corresponding angles a = c are vertically opposite angles a = b = cHere $b = 60^{\circ}$ are vertically opposite angles Therefore, $a = b = c = 60^{\circ}$

(ii) If the lines are parallel x = z are corresponding angles $z + y = 180^{\circ}$ is a linear pair $y = 55^{\circ}$ are vertically opposite angles Substituting the values $z + 55^{\circ} = 180^{\circ}$ $z = 180 - 55 = 125^{\circ}$ If x = z we get $x = 125^{\circ}$ Therefore, $x = 125^{\circ}$, $y = 55^{\circ}$ and $z = 125^{\circ}$.

(iii) If the lines are parallel $c = 120^{0}$ $a + 120^{0} = 180^{0}$ are co-interior angles $a = 180 - 120 = 60^{0}$ We know that a = b are vertically opposite angles So $b = 60^{0}$ Therefore, $a = b = 60^{0}$ and $c = 120^{0}$.

(iv) If the lines are parallel $x = 50^{\circ}$ are alternate angles $y + 120^{\circ} = 180^{\circ}$ are co-interior angles

y = $180 - 120 = 60^{\circ}$ We know that x + y + z = 360° are angles at a point Substituting the values 50 + 60 + z = 360By further calculation 110 + z = 360 $z = 360 - 110 = 250^{\circ}$ Therefore, x = 50° , y = 60° and z = 250° .

(v) If the lines are parallel $x + 90^{\circ} = 180^{\circ}$ are co-interior angles $x = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $\angle 2 = x$ $\angle 2 = 90^{\circ}$ We know that the sum of angles of a triangle $\angle 1 + \angle 2 + 30^{\circ} = 180^{\circ}$ Substituting the values $\angle 1 + 90^{\circ} + 30^{\circ} = 180^{\circ}$ By further calculation $\angle 1 + 120^{\circ} = 180^{\circ}$ $\angle 1 = 180 - 120 = 60^{\circ}$

Here $\angle 1 = k$ are vertically opposite angles $k = 60^{\circ}$ Here $\angle 1 = z$ are alternate angles $z = 60^{\circ}$ Here $k + y = 180^{\circ}$ are co-interior angles Substituting the values $60^{\circ} + y = 180^{\circ}$ $y = 180 - 60 = 120^{\circ}$ Therefore, $x = 90^{\circ}$, $y = 120^{\circ}$, $z = 60^{\circ}$, $k = 60^{\circ}$.

7. Find x, y and p is the given figures:

Solution:

(i) From the figure (i)The lines are parallelx = z are corresponding angles

y = 40° are corresponding angles We know that x + 40° + 270° = 360° are the angles at a point So we get x + 310° = 360° x = 360 - 310 = 50° So z = x = 50° Here p + z = 180° is a linear pair By substituting the values p + 50° = 180° p = 180 - 50 = 130°

Therefore, $x = 50^{\circ}$, $y = 40^{\circ}$, $z = 50^{\circ}$ and $p = 130^{\circ}$.

(ii) From the figure (ii) The lines are parallel $y = 110^{\circ}$ are corresponding angles We know that $25^{\circ} + p + 110^{\circ} = 180^{\circ}$ are angles on a line $p + 135^{\circ} = 180^{\circ}$ $p = 180 - 135 = 45^{\circ}$

We know that the sum of angles of a triangle $x + y + 25^{\circ} = 180^{\circ}$ $x + 110^{\circ} + 25^{\circ} = 180^{\circ}$ By further calculation $x + 135^{\circ} = 180^{\circ}$ $x = 180 - 135 = 45^{\circ}$

Therefore, $x = 45^{\circ}$, $y = 110^{\circ}$ and $p = 45^{\circ}$.

8. Find x in the following cases:

(i) From the figure (i) The lines are parallel $2x + x = 180^{\circ}$ are co-interior angles $3x = 180^{\circ}$ $x = 180/3 = 60^{\circ}$

(ii) From the figure (ii) The lines are parallel $4x + 1 = 180^{\circ}$ are co-interior angles $\angle 1 = 5x$ are vertically opposite angles Substituting the values $4x + 5x = 180^{\circ}$ So we get $9x = 180^{\circ}$ $x = 180/9 = 20^{\circ}$

(iii) From the figure (iii) The lines are parallel $\angle 1 + 4x = 180^{\circ}$ are co-interior angles $\angle 1 = x$ are vertically opposite angles Substituting the values $x + 4x = 180^{\circ}$ $5x = 180^{\circ}$ So we get $x = 180/5 = 36^{\circ}$

```
(iv) From the figure (iv)

The lines are parallel

2x + 5 + 3x + 55 = 180^{\circ} are co-interior angles

5x + 60^{\circ} = 180^{\circ}

By further calculation

5x = 180 - 60 = 120^{\circ}

So we get

x = 120/5 = 24^{\circ}
```

(v) From the figure (v) The lines are parallel $\angle 1 = 2x + 20^{\circ}$ are alternate angles $\angle 1 + 3x + 25^{\circ} = 180^{\circ}$ is a linear pair Substituting the values $2x + 20^{\circ} + 3x + 25^{\circ} = 180^{\circ}$ $5x + 45^{\circ} = 180^{\circ}$ So we get $5x = 180 - 45 = 135^{\circ}$ $x = 135/5 = 27^{\circ}$

(vi) From the figure (vi) Construct a line parallel to the given parallel lines $\angle 1 = 4x$ and $\angle 2 = 6x$ are corresponding angles $\angle 1 + \angle 2 = 130^{\circ}$

Substituting the values $4x + 6x = 130^{\circ}$ $10x = 130^{\circ}$ So we get $x = 130/10 = 13^{\circ}$ Selina Solutions Concise Maths Class 7 Chapter 14 – Lines and Angles (Including Construction of Angles)

