EXERCISE 19(A)

1. Fill in the blanks:

(i)
$$5 + 4 = \dots$$
 and $5x + 4x = \dots$

(ii)
$$12 + 18 = \dots$$
 and $12x^2y + 18x^2y = \dots$

(iii)
$$7 + 16 = \dots$$
 and $7a + 16b = \dots$

(iv)
$$1 + 3 = \dots$$
 and $x^2y + 3xy^2 = \dots$

(v)
$$7 - 4 = \dots$$
 and $7ab - 4ab = \dots$

Solution:

(i)
$$5 + 4 = 9$$
 and $5x + 4x = 9x$

(ii)
$$12 + 18 = 30$$
 and $12x^2y + 18x^2y = 30x^2y$

(iii)
$$7 + 16 = 23$$
 and $7a + 16b = 7a + 16b$

(iv)
$$1 + 3 = 4$$
 and $x^2y + 3xy^2 = x^2y + 3xy^2$

(v)
$$7 - 4 = 3$$
 and $7ab - 4ab = 3ab$

2. Fill in the blanks:

- (i) The sum of -2 and -5 = and the sum of -2x and -5x =
- (ii) The sum of 8 and $-3 = \dots$ and the sum of 8ab and -3ab $= \dots$
- (iii) The sum of -15 and -4 = and the sum of -15x and -4y =
- (iv) $15 + 8 + 3 = \dots$ and $15x + 8y + 3x = \dots$
- (v) $12 9 + 15 = \dots$ and $12ab 9ab + 15ba = \dots$

Solution:

- (i) The sum of -2 and -5 = $\frac{-7}{2}$ and the sum of -2x and -5x = $\frac{-7x}{2}$
- (ii) The sum of 8 and -3 = 5 and the sum of 8ab and -3ab = 5ab
- (iii) The sum of -15 and -4 = -19 and the sum of -15x and -4y = -15x 4y
- (iv) 15 + 8 + 3 = 26 and 15x + 8y + 3x = 18x + 8y
- (v) 12 9 + 15 = 18 and 12ab 9ab + 15ba = 18ab

3. Add:

- (i) 8xy and 3xy
- (ii) 2xyz, xyz and 6xyz
- (iii) 2a, 3a and 4b
- (iv) 3x and 2y
- (v) 5m, 3n and 4p

Solution:

(i) 8xy and 3xy

The addition of 8xy and 3xy is calculated as follows

$$8xy + 3xy = 11xy$$

(ii) 2xyz, xyz and 6xyz

The addition of 2xyz, xyz and 6xyz is calculated as follows

$$2xyz + xyz + 6xyz = 9xyz$$

(iii) 2a, 3a and 4b

The addition of 2a, 3a and 4b is calculated as follows

$$2a + 3a + 4b = 5a + 4b$$

(iv) 3x and 2y

The addition of 3x and 2y is calculated as follows

$$3x + 2y = 3x + 2y$$

(v) 5m, 3n and 4p

The addition of 5m, 3n and 4p is calculated as follows

$$5m + 3n + 4p = 5m + 3n + 4p$$

4. Evaluate:

(i)
$$6a - a - 5a - 2a$$

(ii)
$$2b - 3b - b + 4b$$

(iii)
$$3x - 2x - 4x + 7x$$

(iv)
$$5ab + 2ab - 6ab + ab$$

(v)
$$8x - 5y - 3x + 10y$$

Solution:

(i)
$$6a - a - 5a - 2a$$

The value of given expression is calculated as below

$$6a - a - 5a - 2a = (6 - 1 - 5 - 2) a$$

We get,

$$=(5-5-2)$$
 a

$$=$$
 - $2a$

Therefore, 6a - a - 5a - 2a = -2a

(ii)
$$2b - 3b - b + 4b$$

The given of given expression is calculated as below

$$2b - 3b - b + 4b = 2b + 4b - (3 + 1)b$$

We get,

$$=6b-4b$$

$$=2b$$

Therefore, 2b - 3b - b + 4b = 2b

(iii)
$$3x - 2x - 4x + 7x$$

The given expression is calculated as below

$$3x - 2x - 4x + 7x = 3x + 7x - 2x - 4x$$

$$= (3 + 7) x - (2 + 4) x$$

$$= 10x - 6x$$

$$=4x$$

Therefore,
$$3x - 2x - 4x + 7x = 4x$$

(iv)
$$5ab + 2ab - 6ab + ab$$

The given expression is calculated as below

$$5ab + 2ab - 6ab + ab = 5ab + 2ab + ab - 6ab$$

We get,

$$= 8ab - 6ab$$

$$= 2ab$$

Therefore,
$$5ab + 2ab - 6ab + ab = 2ab$$

(v)
$$8x - 5y - 3x + 10y$$

The given expression is calculated as below

$$8x - 5y - 3x + 10y = 8x - 3x + 10y - 5y$$

$$=5x+5y$$

Therefore,
$$8x - 5y - 3x + 10y = 5x + 5y$$

5. Evaluate:

(i)
$$-7x + 9x + 2x - 2x$$

(ii)
$$5ab - 2ab - 8ab + 6ab$$

(iii)
$$-8a - 3a + 12a + 13a - 6a$$

(iv)
$$19abc - 11abc - 12abc + 14abc$$

Solution:

(i)
$$-7x + 9x + 2x - 2x$$

The values of given expression is calculated as follows

$$-7x + 9x + 2x - 2x = 9x + 2x - 7x - 2x$$

$$=11x-9x$$

We get,

$$=2x$$

Hence,
$$-7x + 9x + 2x - 2x = 2x$$

(ii)
$$5ab - 2ab - 8ab + 6ab$$

The value of given expression is calculated as follows

$$5ab - 2ab - 8ab + 6ab = 5ab + 6ab - 2ab - 8ab$$

We get,

$$= 11ab - 10ab$$

$$= ab$$

Hence,
$$5ab - 2ab - 8ab + 6ab = ab$$

(iii)
$$-8a - 3a + 12a + 13a - 6a$$

The value of given expression is calculated as follows

$$-8a - 3a + 12a + 13a - 6a = 12a + 13a - (8a + 3a + 6a)$$

$$= 25a - 17a$$

$$=8a$$

Hence,
$$-8a - 3a + 12a + 13a - 6a = 8a$$

(iv)
$$19abc - 11abc - 12abc + 14abc$$

The value of given expression is calculated as follows

$$19abc - 11abc - 12abc + 14abc = abc (19 - 11 - 12 + 14)$$

$$=$$
 abc $(33 - 23)$

$$= 10abc$$

Hence, 19abc - 11abc - 12abc + 14abc = 10abc

6. Subtract the first term from the second:

- (i) 4ab, 6ba
- (ii) 4.8b, 6.8b
- (iii) 3.5abc, 10.5abc
- (iv) 3(1/2) mn, 8(1/2)nm

Solution:

(i) 4ab, 6ba

The subtraction of first term from the second term is calculated as below 6ba - 4ab = 2ab

(ii) 4.8b, 6.8b

The subtraction of first term from the second term is calculated as below 6.8b - 4.8b = 2b

(iii) 3.5abc, 10.5abc

The subtraction of first term from the second term is calculated as below 10.5abc - 3.5abc = 7abc

(iv) 3(1 / 2) mn, 8(1 / 2)nm

The subtraction of first term from the second term is calculated as below 8(1/2)nm - 3(1/2)mn = (17/2)nm - (7/2)mn

We get,

$$= [(17mn - 7mn) / 2]$$

- = (10/2)mn
- = 5mn

7. Simplify:

(i)
$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2$$

(ii)
$$4a + 3b - 2a - b$$

(iii)
$$2xy + 4yz + 5xy + 3yz - 6xy$$

(iv)
$$ab + 15ab - 11ab - 2ab$$

(v)
$$6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2$$

Solution:

(i)
$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2$$

The simplified form of the given expression is calculated as follows

$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2 = 2a^2b^2 + 8a^2b^2 + 5ab^2 - 3ab^2$$

We get,

$$=10a^2b^2+2ab^2$$

Therefore,
$$2a^2b^2 + 5ab^2 + 8a^2b^2 - 3ab^2 = 10a^2b^2 + 2ab^2$$

(ii)
$$4a + 3b - 2a - b$$

The simplified form of the given expression is calculated as follows

$$4a + 3b - 2a - b = 4a - 3a + 3b - b$$

$$=2a+2b$$

Therefore,
$$4a + 3b - 2a - b = 2a + 2b$$

(iii)
$$2xy + 4yz + 5xy + 3yz - 6xy$$

The simplified form of the given expression is calculated as follows

$$2xy + 4yz + 5xy + 3yz - 6xy = 2xy + 5xy - 6xy + 4yz + 3yz$$

$$= xy + 7yz$$

Therefore,
$$2xy + 4yz + 5xy + 3yz - 6xy = xy + 7yz$$

(iv)
$$ab + 15ab - 11ab - 2ab$$

The simplified form of the given expression is calculated as follows ab + 15ab - 11ab - 2ab = 16ab - 13ab

$$= 3ab$$

Therefore,
$$ab + 15ab - 11ab - 2ab = 3ab$$

(v)
$$6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2$$

The simplified form of the given expression is calculated as follows $6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2 = 6a^2 + 2a^2 + 5b^2 - 3b^2$

$$=4a^2+2b^2$$

Therefore,
$$6a^2 - 3b^2 + 2a^2 + 5b^2 - 4a^2 = 4a^2 + 2b^2$$

EXERCISE 19(B)

1. Find the sum of:

(i)
$$3a + 4b + 7c$$
, $-5a + 3b - 6c$

and
$$4a - 2b - 4c$$

(ii)
$$2x^2 + xy - y^2$$
, $-x^2 + 2xy + 3y^2$

and
$$3x^2 - 10xy + 4y^2$$

(iii)
$$x^2 - x + 1$$
, $-5x^2 + 2x - 2$

and
$$3x^2 - 3x + 1$$

(iv)
$$a^2 - ab + bc$$
, $2ab + bc - 2a^2$

and
$$-3bc + 3a^2 + ab$$

(v)
$$4x^2 + 7 - 3x$$
, $4x - x^2 + 8$

and
$$-10 + 5x - 2x^2$$

Solution:

(i)
$$3a + 4b + 7c$$
, $-5a + 3b - 6c$

and
$$4a - 2b - 4c$$

The sum of 3a + 4b + 7c, -5a + 3b - 6c and 4a - 2b - 4c is calculated as shown below

$$(3a + 4b + 7c) + (-5a + 3b - 6c) + (4a - 2b - 4c)$$

$$= 3a + 4a - 5a + 4b + 3b - 2b + 7c - 6c - 4c$$

We get,

$$= 2a + 5b - 3c$$

Hence, the sum of 3a + 4b + 7c, -5a + 3b - 6c and 4a - 2b - 4c is 3c

(ii)
$$2x^2 + xy - y^2$$
, $-x^2 + 2xy + 3y^2$

and
$$3x^2 - 10xy + 4y^2$$

The sum of $2x^2 + xy - y^2$, $-x^2 + 2xy + 3y^2$ and $3x^2 - 10xy + 4y^2$ is calculated as shown below

$$(2x^2 + xy - y^2) + (-x^2 + 2xy + 3y^2) + (3x^2 - 10xy + 4y^2)$$

$$= 2x^2 - x^2 + 3x^2 + xy + 2xy - 10xy + 3y^2 + 4y^2 - y^2$$

We get,

$$=4x^2-7xy+6y^2$$

Hence, the sum of $2x^2 + xy - y^2$, $-x^2 + 2xy + 3y^2$ and $3x^2 - 10xy + 4y^2$ is $4x^2 - 7xy + 6y^2$

(iii)
$$x^2 - x + 1$$
, $-5x^2 + 2x - 2$ and $3x^2 - 3x + 1$

The sum of $(x^2 - x + 1)$, $(-5x^2 + 2x - 2)$ and $(3x^2 - 3x + 1)$ is calculated as shown below $(x^2 - x + 1) + (-5x^2 + 2x - 2) + (3x^2 - 3x + 1)$

$$= x^2 - 5x^2 + 3x^2 + 2x - x - 3x + 1 + 1 - 2$$

$$= -x^2 - 2x$$

Hence, the sum of $(x^2 - x + 1)$, $(-5x^2 + 2x - 2)$ and $(3x^2 - 3x + 1)$ is $-x^2 - 2x$

(iv)
$$a^2 - ab + bc$$
, $2ab + bc - 2a^2$ and $-3bc + 3a^2 + ab$

The sum of $(a^2 - ab + bc)$, $(2ab + bc - 2a^2)$ and $(-3bc + 3a^2 + ab)$ is calculated as shown below

$$(a^2 - ab + bc) + (2ab + bc - 2a^2) + (-bc + 3a^2 + ab)$$

= $a^2 - 2a^2 + 3a^2 + 2ab + ab - ab + bc + bc - bc$

We get,

$$= 2a^2 + 2ab + bc$$

Hence, the sum of $(a^2 - ab + bc)$, $(2ab + bc - 2a^2)$ and $(-3bc + 3a^2 + ab)$ is $2a^2 + 2ab + bc$ (v) $4x^2 + 7 - 3x$, $4x - x^2 + 8$ and $-10 + 5x - 2x^2$

The sum of $(4x^2 + 7 - 3x)$, $(4x - x^2 + 8)$ and $(-10 + 5x - 2x^2)$ is calculated as shown below

$$(4x^2 + 7 - 3x) + (4x - x^2 + 8) + (-10 + 5x - 2x^2)$$

= $4x^2 - x^2 - 2x^2 + 7 + 8 - 10 + 4x + 5x - 3x$

We get,

$$= x^2 + 5 + 6x$$

Hence, the sum of $(4x^2 + 7 - 3x)$, $(4x - x^2 + 8)$ and $(-10 + 5x - 2x^2)$ is $x^2 + 5 + 6x$

2.Add the following expressions:

(i)
$$-17x^2 - 2xy + 23y^2$$
, $-9y^2 + 15x^2 + 7xy$

and $13x^2 + 3y^2 - 4xy$

(ii)
$$-x^2 - 3xy + 3y^2 + 8$$
, $3x^2 - 5y^2 - 3 + 4xy$

and
$$-6xy + 2x^2 - 2 + y^2$$

(iii)
$$a^3 - 2b^3 + a$$
, $b^3 - 2a^3 + b$

and
$$-2b + 2b^3 - 5a + 4a^3$$

Solution:

(i) The sum of
$$(-17x^2 - 2xy + 23y^2)$$
, $(-9y^2 + 15x^2 + 7xy)$ and $(13x^2 + 3y^2 - 4xy)$ is calculated as follows

$$(-17x^2 - 2xy + 23y^2) + (-9y^2 + 15x^2 + 7xy) + (13x^2 + 3y^2 - 4xy)$$

= $-17x^2 + 15x^2 + 13x^2 - 2xy - 4xy + 7xy + 23y^2 + 3y^2 - 9y^2$

We get,

$$= 11x^2 + xy + 17y^2$$

Therefore, the sum of $(-17x^2 - 2xy + 23y^2)$, $(-9y^2 + 15x^2 + 7xy)$ and $(13x^2 + 3y^2 - 4xy)$ is $11x^2 + xy + 17y^2$

(ii)
$$-x^2 - 3xy + 3y^2 + 8$$
, $3x^2 - 5y^2 - 3 + 4xy$ and $-6xy + 2x^2 - 2 + y^2$

The sum of $(-x^2 - 3xy + 3y^2 + 8)$, $(3x^2 - 5y^2 - 3 + 4xy)$ and $(-6xy + 2x^2 - 2 + y^2)$ is calculated as follows

$$(-x^2 - 3xy + 3y^2 + 8) + (3x^2 - 5y^2 - 3 + 4xy) + (-6xy + 2x^2 - 2 + y^2)$$

= -x^2 + 3x^2 + 2x^2 - 3xy - 6xy + 4xy + 3y^2 + y^2 - 5y^2 + 8 - 3 - 2

We get,

$$= 4x^2 - 5xy - y^2 + 3$$

Therefore, the sum of $(-x^2 - 3xy + 3y^2 + 8)$, $(3x^2 - 5y^2 - 3 + 4xy)$ and $(-6xy + 2x^2 - 2 + y^2)$ is $4x^2 - 5xy - y^2 + 3$

(iii)
$$a^3 - 2b^3 + a$$
, $b^3 - 2a^3 + b$ and $-2b + 2b^3 - 5a + 4a^3$

The sum of $(a^3 - 2b^3 + a)$, $(b^3 - 2a^3 + b)$ and $(-2b + 2b^3 - 5a + 4a^3)$ is calculated as follows

$$(a^3 - 2b^3 + a) + (b^3 - 2a^3 + b) + (-2b + 2b^3 - 5a + 4a^3)$$

= $a^3 + 4a^3 - 2a^3 - 2b^3 + b^3 + 2b^3 + a - 5a + b - 2b$

We get,

$$=3a^3+b^3-4a-b$$

Therefore, the sum of $(a^3 - 2b^3 + a)$, $(b^3 - 2a^3 + b)$ and $(-2b + 2b^3 - 5a + 4a^3)$ is $3a^3 + b^3 - 4a - b$

3. Evaluate:

(i)
$$3a - (a + 2b)$$

(ii)
$$(5x - 3y) - (x + y)$$

(iii)
$$(8a + 15b) - (3b - 7a)$$

(iv)
$$(8x + 7y) - (4y - 3x)$$

(v)
$$7 - (4a - 5)$$

Solution:

(i)
$$3a - (a + 2b)$$

The value of the given expression is calculated as below

$$3a - (a + 2b)$$

$$=3a-a-2b$$

$$=2a-2b$$

Taking 2 as common, we get

$$=2(a-b)$$

(ii)
$$(5x - 3y) - (x + y)$$

The value of the given expression is calculated as below

$$(5x - 3y) - (x + y)$$

$$=5x-x-3y-y$$

$$=4x-4y$$

Taking 4 as common, we get

$$=4(x-y)$$

(iii)
$$(8a + 15b) - (3b - 7a)$$

The value of the given expression is calculated as below

$$(8a + 15b) - (3b - 7a)$$

$$= 8a + 7a + 15b - 3b$$

On calculation, we get

$$= 15a + 12b$$

(iv)
$$(8x + 7y) - (4y - 3x)$$

The value of the given expression is calculated as below

$$(8x + 7y) - (4y - 3x)$$

$$= 8x + 3x + 7y - 4y$$

On further calculation, we get

$$= 11x + 3y$$

$$(v) 7 - (4a - 5)$$

The value of the given expression is calculated as below

$$7 - (4a - 5)$$

$$=7-4a+5$$

We get,

$$= 12 - 4a$$

4. Subtract:

(i)
$$5a - 3b + 2c$$
 from $a - 4b - 2c$

(ii)
$$4x - 6y + 3z$$
 from $12x + 7y - 21z$

(iii)
$$5 - a - 4b + 4c$$
 from $5a - 7b + 2c$

$$(iv) - 8x - 12y + 17z$$
 from $x - y - z$

(v)
$$2ab + cd - ac - 2bd$$
 from $ab - 2cd + 2ac + bd$

Solution:

(i)
$$5a - 3b + 2c$$
 from $a - 4b - 2c$

The value of the subtraction is calculated as follows

$$(a-4b-2c)-(5a-3b+2c)$$

$$= a - 5a - 4b + 3b - 2c - 2c$$

We get,

$$= -4a - b - 4c$$

(ii)
$$4x - 6y + 3z$$
 from $12x + 7y - 21z$

The value of the subtraction is calculated as follows

$$(12x + 7y - 21z) - (4x - 6y + 3z)$$

$$= 12x - 4x + 7y + 6y - 21z - 3z$$

On further calculation, we get

$$= 8x + 13y - 24z$$

(iii)
$$5 - a - 4b + 4c$$
 from $5a - 7b + 2c$

The value of the subtraction is calculated as follows

$$(5a-7b+2c)-(5-a-4b+4c)$$

$$= 5a + a - 7b + 4b + 2c - 4c - 5$$

We get,

$$=6a - 3b - 2c - 5$$

$$(iv) - 8x - 12y + 17z$$
 from $x - y - z$

The value of the subtraction is calculated as follows

$$(x-y-z)-(-8x-12y+17z)$$

$$= x + 8x + 12y - y - z - 17z$$

We get,

$$=9x+11y-18z$$

(v)
$$2ab + cd - ac - 2bd$$
 from $ab - 2cd + 2ac + bd$

The value of the subtraction is calculated as follows

$$(ab - 2cd + 2ac + bd) - (2ab + cd - ac - 2bd)$$

$$= ab - 2ab - 2cd - cd + 2ac + ac + bd + 2bd$$

On calculating further, we get

$$= - ab - 3cd + 3ac + 3bd$$

5.

- (i) Take -ab + bc ca from bc ca + ab.
- (ii) Take 5x + 6y 3z from 3x + 5y 4z.
- (iii) Take (-3/2) p + q r from (1/2)p (1/3)q (3/2) r
- (iv) Take $1 a + a^2$ from $a^2 + a + 1$

Solution:

(i) The value of the subtraction is calculated as,

$$(bc-ca+ab)-(-ab+bc-ca)$$

$$= bc - bc - ca + ca + ab + ab$$

We get,

$$= 2ab$$

Hence,
$$(bc - ca + ab) - (-ab + bc - ca) = 2ab$$

(ii) The value of the subtraction is calculated as,

$$(3x + 5y - 4z) - (5x + 6y - 3z)$$

$$= 3x - 5x + 5y - 6y - 4z + 3z$$

On simplification, we get

$$= -2x - y - z$$

Hence,
$$(3x + 5y - 4z) - (5x + 6y - 3z) = -2x - y - z$$

(iii) The value of the subtraction is calculated as,

$$[(1/2)p - (1/3)q - (3/2)r] - [(-3/2)p + q - r]$$

$$= (1/2)p + (3/2)p - (1/3)q - q - (3/2)r + r$$

We get,

$$= [(3p + 9p - 2q - 6q - 9r + 6r) / 6]$$

On further calculation, we get

$$= 2p - (4/3)q - (1/2)r$$

Hence,
$$[(1/2)p - (1/3)q - (3/2)r] - [(-3/2)p + q - r] = 2p - (4/3)q - (1/2)r$$

(iv) The value of the subtraction is calculated as,

$$(a^2 + a + 1) - (1 - a + a^2)$$

$$= a^2 - a^2 + a + a + 1 - 1$$

We get, = a + a

=2a

6. From the sum of x + y - 2z and 2x - y + z subtract x + y + z. Solution:

The value of terms as per the question is calculated as follows

$$(x + y - 2z) + (2x - y + z) - (x + y + z)$$

$$= x + 2x - x + y - y - y - 2z - z + z$$

We get,

$$=2x-y-2z$$

Therefore, (x + y - 2z) + (2x - y + z) - (x + y + z) = 2x - y - 2z

7. From the sum of 3a - 2b + 4c and 3b - 2c subtract a - b - c. Solution:

The value of terms as per the question is calculated as shown below

$$(3a-2b+4c)+(3b-2c)-(a-b-c)$$

$$= 3a - 2b + 4c + 3b - 2c - a + b + c$$

On further calculation, we get

$$= 3a - a + 3b + b - 2b + 4c + c - 2c$$

$$= 2a + 2b + 3c$$

Hence,
$$(3a-2b+4c)+(3b-2c)-(a-b-c)=2a+2b+3c$$

8. Subtract x - 2y - z from the sum of 3x - y + z and x + y - 3z. Solution:

The value of terms as per the question is calculated as follows

$$(3x - y + z) + (x + y - 3z) - (x - 2y - z)$$

$$= 3x + x - x - y + y + 2y + z - 3z + z$$

We get,

$$=3x+2y-z$$

Therefore,
$$(3x - y + z) + (x + y - 3z) - (x - 2y - z) = 3x + 2y - z$$

9. Subtract the sum of x + y and x - z from the sum of x - 2z and x + y + z Solution:

The value of terms as per the question is calculated as follows

$$(x-2z)+(x+y+z)-\{(x+y)+(x-z)\}$$

On further calculation, we get

$$= x + x - x - x + y - y + z + z - 2z$$

$$= 0$$

Therefore,
$$(x - 2z) + (x + y + z) - \{(x + y) + (x - z)\} = 0$$

10. By how much should x + 2y - 3z be increased to get 3x? Solution:

The terms calculated as per the question is as follows

$$3x - (x + 2y - 3z)$$

$$=3x-x-2y+3z$$

We get,

$$=2x-2y+3z$$

11. The sum of two expressions is $5x^2 - 3y^2$. If one of them is $3x^2 + 4xy - y^2$, find the other.

Solution:

The other expression is calculated as follows

$$(5x^2 - 3y^2) - (3x^2 + 4xy - y^2)$$

$$=5x^2-3x^2-4xy-3y^2+y^2$$

We get,

$$=2x^{2}-4xy-2y^{2}$$

12. The sum of two expressions is $3a^2 + 2ab - b^2$. If one of them is $2a^2 + 3b^2$, find the other.

Solution:

The other expression is calculated as follows

$$(3a^2 + 2ab - b^2) - (2a^2 + 3b^2)$$

On simplification, we get

$$=3a^2-2a^2-b^2-3b^2+2ab$$

$$= a^2 - 4b^2 + 2ab$$

EXERCISE 19(C)

1. Fill in the blanks:

(i)
$$6 \times 3 = \dots$$
 and $6x \times 3x = \dots$

(ii)
$$6 \times 3 = \dots$$
 and $6x^2 \times 3x^3 = \dots$

(iii)
$$5 \times 4 = \dots$$
 and $5x \times 4y = \dots$

(iv)
$$4 \times 7 = \dots$$
 and $4ax \times 7x = \dots$

(v)
$$6 \times 2 = \dots$$
 and $6xy \times 2xy = \dots$

Solution:

(i)
$$6 \times 3 = 18$$

Hence,

$$6x \times 3x = 6 \times 3 \times x \times x$$

We get,

$$= 18 \times x^2$$

$$= 18x^2$$

Therefore, $6 \times 3 = 18$ and $6x \times 3x = 18x^2$

(ii)
$$6 \times 3 = 18$$

Hence,

$$6x^2 \times 3x^3 = 6 \times 3 \times x^{2+3}$$

$$= 18 \times x^5$$

$$=18x^5$$

Therefore, $6 \times 3 = 18$ and $6x^2 \times 3x^3 = 18x^5$

(iii)
$$5 \times 4 = 20$$
 and $5x \times 4y = 5 \times 4 \times x \times y$

$$=20xy$$

Therefore, $5 \times 4 = 20$ and $5x \times 4y = 20xy$

(iv)
$$4 \times 7 = 28$$

Hence,

$$4ax \times 7x = 4 \times 7 \times a \times x \times x$$

$$= 28 \times a \times x^2$$

$$=28ax^2$$

Therefore, $4 \times 7 = 28$ and $4ax \times 7x = 28ax^2$

(v)
$$6 \times 2 = 12$$

Hence,

$$6xy \times 2xy = 6 \times 2 \times x^{1+1} \times y^{1+1}$$

$$= 12 \times x^2 \times y^2$$

$$= 12x^2y^2$$

Therefore, $6 \times 2 = 12$ and $6xy \times 2xy = 12x^2y^2$

2. Fill in the blanks:

- (i) $4x \times 6x \times 2 =$
- (ii) $3ab \times 6ax =$
- (iii) $x \times 2x^2 \times 3x^3 =$
- (iv) $5 \times 5a^3 = \dots$
- (v) $6 \times 6x^2 \times 6x^2y^2 = \dots$

Solution:

- (i) $4x \times 6x \times 2 = 4 \times 6 \times 2 \times x \times x$
- $=48 \times x^2$
- We get,
- $=48x^{2}$
- Hence, $4x \times 6x \times 2 = 48x^2$
- (ii) $3ab \times 6ax = 3 \times 6 \times a \times a \times b \times x$
- $= 18 \times a^2 \times b \times x$
- We get,
- $= 18a^2bx$
- Hence, $3ab \times 6ax = 18a^2bx$
- (iii) $\mathbf{x} \times 2\mathbf{x}^2 \times 3\mathbf{x}^3 = 2 \times 3 \times \mathbf{x} \times \mathbf{x}^2 \times \mathbf{x}^3$
- $= 6 \times x^{1+2+3}$
- $=6 \times x^6$
- $= 6x^6$
- Hence, $x \times 2x^2 \times 3x^3 = 6x^6$
- (iv) $5 \times 5a^3 = 5 \times 5 \times a^3$
- $=25\times a^3$
- We get,
- $= 25a^{3}$
- Hence, $5 \times 5a^3 = 25a^3$
- (v) $6 \times 6x^2 \times 6x^2y^2 = 6 \times 6 \times 6 \times x^2 \times x^2 \times y^2$
- $= 216 \times x^{2+2} \times y^2$
- $= 216 \times x^4 \times y^2$
- We get,
- $=216x^4y^2$
- Hence, $6 \times 6x^2 \times 6x^2y^2 = 216x^4y^2$

3. Find the value of:

- (i) $3x^3 \times 5x^4$
- (ii) $5a^2 \times 7a^7$
- (iii) $3abc \times 6ac^3$
- (iv) $a^2b^2 \times 5a^3b^4$

(v) $2x^2y^3 \times 5x^3y^4$

Solution:

(i)
$$3x^3 \times 5x^4$$

$$3x^3 \times 5x^4 = 3 \times 5 \times x^3 \times x^4$$

$$= 15 \times x^{3+4}$$

We get,

$$= 15 \times x^7$$

$$= 15x^{7}$$

Hence, the value of $3x^3 \times 5x^4$ is $15x^7$

(ii)
$$5a^2 \times 7a^7$$

$$5a^2 \times 7a^7 = 5 \times 7 \times a^2 \times a^7$$

$$= 35 \times a^{2+7}$$

$$=35\times a^9$$

We get,

$$=35a^{9}$$

Hence, the value of $5a^2 \times 7a^7$ is $35a^9$

(iii)
$$3abc \times 6ac^3$$

$$3abc \times 6ac^3 = 3 \times 6 \times a \times a \times b \times c \times c^3$$

$$= \! 18 \times a^{1+1} \times b \times c^{1+3}$$

$$= 18 \times a^2 \times b \times c^4$$

We get,

$$= 18a^2bc^4$$

Hence, the value of $3abc \times 6ac^3$ is $18a^2bc^4$

(iv)
$$a^2b^2 \times 5a^3b^4$$

$$a^{2}b^{2} \times 5a^{3}b^{4} = 5 \times a^{2} \times a^{3} \times b^{2} \times b^{4}$$

$$= 5 \times a^{2+3} \times b^{2+4}$$

$$= 5 \times a^5 \times b^6$$

We get,

$$=5a^5b^6$$

Hence, the value of $a^2b^2 \times 5a^3b^4$ is $5a^5b^6$

(v)
$$2x^2y^3 \times 5x^3y^4$$

$$2x^{2}y^{3} \times 5x^{3}y^{4} = 2 \times 5 \times x^{2} \times x^{3} \times y^{3} \times y^{4}$$

$$= 10 \times x^{2+3} \times y^{3+4}$$

We get,

$$= 10 \times x^5 \times y^7$$

$$= 10x^5y^7$$

Hence, the value of $2x^2y^3 \times 5x^3y^4$ is $10x^5y^7$

4. Multiply:

- (i) a + b by ab
- (ii) 3ab 4b by 3ab
- (iii) 2xy 5by by 4bx
- (iv) 4x + 2y by 3xy
- (v) 1 + 4x by x

Solution:

(i) a + b by ab

The multiplication of a + b by ab is calculated as,

$$(a + b) \times ab = a \times ab + b \times ab$$

$$= a^{1+1}b + ab^{1+1}$$

We get,

$$= a^2b + ab^2$$

Hence, (a + b) by $ab = a^2b + ab^2$

The multiplication of 3ab - 4b by 3ab is calculated as,

$$(3ab - 4b) \times 3ab = 3ab \times 3ab - 4b \times 3ab$$

$$=9a^{1+1}b^{1+1}-12ab^{1+1}$$

We get,

$$=9a^2b^2-12ab^2$$

Therefore, (3ab - 4b) by $3ab = 9a^2b^2 - 12ab^2$

(iii)
$$2xy - 5by$$
 by $4bx$

The multiplication of 2xy - 5by by 4bx is calculated as,

$$(2xy - 5by) \times 4bx = 2xy \times 4bx - 5by \times 4bx$$

$$= 8bx^{1+1}y - 20b^{1+1}xy$$

We get,

$$=8bx^2y-20b^2xy$$

Therefore, (2xy - 5by) by $4bx = 8bx^2y - 20b^2xy$

(iv)
$$4x + 2y$$
 by $3xy$

The multiplication of 4x + 2y by 3xy is calculated as,

$$(4x + 2y) \times 3xy = 4x \times 3xy + 2y \times 3xy$$

On simplification, we get

$$= 12x^{1+1}y + 6xy^{1+1}$$

$$= 12x^2y + 6xy^2$$

Therefore,
$$(4x + 2y)$$
 by $3xy = 12x^2y + 6xy^2$

(v)
$$1 + 4x$$
 by x

The multiplication of (1 + 4x) by x is calculated as,

$$(1+4x) \times x = 1 \times x + 4x \times x$$

On simplification, we get

$$= x + 4x^{1+1}$$

$$= x + 4x^2$$

Therefore, (1 + 4x) by $x = x + 4x^2$

5. Multiply:

(i)
$$-x + y - z$$
 and $-2x$

(ii)
$$xy - yz$$
 and x^2yz^2

(iii)
$$2xyz + 3xy$$
 and $-2y^2z$

$$(iv) - 3xy^2 + 4x^2y \text{ and } -xy$$

(v)
$$4xy$$
 and $-x^2y - 3x^2y^2$

Solution:

$$(i) - x + y - z$$
 and $-2x$

The multiplication of the given expression is calculated as,

$$(-x + y - z) \times -2x = -x \times -2x + y \times -2x - z \times -2x$$

On further calculation, we get

$$=2x^{1+1}-2xy+2xz$$

$$=2x^2-2xy+2xz$$

Hence, the multiplication of (-x + y - z) and -2x is $2x^2 - 2xy + 2xz$

(ii)
$$xy - yz$$
 and x^2yz^2

The multiplication of the given expression is calculated as,

$$(xy - yz) \times (x^2yz^2) = xy \times x^2yz^2 - yz \times x^2yz^2$$

We get,

$$= x^{1+2}y^{1+1}z^2 - x^2y^{1+1}z^{1+2}$$

$$= x^3y^2z^2 - x^2y^2z^3$$

Hence, the multiplication of (xy - yz) and $x^2yz^2 = x^3y^2z^2 - x^2y^2z^3$

(iii)
$$2xyz + 3xy$$
 and $-2y^2z$

The multiplication of the given expression is calculated as,

$$(2xyz + 3xy) \times -2y^2z = 2xyz \times -2y^2z + 3xy \times -2y^2z$$

On further calculation, we get

$$= -4xy^{1+2}z^{1+1} - 6xy^{1+2}z$$

$$= -4xy^3z^2 - 6xy^3z$$

Hence, the multiplication of 2xyz + 3xy and $-2y^2z = -4xy^3z^2 - 6xy^3z$

$$(iv) - 3xy^2 + 4x^2y$$
 and $-xy$

The multiplication of the given expression is calculated as,

$$(-3xy^2 + 4x^2y) \times -xy = 3x^{1+1}y^{2+1} - 4x^{2+1}y^{1+1}$$

On calculation, we get

$$=3x^2y^3-4x^3y^2$$

Hence, the multiplication of $-3xy^2 + 4x^2y$ and $-xy = 3x^2y^3 - 4x^3y^2$

(v)
$$4xy$$
 and $-x^2y - 3x^2y^2$

The multiplication of the given expression is calculated as,

$$(-x^2y - 3x^2y^2) \times 4xy = -x^2y \times 4xy - 3x^2y^2 \times 4xy$$

On further calculation, we get

$$= -4x^{2+1}y^{1+1} - 12x^{2+1}y^{2+1}$$

$$= -4x^3y^2 - 12x^3y^3$$

Hence, the multiplication of 4xy and $-x^2y - 3x^2y^2 = -4x^3y^2 - 12x^3y^3$

6. Multiply:

(i)
$$3a + 4b - 5c$$
 and $3a$

(ii)
$$-5xy$$
 and $-xy^2 - 6x^2y$

Solution:

(i)
$$3a + 4b - 5c$$
 and $3a$

The multiplication of the given expression is calculated as,

$$(3a + 4b - 5c) \times 3a = 3a \times 3a + 4b \times 3a - 5c \times 3a$$

On further calculation, we get

$$= 9a^{1+1} + 12ab - 15ac$$

$$= 9a^2 + 12ab - 15ac$$

Therefore, the multiplication of 3a + 4b - 5c and $3a = 9a^2 + 12ab - 15ac$

(ii)
$$-5xy$$
 and $-xy^2 - 6x^2y$

The multiplication of the given expression is calculated as,

$$-5xy \times (-xy^2 - 6x^2y) = -5xy \times -xy^2 - 5xy \times -6x^2y$$

On further calculation, we get

$$=5x^{1+1}y^{1+2}+30x^{1+2}y^{1+1}$$

$$= 5x^2y^3 + 30x^3y^2$$

Therefore, the multiplication of -5xy and $-xy^2 - 6x^2y = 5x^2y^3 + 30x^3y^2$

7. Multiply:

(i)
$$x + 2$$
 and $x + 10$

(ii)
$$x + 5$$
 and $x - 3$

(iii)
$$x - 5$$
 and $x + 3$

(iv)
$$x-5$$
 and $x-3$

(v)
$$2x + y$$
 and $x + 3y$

Solution:

(i)
$$x + 2$$
 and $x + 10$

The given expression is calculated as follows

$$(x + 2) \times (x + 10) = x \times (x + 10) + 2 \times (x + 10)$$

$$= x^2 + 10x + 2x + 20$$

$$= x^2 + 12x + 20$$

Hence, the multiplication of (x + 2) and $(x + 10) = x^2 + 12x + 20$

(ii)
$$x + 5$$
 and $x - 3$

The given expression is calculated as follows

$$(x+5) \times (x-3) = x \times (x-3) + 5 \times (x-3)$$

On simplification, we get

$$= x^2 - 3x + 5x - 15$$

$$= x^2 + 2x - 15$$

Hence, the multiplication of (x + 5) and $(x - 3) = x^2 + 2x - 15$

(iii)
$$x - 5$$
 and $x + 3$

The given expression is calculated as follows

$$(x-5) \times (x+3) = x \times (x+3) - 5 \times (x+3)$$

On further calculation, we get

$$= x^2 + 3x - 5x - 15$$

$$= x^2 - 2x - 15$$

Hence, the multiplication of (x - 5) and $(x + 3) = x^2 - 2x - 15$

(iv)
$$x - 5$$
 and $x - 3$

The given expression is calculated as,

$$(x-5) \times (x-3) = x \times (x-3) - 5 \times (x-3)$$

On further calculation, we get

$$= x^2 - 3x - 5x + 15$$

$$= x^2 - 8x + 15$$

Hence, the multiplication of (x - 5) and $(x - 3) = x^2 - 8x + 15$

(v)
$$2x + y \text{ and } x + 3y$$

The given expression is calculated as,

$$(2x + y) \times (x + 3y) = 2x \times (x + 3y) + y \times (x + 3y)$$

On simplification, we get

$$= 2x^2 + 6xy + xy + 3y^2$$

$$=2x^2+7xy+3y^2$$

Hence, the multiplication of (2x + y) and $(x + 3y) = 2x^2 + 7xy + 3y^2$

8. Multiply:

- (i) 3abc and $-5a^2b^2c$
- (ii) x y + z and -2x
- (iii) 2x 3y 5z and -2y
- $(iv) 8xyz + 10 x^2yz^3$ and xyz
- (v) xyz and $-13xy^2z + 15x^2yz 6xyz^2$

Solution:

(i) 3abc and $-5a^2b^2c$

The given expression is calculated as follows,

$$3abc \times -5a^2b^2c = 3 \times -5 \times a \times a^2 \times b \times b^2 \times c \times c$$

On further calculation, we get

$$= -15 \times a^{1+2} \times b^{1+2} \times c^{1+1}$$

$$=$$
 - 15 \times a³ \times b³ \times c²

$$= -15a^3b^3c^2$$

Therefore, the multiplication of 3abc and $-5a^2b^2c = -15a^3b^3c^2$

(ii)
$$x - y + z$$
 and $-2x$

The given expression is calculated as follows,

$$(x - y + z) \times -2x = x \times -2x - y \times -2x + z \times -2x$$

On simplification, we get

$$= -2x^{1+1} + 2xy - 2xz$$

$$= -2x^2 + 2xy - 2xz$$

Therefore, the multiplication of x - y + z and $-2x = -2x^2 + 2xy - 2xz$

(iii)
$$2x - 3y - 5z$$
 and $-2y$

The given expression is calculated as follows,

$$(2x - 3y - 5z) \times -2y = 2x \times -2y - 3y \times -2y - 5z \times -2y$$

On further calculation, we get

$$= -4xy + 6y^{1+1} + 10yz$$

$$= -4xy + 6y^2 + 10yz$$

Therefore, the multiplication of 2x - 3y - 5z and $-2y = -4xy + 6y^2 + 10yz$

$$(iv) - 8xyz + 10 x^2yz^3$$
 and xyz

The given expression is calculated as follows,

$$(-8xyz + 10x^2yz^3) \times xyz = -8xyz \times xyz + 10x^2yz^3 \times xyz$$

On further calculation, we get

$$= -8x^{1+1}y^{1+1}z^{1+1} + 10x^{2+1}y^{1+1}z^{3+1}$$

$$= -8x^2y^2z^2 + 10x^3y^2z^4$$

Therefore, the multiplication of $-8xyz + 10 x^2yz^3$ and $xyz = -8x^2y^2z^2 + 10x^3y^2z^4$

(v)
$$xyz$$
 and $-13xy^2z + 15x^2yz - 6xyz^2$

The given expression is calculated as follows,

$$xyz \times (-13xy^2z + 15x^2yz - 6xyz^2) = xyz \times -13xy^2z + xyz \times 15x^2yz - xyz \times 6xyz^2$$

On simplification, we get

= -
$$13x^{1+1}y^{1+2}z^{1+1} + 15x^{1+2}y^{1+1}z^{1+1} - 6x^{1+1}y^{1+1}z^{1+2}$$

We get,

$$= -13x^2y^3z^2 + 15x^3y^2z^2 - 6x^2y^2z^3$$

Therefore, the multiplication of xyz and $-13xy^2z + 15x^2yz - 6xyz^2 = -13x^2y^3z^2 + 15x^3y^2z^2 - 6x^2y^2z^3$

9. Find the product of:

- (i) xy ab and xy + ab
- (ii) 2abc 3xy and 2abc + 3xy
- (iii) a + b c and 2a 3b
- (iv) 5x 6y 7z and 2x + 3y
- (v) 5x 6y 7z and 2x + 3y + z

Solution:

(i) xy - ab and xy + ab

The product of the given expression is calculated as,

$$(xy - ab) \times (xy + ab) = xy \times (xy + ab) - ab \times (xy + ab)$$

On simplification, we get

$$= xy \times xy + xy \times ab - ab \times xy - ab \times ab$$

$$= x^2y^2 + abxy - abxy - a^2b^2$$

$$= x^2y^2 - a^2b^2$$

Hence, the product of (xy - ab) and $(xy + ab) = x^2y^2 - a^2b^2$

(ii)
$$2abc - 3xy$$
 and $2abc + 3xy$

The product of the given expression is calculated as,

$$(2abc - 3xy) \times (2abc + 3xy)$$

$$= 2abc \times (2abc + 3xy) - 3xy \times (2abc + 3xy)$$

We get,

$$= 2abc \times 2abc + 2abc \times 3xy - 3xy \times 2abc - 3xy \times 3xy$$

$$=4a^2b^2c^2+6abcxy-6abcxy-9x^2y^2$$

$$=4a^2b^2c^2-9x^2y^2$$

Hence, the product of 2abc - 3xy and $2abc + 3xy = 4a^2b^2c^2 - 9x^2y^2$

(iii)
$$a + b - c$$
 and $2a - 3b$

The product of the given expression is calculated as,

$$(a+b-c)\times(2a-3b)$$

$$= a \times (2a - 3b) + b \times (2a - 3b) - c \times (2a - 3b)$$

$$= a \times 2a - a \times 3b + b \times 2a - b \times 3b - c \times 2a + c \times 3b$$

$$=2a^{1+1}-3ab+2ab-3b^{1+1}-2ac+3bc$$

We get,

$$= 2a^2 - ab - 3b^2 - 2ac + 3bc$$

Hence, the product of a + b - c and $2a - 3b = 2a^2 - ab - 3b^2 - 2ac + 3bc$

(iv)
$$5x - 6y - 7z$$
 and $2x + 3y$

The product of the given expression is calculated as,

$$(5x - 6y - 7z) \times (2x + 3y)$$

$$= (5x - 6y - 7z) \times 2x + (5x - 6y - 7z) \times 3y$$

$$= 5x \times 2x - 6y \times 2x - 7z \times 2x + 5x \times 3y - 6y \times 3y - 7z \times 3y$$

$$= 10x^2 - 12xy - 14xz + 15xy - 18y^2 - 21yz$$

$$= 10x^2 + 3xy - 14xz - 18y^2 - 21yz$$

Hence, the product of
$$5x - 6y - 7z$$
 and $2x + 3y = 10x^2 + 3xy - 14xz - 18y^2 - 21yz$

(v)
$$5x - 6y - 7z$$
 and $2x + 3y + z$

The product of the given expression is calculated as,

$$(5x - 6y - 7z) \times (2x + 3y + z)$$

$$= (5x - 6y - 7z) \times 2x + (5x - 6y - 7z) \times 3y + (5x - 6y - 7z) \times z$$

$$=5x\times2x-6y\times2x-7z\times2x+5x\times3y-6y\times3y-7z\times3y+5x\timesz-6y\timesz-7z\times z$$
 We get,

$$= 10x^2 - 12xy - 14xz + 15xy - 18y^2 - 21yz + 5xz - 6yz - 7z^2$$

$$= 10x^2 - 12xy + 15xy - 14xz + 5xz - 18y^2 - 21yz - 6yz - 7z^2$$

$$= 10x^2 + 3xy - 9xz - 18y^2 - 27yz - 7z^2$$

Hence, the product of 5x - 6y - 7z and $2x + 3y + z = 10x^2 + 3xy - 9xz - 18y^2 - 27yz - 7z^2$

EXERCISE 19(D)

1. Divide:

- (i) 3a by a
- (ii) 15x by 3x
- (iii) 16m by 4
- (iv) $20x^2$ by 5x
- (v) $30p^2$ by $10p^2$

Solution:

- (i) 3a by a
- $3a \div a$

This can be written as,

$$3a / a = (3 \times a) / a$$

$$=3$$

Hence, $3a \div a = 3$

(ii) 15x by 3x

$$15x \div 3x$$

$$15x / 3x = (15 \times x) / (3x \times x)$$

This can be written as,

$$= (3 \times 5 \times x) / (3 \times x)$$

We get,

Hence, $15x \div 3x = 5$

(iii) 16m by 4

$$16m \div 4$$

$$16m / 4 = (16 \times m) / 4$$

This can be written as,

$$= (4 \times 4 \times m) / 4$$

We get,

$$=4m$$

Hence, $16m \div 4 = 4m$

(iv) $20x^2$ by 5x

$$20x^2 \div 5x$$

$$20x^2 / 5x = (20 \times x^2) / (5 \times x)$$

This can be written as,

$$= (4 \times 5 \times x^{2-1}) / 5$$

$$=4\times x$$

$$=4x$$

Hence,
$$20x^2 \div 5x = 4x$$

(v)
$$30p^2$$
 by $10p^2$

$$30p^2 \div 10p^2 = (30 \times p^2) / (10 \times p^2)$$

This can be written as,

$$= (3 \times 10 \times p^{2-2}) / 10$$

$$= 3 \times p^0$$

$$=3\times1$$

$$=3$$

Hence, $30p^2 \div 10p^2 = 3$

2. Simplify:

(i)
$$2x^5 \div x^2$$

(ii)
$$6a^8 \div 3a^3$$

$$(iv)$$
 – $24a^2b^2c^2 \div 6ab$

$$(v) - 5x^2y \div xy^2$$

Solution:

(i)
$$2x^5 \div x^2$$

$$= (2 \times x^5) / x^2$$

$$=$$
 $2 \times x^{5-2}$

$$= 2 \times x^3$$

We get,

$$=2x^3$$

Hence,
$$2x^5 \div x^2 = 2x^3$$

(ii)
$$6a^{8} \div 3a^{3}$$

$$= (6 \times a^8) / (3 \times a^3)$$

This can be written as,

$$= (2 \times 3 \times a^{8-3}) / 3$$

We get,

$$= 2 \times a^5$$

$$= 2a^5$$

Hence,
$$6a^8 \div 3a^3 = 2a^5$$

$$= (20 \times \mathbf{x} \times \mathbf{y}) / (-5 \times \mathbf{x} \times \mathbf{y})$$

This can be written as,

$$= (4 \times 5) / - 5$$

$$= -4$$

Hence,
$$20xy \div - 5xy = -4$$

$$(iv) - 24a^2b^2c^2 \div 6ab$$

$$= (-24 \times a^2 \times b^2 \times c^2) / (6 \times a \times b)$$

This can be written as,

=
$$(-4 \times 6 \times a^{2-1} \times b^{2-1} \times c^2) / 6$$

We get,

$$= -4 \times a \times b \times c^2$$

$$= -4abc^2$$

Hence,
$$-24a^2b^2c^2 \div 6ab = -4abc^2$$

$$(v) - 5x^2y \div xy^2$$

$$= (-5 \times x^2 \times y) / (x \times y^2)$$

This can be written as,

$$= (-5 \times x^{2-1}) / y^{2-1}$$

We get,

$$= (-5 \times x) / y$$

$$= -5x/y$$

Hence,
$$-5x^2y \div xy^2 = -5x / y$$

3. Divide:

(i)
$$(-3m/4)$$
 by $2m$

$$(ii) - 15p^6q^8$$
 by $-5p^6q^7$

(iii)
$$-21m^5n^7$$
 by $14m^2n^2$

(iv)
$$36a^4x^5y^6$$
 by $4x^2a^3y^2$

(v)
$$20x^3a^6$$
 by $5xy$

Solution:

(i)
$$(-3m/4)$$
 by $2m$

$$= -3m/4 \div 2m = -3m/4 \times 1/2m$$

$$= - (3 \times m) / (4 \times 2 \times m)$$

We get,

$$= -3/8$$

Hence,
$$(-3m/4) \div 2m = -3/8$$

(ii)
$$-15p^6q^8$$
 by $-5p^6q^7$

$$-15p^{6}q^{8} \div -5p^{6}q^{7} = (-15 \times p^{6} \times q^{8}) / (-5 \times p^{6} \times q^{7})$$

This can be written as,

$$= (3 \times 5 \times q^{8-7}) / 5$$

$$= 3 \times q$$

$$=3q$$

Hence,
$$-15p^6q^8 \div -5p^6q^7 = 3q$$

$$(iii) - 21m^5n^7$$
 by $14m^2n^2$

$$-21\text{m}^5\text{n}^7 \div 14\text{m}^2\text{n}^2 = (-21 \times \text{m}^5 \times \text{n}^7) / (14 \times \text{m}^2 \times \text{n}^2)$$

This can be written as,

=
$$(-3 \times 7 \times m^{5-2} \times n^{7-2}) / (2 \times 7)$$

$$= (-3 \times m^3 \times n^5) / 2$$

We get,

$$= -3m^3n^5 / 2$$

Hence, $-21\text{m}^5\text{n}^7 \div 14\text{m}^2\text{n}^2 = -3\text{m}^3\text{n}^5 / 2$

(iv)
$$36a^4x^5y^6$$
 by $4x^2a^3y^2$

$$36a^4x^5y^6 \div 4x^2a^3y^2 = (36 \times a^4 \times x^5 \times y^6) / (4 \times x^2 \times a^3 \times y^2)$$

This can be written as,

$$= (4 \times 9 \times a^{4-3} \times x^{5-2} \times y^{6-2}) / 4$$

$$= 9 \times a^1 \times x^3 \times y^4$$

We get,

$$=9ax^3y^4$$

Hence, $36a^4x^5y^6 \div 4x^2a^3y^2 = 9ax^3y^4$

(v)
$$20x^3a^6$$
 by $5xy$

$$20x^3a^6 \div 5xy = (20 \times x^3 \times a^6) / (5 \times x \times y)$$

This can be written as,

$$= (4 \times 5 \times x^{3-1} \times a^6) / (5 \times y)$$

We get,

$$= (4 \times x^2 \times a^6) / y$$

$$=4x^2a^6/y$$

Hence, $20x^3a^6 \div 5xy = 4x^2a^6 / y$

4. Simplify:

(i)
$$(-15\text{m}^5\text{n}^2) / (-3\text{m}^5)$$

(ii)
$$35x^4y^2 / - 15x^2y^2$$

(iii)
$$(-24x^6y^2) / (6x^6y)$$

Solution:

(i)
$$(-15\text{m}^5\text{n}^2)$$
 / (-3m^5) = $(-15 \times \text{m}^5 \times \text{n}^2)$ / $(-3 \times \text{m}^5)$

This can be written as,

$$= (3 \times 5 \times m^{5-5} \times n^2) / 3$$

$$= 5 \times m^0 \times n^2$$

$$= 5 \times 1 \times n^2$$

$$=5n^2$$

Hence, $(-15m^5n^2) / (-3m^5) = 5n^2$

(ii)
$$35x^4y^2 / - 15x^2y^2$$

$$35x^4y^2$$
 / - $15x^2y^2 = (35 \times x^4 \times y^2)$ / (- $15 \times x^2 \times y^2$)

This can be written as,

$$= - (5 \times 7 \times x^{4-2} \times y^{2-2}) / (3 \times 5)$$

$$= - (7 \times x^2 \times y^0) / 3$$

We get,

$$= -7x^2y/3$$

Hence,
$$35x^4y^2 / - 15x^2y^2 = -7x^2y / 3$$

(iii)
$$(-24x^6y^2)/(6x^6y)$$

$$(-24x^6y^2)/(6x^6y) = (-25 \times x^6 \times y^2)/(6 \times x^6 \times y)$$

This can be written as,

$$= (-4 \times 6 \times x^{6-6} \times y^{2-1}) / 6$$

$$= -4 \times x^0 \times y^1$$

$$= -4y$$

Hence,
$$(-24x^6y^2)/(6x^6y) = -4y$$

5. Divide:

(i)
$$9x^3 - 6x^2$$
 by $3x$

(ii)
$$6m^2 - 16m^3 + 10m^4$$
 by $-2m$

(iii)
$$15x^3y^2 + 25x^2y^3 - 36x^4y^4$$
 by $5x^2y^2$

(iv)
$$36a^3x^5 - 24a^4x^4 + 18a^5x^3$$
 by $-6a^3x^3$

Solution:

(i)
$$9x^3 - 6x^2$$
 by $3x$

$$9x^3 - 6x^2 \div 3x = (9 \times x^3 - 6 \times x^2) / (3 \times x)$$

Separating the terms, we get

$$= (9 \times x^3) / (3 \times x) - (6 \times x^2) / (3 \times x)$$

We get,

$$= 3 \times x^{3-1} - 2 \times x^{2-1}$$

$$=3x^2-2x$$

Hence,
$$9x^3 - 6x^2 \div 3x = 3x^2 - 2x$$

(ii)
$$6m^2 - 16m^3 + 10m^4$$
 by $-2m$

$$6m^2 - 16m^3 + 10m^4 \div - 2m = (6 \times m^2 - 16 \times m^3 + 10 \times m^4) / - 2 \times m$$

Separating the terms, we get

$$= (6 \times m^{2} / - 2 \times m) - (16 \times m^{3}) / (-2 \times m) + (10 \times m^{4}) / (-2 \times m)$$

$$= -3 \times m^{2-1} + 8 \times m^{3-1} - 5 \times m^{4-1}$$

$$= -3 \times m + 8 \times m^2 - 5 \times m^3$$

$$= -3m + 8m^2 - 5m^3$$

Hence,
$$6m^2 - 16m^3 + 10m^4 \div - 2m = -3m + 8m^2 - 5m^3$$

(iii)
$$15x^3y^2 + 25x^2y^3 - 36x^4y^4$$
 by $5x^2y^2$

$$15x^{3}y^{2} + 25x^{2}y^{3} - 36x^{4}y^{4} \div 5x^{2}y^{2} = (15x^{3}y^{2} + 25x^{2}y^{3} - 36x^{4}y^{4}) / (5x^{2}y^{2})$$

$$= (15 \times x^{3} \times y^{3}) / (5 \times x^{2} \times y^{2}) + (25 \times x^{2} \times y^{3}) / (5 \times x^{2} \times y^{2}) - (36 \times x^{4} \times y^{4}) / (5 \times x^{2} \times y^{2})$$

$$y^{2}$$

On further calculation, we get

$$= 3 \times x^{3-2} \times y^{2-2} + 5 \times x^{2-2} \times y^{3-2} - (36 \times x^{4-2} \times y^{4-2}) / 5$$

We get,

$$= 3 \times x^{1} \times y^{0} + 5 \times x^{0} \times y^{1} - (36 \times x^{2} \times y^{2}) / 5$$

$$=3x + 5y - (36x^2y^2) / 5$$

Hence,
$$15x^3y^2 + 25x^2y^3 - 36x^4y^4 \div 5x^2y^2 = 3x + 5y - (36x^2y^2) / 5$$

(iv)
$$36a^3x^5 - 24a^4x^4 + 18a^5x^3$$
 by $-6a^3x^3$

$$36a^3x^5 - 24a^4x^4 + 18a^5x^3 \div (-6a^3x^3) = (36a^3x^5 - 24a^4x^4 + 18a^5x^3) / -6a^3x^3$$

=
$$(36.a^3.x^5) / (-6.a^3.x^3) - (24.a^4.x^4) / (-6.a^3.x^3) + (18.a^5.x^3) / (-6.a^3.x^3)$$

$$= -6.x^{5-3} + 4.a^{4-3}.x^{4-3} - 3.a^{5-3}$$

$$= -6x^2 + 4ax - 3a^2$$

Hence,
$$36a^3x^5 - 24a^4x^4 + 18a^5x^3 \div (-6a^3x^3) = -6x^2 + 4ax - 3a^2$$