CBSE Class 12 Chemistry Question Paper 2020 Solution Set 2

CHEMISTRY STANDARD SOLVED

SET 2 (CODE: 30/5/2)

Q.	SOLUTION	TOTAL
NO		MARKS
	SECTION – A	<u> </u>
1.	Organic compounds with $-NH_2$ and COOH group are known as amino acids	1
2.	Due to the formation of zwitter ion	1
3.	Acidic amino acids have more –COOH groups and basic amino acids have more NH ₂ groups	1
4.	These are not synthesized by body to be supplied in diet.	1
5.	Peptide linkage	1
6.	Vapour phase refining.	1
7.	Desorption	1
8.	Zinc	1
9.	Linkage and ionisation isomerism	1
10.	Order is two	1
11.	(C) 2-Methyl bhutan-2-ol	1
12.	(D) 2.0 M	1
13.	(A) reduced form is more stable compared to hydrogen gas.	1
14.	(D) 5	1
15.	(A) They are chemically reactive	1
16.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of the assertion (A).	1
17.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1

18.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct	1
	explanation of the assertion (A).	
19.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct	1
15.	explanation of the assertion (A).	1
20.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1
	SECTION – B	
		_
21.	a) Due to intermolecular H-bonding in alcohol	2
	b) Due to resonance C = O is attained in phenol	
22.	Tranquilizers reduces the mental stress and acts as a part of anti depressants	2
	Eg: Barbituaric acid derivatives	
	Analgesics: These are pain killers	
	Eg: Aspirin	
	b) Antiseptics reduces bacterial growth on animate object	
	Disinfectants controls bacterial growth or non animate objects	
	OR	
	In cationic detergents cation acts an detergent	
	Eg: Cetyl trimethyl ammonium bromide.	
	In Anionic detergents, anion acts as detergent	
	Eg: Sodium lauryl sulphate	
23.	a) $2MnO_4^- + H_2O + I^- \longrightarrow 2MnO_2 + IO_3^- + 2OH^-$	2
	b) $2MnO_4^- + 10I^- + 16H^+ \longrightarrow 2Mn^{+2} + 5I_2 + 8H_2O$	
24.	Rate $\infty [A]^1$; rate $\infty [B]^1$	2
	Average rate is measured in average interval of time and instantaneous rate is measured in an instant of time.	
	measured in an instant of time.	
25.	The curves obtained by plotting fraction of gas adsorbed Verses pressure at constant	2
	temperature is known as adsorption isotherm	

is used
2
34
2
3
ı

	iii) $\left[Ni(CO)_4\right]$ 1	
	sp^3 – diamagnetic	
30.	SN 1	3
	CH ₃	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	CH; CH;	
	(1) (2) (3)	
	1 < 2 < 3	
	SN 2	
	CH _b	
	$H_1C = C = Br$ Br CH_2Br	
	(3) (2) (1)	
	3 < 2 < 1	
21		
31.	a) Due to +R effecting NH ₂ group ion electrons are not localized 1	
	b) Since aniline form a salt with lewis and AlCl ₃ 1	
32.	c) Since Aryl halide are less reactive towards nucleophilic substitution reaction 1	
32.	$Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2NaAl(OH)_4$ 1	
	$2NaAl(OH)_4+CO_2 \longrightarrow Al_2O_3.X H_2O \qquad 1$	
	$Al_2O_3.XH_2O \longrightarrow Al_2O_3+XH_2O$ 1	
33.	Limiting molar conductivity of an electrolyte is sum of individual limiting molar	
	conductivities of ions. 1	
	$\Lambda_{m}^{o} \ of \ Sr^{+2} = 119 SCm^{-2} mol^{-1}$	

$\Lambda_m^o \text{ of } NO_3^- = 72SCm^{-2}mol^{-1}$
$\Lambda_m^o Sr(NO_3)_2 = 119 + 144 = 263SCm^{-2}mol^{-1} 2$
$\Delta T_f = \frac{K_f \times \omega \times 1000}{GM \omega \times \omega} $ 1
$=\frac{1.86\times31\times1000}{62\times600}$
62×600
$=\frac{18.6}{12}=1.55 1$
Freezing point = $273 - 1.55$
= 271. 45 K 1
SECTION – D
35. a) i) $CH_3CH_2COCH_2CH_3$
3-penetanone 1
ii) $CH_3CH_2COCH_2CH_3 \xrightarrow{Z_{n-Hg}} CH_3CH_2CH_2CH_2CH_2$ n-pentane
$CH_3CH-COOH$
b) i) $CH_3CH_2COOH \xrightarrow{Br_2}$ 1 Br
(HVZ reaction 2 – bromo propanoic acid) ii)
$CH_2Cl \ aq.KOH \longrightarrow CH_2OH \longrightarrow PCC$
1
c) i) Benzaldehyde does not give iodoform reaction while Acetaldehyde responds to
iodoform 1
OR

(i)
$$CH_{3}$$

$$CH_{3}COCH_{3} \xrightarrow{Ba(OH)_{2}} CH_{3}CCH_{2}COCH_{3}$$

$$OH$$

$$(A) \downarrow \Delta$$

$$+CHI_{3} \longleftarrow CH_{3} - C = CHCOCH_{3}$$

$$CH_{3}$$

$$CH_{3} - C = CHCOONa$$

$$CH_{3}$$

$$(ii)$$

$$CH_{3}$$

$$A \rightarrow CH_{3} - C - CH_{2}COCH_{3} \quad 1$$

$$OH$$

$$B \rightarrow CH_{3} - C - CHCOCH_{3}$$

$$CH_{3}$$

$$C \rightarrow CHI_{3} \quad 1$$

$$CH_{3}$$

$$C \rightarrow CHI_{3} \quad 1$$

$$CH_{3}$$

$$C \rightarrow CHI_{3} \quad 1$$

$$CH_{3}$$

$$C \rightarrow CH_{3} - C = CHCOONa$$

$$CH_{3} \quad 1$$

$$CH_{3} \quad 1$$

iii) 4-hydroxy-4-methyl-2-pentanone

	b) i) Ethanol does not give reaction with NaHSO3 while propanone gives white crystalline	
	precipitate with NaHCO ₃	
	ii) Benzoic acid give violet colour with FeCl ₃ 1	
36.	a) i) Zero order 1	
	ii) Rate constant 1	
	iii) mol L^{-1} s ⁻¹ 1	
	b) $K = \frac{2.303}{25} \log_{10} \frac{100}{75} 1$	
	$K = \frac{2.303}{25} \times \left(\log 4 - \log 3\right)$	
	$K = \frac{2.303 \times 0.1249}{25} = \frac{0.2976}{25} = 1.15 \times 10^{-2} \text{mol}^{-1}$	
	$=\frac{0.693}{K}$	
	$=\frac{0.693}{0.0115}$	
	$= 60.2 \min 1$	
	[OR]	
	a) $t_{1/2} = \frac{0.693}{K} = \frac{0.691}{60} = 0.0115 \ 1$	
	0.0115 0.0115 0.0115 0.0115	
	$1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16}$	
	$=4\times t_{1/2} 1$	
	$=4\times0.0115$	
	$=0.046s^{-1}1$	
	b) i) concentration of reactants 1	
	ii) temperature1	
	c) i) greater than or equal to threshold energy 1	
	ii) lesser activation emerge barriers	
37.	a) $A \rightarrow Sulphur$	5

$$B \rightarrow SO_2$$

$$C \rightarrow SO_3$$

$$D \rightarrow H_2S_2O_7$$

$$E \rightarrow H_2SO_4$$

$$F \rightarrow CuSO_4$$

b)
$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 2H_2O + SO_2$$

- c) i) In the preparation of fertilizers
- ii) Paper industry

[OR]

- a) due to high electronegativity and positive SRP 1
- b) Due to very weak vander waal's forces.
- iii) Due to smaller size of 'O' 1
- b) $2NaOH + Cl_2 \longrightarrow NaCl + NaOCl + H_2O$ 1

$$2I^{-} + H_2O + O_3 \longrightarrow I_2 + 2OH^{-} + O_2 \qquad 1$$

