CBSE Class 12 Biology Question Paper 2020 Set 2 Solution

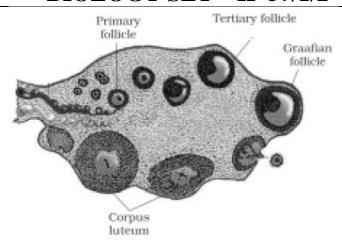
CLASS XII BIOLOGY SET – II 57/1/2

S.N	SOLUTION	MARK
О		
	SECTION A	
1	(B) Corn borer	1
2	(C) The normal DNA from ¹⁵ N - DNA	1
3	(C) The flower is cleistogamous	1
	(OR) (A) Chlamydomonas	1
4	(C) Tissue culture	1
	(OR) (A) Lactobacillus and Yeast	1
5	(D) Skin	1
	SECTION B	
6	Baculoviruses belongs to the genus Nucleopolyhedro viruses.(0.5m) They can be	2
	used as bio control agent due to the following reasons:	
	(a) Baculovirus are species specific(0.5m)	
	(b) They have no negative impact on plants, mammals, birds, fish and non-target	
	insects(0.5m)	
	(c) Baculovirus have narrow spectrum-insecticidal application.(0.5m)	
	(OR) Bacteria & filamentous fungi forms flocs in the secondary treatment	2
	(Biological treatment) of sewage. The flocs are essential to digest the organic	
	matter present in the sewage. Thus this results in decrease of BOD, making the	
	sewage water safe for disposal into the water bodies.	
7	When the person suffers from measles in their early childhood, their body	2
	prepares antibodies against the measles virus. Thus when the body comes in	
	contact with the virus for the second time, those antibodies act against the	
	measles virus. Therefore the body becomes immune to measles virus for the	
	second time. This type of immunity is known as active immunity.	
8	Wings of birds and wings of butterflies are example of analogous organs and	2
	they exhibit convergent evolution. Organisms developing different structures but	
	have the same function is called convergent evolution .	
9	HIV attacks and destroys the CD4 protein on the T-lymphocyte .It infects the T-	2
	lymphocyte and the genetic material of HIV (ss RNA) along with the reverse	
	transcriptase enzyme. The RNA undergoes reverse transcription and multiplies	
	the viral genetic content.	

10	Vasa efferentia, Vas deferns, Rete testis, Ejaculatory duct.(0.5m for each correct			
	option)			
11	Mating between organism of the same breed who are not related for 4-5	2m		
	generations. Outcrossing is the method to increase the milk yielding in cows.			
12	(a) 5' ATGCATGCATGC 3'			
	(b) 5' AUGCAUGCAUGC 3'			
	Note: $3'-5'$ is template stand			
	5' - 3' is coding strand			
	SECTION C			
13	Hemophilia is sex-linked recessive disorder. Thus if the female is heterozygous,	3m		
	then she acts as a carrier but is not hemophilic. Since the son receives X			
	chromosome from the mother, in most of the cases the heterozygous carrier			
	female transmit the disease to sons.			
	The possibility of a female becoming hemophilic is rare because mother of such	~0		
	female has to be at least carrier and the father should be hemophilic. The above mentioned possibilities can be explained using the following cross: Case 1:- Mother is carrier & Father is affected Mother (carrier) Father (affected)			
	XX^h X^hY			
	\mathbf{X} $\mathbf{X}^{\mathbf{h}}$ $\mathbf{X}^{\mathbf{h}}$ \mathbf{Y}			
	L L			
	Xh Y			
	X XXh XY			
	 _			
	$X^h \mid X^h X^h \mid X^h Y$			
	In this case 50% of son's and 50% of			
	daughter are affected.			
	Case 2: Mother is a carrier & father is unaffected			
	Mother (carrier) Father (affected)			

		XX	Th .	X Y /	
		X	$\mathbf{X}^{\mathbf{h}}$	\mathbf{X}^{\dagger} \mathbf{Y}	
		X	Y		
	X	XX	XY		
	Xh	Xh X	X ^h Y	In this case 50% of son's are affected. But no	
	_	are affected	•		0
	(OR)				_0
14	Fruits developed from any other part of the plant other than the ovule is called false fruit. Thus apple is a false fruit as it is obtained from thalamus of the plant. Parthenocarpic fruit are those developed without fertilization and banana is a very good example for parthenocarpic fruit.			3m	
15	0.5m for	each correct	labelling	Connective Epidermis Endothecium Microspore mother cells Tapetum (b) Epidermis Endothecium Microspore mother cells	0.5*6=3m
16	turn inva the Nile of more African have cau	perch introdu than 200 spe cat fish; partlused loss of b	se declinuced into cies of cies of cies of cies ium a	uced unintentionally or deliberately, some of them the or extinction of indigenous species. For example to lake. Victoria in East Africa led to the extinction in its light of the latest and water hyacinth. Introduction of these species aty. (1.5m)Apart from Alien species invasion; the ersity are (1.5m)	

	DIOLOG1 SE1 - 11 5//1/2	I
	(b) Habitat loss & Fragmentation	
	(c) Over exploitation	
17	When the inoculum is added curdling of milk occurs. (1m)The end product	
	formed is curd. The inoculum consists of Lactobacillus which digest the milk	
	protein during the process of formation of curd. Thus presence of Lacto bacillus	
	in curd is beneficial for human health as it enriches the Vit B_{12} content and also	
	keeps a check on disease causing microbes in our stomach.(2m)	
18	The enzyme cuts both DNA Strands at the same site G and A only when the sequence GAATTC is present in the DNA	3m
	Vector DNA Foreign DNA	
	EcoRI	
	Sticky end	7
	Sticky end	_0
	DNA fragments join at sticky ends	10x
	Recombinant DNA	
	The restriction endonuclease enzyme (EcoRI) identifies the palindromic	
	sequence in the vector as well as foreign DNA.	
	With reference to the diagram, the EcoRI makes a cut between the bases G and A	
	This results in the formation of the sticky ends in both vector as well as foreign	
	DNA.	
	The complementary sticky ends of the vector and foreign DNA using DNA	
	ligase are joined together. Hydrogen bonds are formed between these sticky ends	
	as they are complementary. Thus the new DNA formed is called recombinant	
	DNA.	
19	(a) Ori gene – Is responsible for replication of DNA(1m)	1+1+1=3
	(b) Antibiotic resistance gene – It's a selectable marker(1m)	m
	(c) ROP gene- produces protein that is responsible to regulate the copy	
	number(1m)	
20	(a) Chilli	0.5*6=3m
	(b) Leafcurl Tobaccomosaic virus or chilli mosaic virus	
	(c) Brassica	
	(d) Pusa swarnim	
		I.


	(e) Wheat	
	(f) Hill bunt, Leaf and strip (each option 0.5m)	
	(OR) The purposeful manipulation of plant species in order to create	1+2=3m
	desired plant types that are better suited for cultivation, give better yields	
	and are disease resistant is called plant breeding.(1m)	
	Classical plant breeding involves the following steps(2m)	
	(a) Crossing or hybridization of purelines →	
	Hybridisation is done between homozygous parent.	
	(b) Artificial selection →	
	Choosing the progenies with desirable characteristics. Higher yield,	
	nutrition and resistance to diseases are few of the desirable characteristics	
	based an which the hybrids are chosen.	
21	(a) A–Exponential growth; B- Logistic growth (1+1=2m)	2+1=3
	(b) When there is unlimited resources available the population grows	76,
	exponentially. If the resources are limited then the population growth will be	
	limited. This growth is called Logistic growth.(1m)	
	SECTION D	
22	(a) Pyramid $B \rightarrow Declining(1m)$	1+1+1=3
	Pyramid $C \rightarrow Stable(1m)$	m
	(b) The above pyramids are plotted based on the number of organisms in	
	different age groups. The human population are categorized into three age	
	groups namely pre-reproductive, reproductive and post-reproductive.	
	Pre-reproductive phase includes young children; Reproductive phase	
	includes adults capable of reproduction; Post-reproductive includes people	
	who are in their senescent or old age and has lost their reproductive	
	ability.(1m)	
23	(a) Proinsulin has three polypeptide chains namely A, B and C. The chain	1+1+1=3
	C acts as a link between, chain A and chain B.	m
	Polypeptide C aligns chain A & B in such way that a disulphide bond is	
	formed between polypeptide A and B .With the formation of disulphide	
	bridge pro-insulin becomes functional. A functional insulin has only two	
	polypeptide chain.(1m)	

	(b) r-DNA technology or recombinant DNA technology(1m)	
	(c) The polypeptide chain are held together, by disulphide bridges between	
	chain A and B.(1m)	
24	(a) A \rightarrow Meiosis (1m) B \rightarrow Mitosis(1m)	1+1+1=3
	(b) $C \rightarrow Parthenogenesis(1m)$	m
	SECTION E	
25	Phosphorous Cycle	5
	CONSUMERS PRODUCERS	
	CONSUMERS PRODUCERS	
	Litter fall	
	DETRITUS	
	Decomposition	
	SOIL SOLUTION Uptake Run off	
	Weathering	YOY
	ROCK MINERALS	
	Consumers constitute animals that food on much years (plants) when make	
	Consumers constitute animals that feed on producers (plants) when rocks	
	are weathered minute amounts of phosphates dissolve in soil solution and	
	are absorbed by the roots of the plants.	
	Herbivores obtain the phosphorous from plants. Also phosphorous being	
	the major constituents of biological membrane, when the animal	
	decompose the phosphorous mixes upwith the soil.	
	(OR) Increase in the concentration of DDT or any toxin in the successive	5
	trophic levels is called bio magnification.	
	Following is an example of an aquatic food chain exhibiting bio	
	magnification.	
	Fish eating – birds	
	(DDT 25 ppm)	
	<u>↑</u>	
	Large fish	
	(DDT 2 ppm)	
	A	

	DIOLOGI S.			
	Sr	nall fish		
	(D	DT 0.5 ppm)		
		1		
	Zo	oplankton		
	(D)	DT 0.04 ppm)		
		Water		
		(DDT 0.003 ppm)		
	From the food chain it can be determine	ned the DDT level is increasing at		
	every successive trophic level.			
	This happens because the toxic substance cannot be metabolized or			
	excreted by the organism at each troph	ic level.		
	High concentration of DDT disturb cal	cium metabolism is birds which	761	
	causes thinning of egg shell and their p	premature breaking, eventually		
	causing decline in bird population.			
26	(a) Replication- it should be able to produce its copies.			
	It should have chemical and structural stability.			
	Mutation- it should offer a chance for evo	lution.		
	It should possess hereditary unit which ex	presses in the form of "Mendelian		
	Characters''.			
	(b)			
	DNA	RNA		
	More stable	Less stable		
	Double-stranded structure	Single-stranded structure		
	Presence of deoxyribose sugar	Presence of ribose sugar		
	Thymine is present as a	Uracil is Present instead of		
	nitrogenous base	Thymine	3+2=	
	(OR) (a) Hardy – Weinberg Principle			
	Hardy – Weinberg Principle mathematically explains the occurrence and			
	consistency of gene frequency for a partic			
	allelic frequency remains constant through	n generations and the gene pool remains		

	constant. This phenomenon is called genetic equilibrium. Also, all the allelic	
	frequencies sum up to 1.	
	Let us assume, the frequency for the allele X in a population is a and that of the	
	allele x is b.	
	Thus, the frequency of XX is a2, xx is b2 and Xx is 2ab. The equation can thus	
	be represented as	
	a2 + b2 + 2ab = 1 or $(a + b)2 = 1$ (3m)	
	(b) All these factors contribute to the change in gene frequency of a species in an	
	area. If a few individuals from a species migrate to another place, the gene	
	frequency changes again. It decreases from the place from where the individuals	
	migrate and increase in the place they migrate to. If the frequency of the genes is	
	high enough in the newly migrated land to start a new species, the migrated	
	individuals become the founder species, and the effect is called founder	
	effect.(2m)	
27	(a) Steps involved in IVF.	5
	(i) Collection of gametes from Donor/Parents	
	(ii) The egg is placed in a petridish and sperms are allowed to fertilise	
	the egg.	
	(iii) Once the fertilization is done the zygote is allowed to under go	
	further cleavage	
	(iv) Either at 8 celled stage its transferred into fallopian tube or at 32	
	called stage its transferred into the uterus of the mother/surrogate mother.	
	GIFT cannot be considered as IVF as the gamete is transferred into the	
	fallopian tube and fertilization happens in vivo. Since fertilization does not	
	occur under lab conditions, GIFT is not an IVF method.	
	(OR) (a)	2.5+2.5

BIOLOGY SET - II 57/1/2

(b) The gonadotrophins are hormones released by the pituitary gland ,associated with the primary sex organs.

Follicle stimulating hormone (FSH) and Lieutinising hormone (LH) are the gonadotrophins.

As the FSH concentration increases follicular maturation begins in the ovary .The matured follicles secrete estrogen hormone.

High level of estrogen triggers the secretion of LH .The LH secretion reaches its peak .This is known as LH surge.

The surge causes the rupture of graffian follicle and thus the secondary oocyte is released. This is known as ovulation.