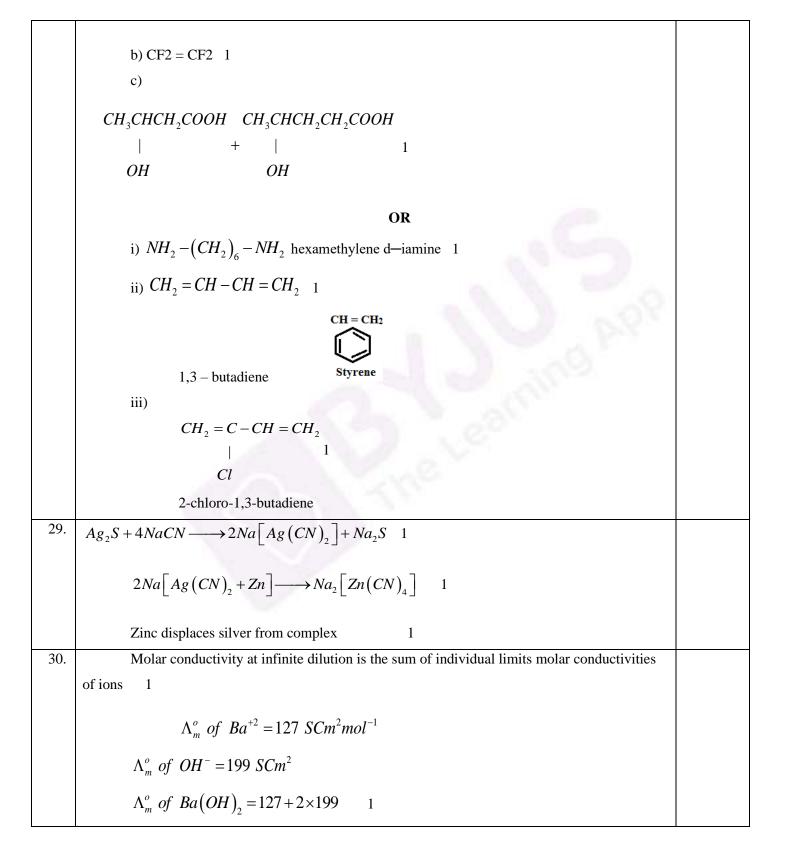
CBSE Class 12 Chemistry Question Paper 2020 Solution Set 3


CHEMISTRY STANDARD

SOLVED SET 3 (CODE: 30/5/3)

Q. NO	SOLUTION	TOTAL MARKS
	SECTION – A	
1.	Peptide linkage	1
2.	These are not synthesized by body to be supplied in diet.	1
3.	Organic compounds with $-NH_2$ and COOH group are known as amino acids.	1
4.	Due to the formation of zwitter ion	1
5.	Acidic amino acids have more –COOH groups and basic amino acids have more NH ₂ groups	1
6.	Leaching	1
7.	Linkage and ionisation isomerism	1
8.	Desorption	1
9.	Zinc	1
10.	RATE = K[A] [B] Order = 1	1
11.	(A) They are chemically reactive	1
12.	(C) 2-Methyl bhutan-2-ol	1
13.	(D) 2.0 M	1
14.	(D) 5	1
15.	(A) reduced form is more stable compared to hydrogen gas.	1
16.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of the assertion (A).	1

17.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1
18.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1
19.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of the assertion (A).	1
20.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of the assertion (A).	1
ı	SECTION – B	1
21.	a) Solute dissociates	2
	b) Solute associates	
22.	$2I^{-} \mid I_{2} \parallel F_{2} \mid 2F^{-}$	2
23.	a) $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{+2} + 5Fe^{3+} + 4H_2O$ 1 b) $2MnO_4^- + Mn^{+2} + 2H_2O \longrightarrow 3MnO_2 + 4OH$ 1	
24.	Tranquilizers reduces the mental stress and acts as a part of anti depressants 1	
	Eg: Barbituaric acid derivatives	
	Analgesics: These are pain killers	
	Eg: Aspirin	
	b) Antiseptics reduces bacterial growth on animate object 1	
	Disinjectants controls bacterial growth or non animate objects 1	
	OR	
	In cationic detergents cation acts an detergent	
	Eg: Cetyl trimethyl ammonium bromide.	
	In Anionic detergents, anion acts as detergent 1	
	Eg: Sodium lauryl sulphate	
25.	a) Due to intermolecular H-bonding in alcohol 1	
	b) Due to resonance $C = O$ is attained in phenol 1	

26.	The curves obtained by plotting fraction of gas adsorbed Verses pressure at constant	2
	temperature is known as adsorption isotherm	
	$\frac{x}{m} = k \cdot p^{\frac{1}{n}}$	
	$X \rightarrow$ mass of adsorbate	
	$m \rightarrow$ mass of adsorbant	
	OR	
	Shape selective catalysis. ZSM 5 is used in oil refining and in petroleum products 2	
27.	Rate $\infty[A]^1$; rate $\infty[B]^1$	
	Average rate is measured in average interval of time and instantaneous rate is 1	
	measured in an instant of time.	
	SECTION – C	1
28.	$CH_2 = C - CH = CH_2$	
	a) 1	
	CH_3	
	$CH = CH_2$	
	b) $CH_2 = CH - CH = CH_2 + $	
	OH	
	с) СН2ОН	
	OR	
	a) CH ₂ OH + COOH COOH CH ₂ OH +	
	1	

	$=525 SCm^2 mol^{-1} $ 1	
31.	$\Delta T_f = \frac{K_f \times \omega \times 1000}{GM \omega \times \omega}$ $= \frac{1.86 \times 31 \times 1000}{62 \times 600}$ $= \frac{18.6}{12} = 1.55$ Freezing point = 273 – 1.55 $= 271.45 \text{ K} 1$	
32.	 a) Due to +R effecting NH₂ group ion electrons are not localized 1 b) Since aniline form a salt with lewis and AlCl₃ 1 c) Since Aryl halide are less reactive towards nucleophilic substitution reaction 1 	
33.	a) Potassium hexa cyanide manganate (II) $Mn^{+2}[A] \text{ is } 3d^5$ t_2g^5eg b) Stability of complexes increases due to presence of bidentate ligands eg:[$Co(en)3$] ⁺³ [OR] i) $[Fe(CN)_6]^{-4}$ $d^2sp^3 - \text{diamagnetic}$ ii) $[CO F_6]^{-3}$ $sp^3d^2 - \text{Paramagnetic}$ iii) $[Ni(CO)_4]$ $sp^3 - \text{diamagnetic}$	3
34.	a) $S_N 1$	3

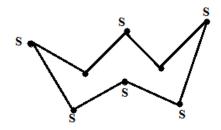
DATE:

CHEMISTRY STANDARD SOLVED

BYJU'S
The Learning App

5

CLASS: XII

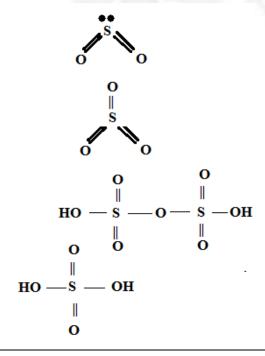

SET 3 (CODE: 30/5/3)

CENTRE:

 $Ethyl \ chloride < isoerophyl \ chloride < t-butyl \ chloride$ (stability of carbocation) $b) \ S_N 2$ $t-butyl \ chloride < isopropyl \ chloride < ethyl \ chloride$ (3 °), (2 °), (1°),

SECTION – D

35. a) $A \rightarrow Sulphur$


 $B \rightarrow SO_2$

 $C \rightarrow SO_3$

 $D \rightarrow H_2S_2O_7$

 $E \rightarrow H_2SO_4$

 $F \rightarrow CuSO_4$

	b) $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 2H_2O + SO_2$	
	c) i) In the preparation of fertilizers	
	ii) Paper industry	
	[OR] 5	
	a) due to high electronegativity and positive SRP	
	b) Due to very weak vander waal's forces.	
	iii) Due to smaller size of 'O'	
	b) $2NaOH + Cl_2 \longrightarrow NaCl + NaOCl + H_2O$	
	$2I^- + H_2O + O_3 \longrightarrow I_2 + 2OH^- + O_2$	
36.	a) i) $CH_3CH_2COCH_2CH_3$	5
	3-penetanone	
	ii) $CH_3CH_2COCH_2CH_3 \xrightarrow{Z_{n-Hg}} CH_3CH_2CH_2CH_2CH_2$ n-pentane	
	$CH_3CH-COOH$	
	b) i) $CH_3CH_2COOH \xrightarrow{Br_2 \\ red P}$ Br	
	(HVZ reaction 2 – bromo propanoic acid)	
	ii)	
	$\overset{CH_2CI\ aq,KOH}{\longrightarrow}\overset{CH_2OH}{\longrightarrow}\overset{CH_2OH}{\longrightarrow}$	
	c) i) Benzaldehyde does not give iodoform reaction while Acetaldehyde responds to iodoform	
	OR 5	

(i)
$$CH_{3}COCH_{3} \xrightarrow{Ba(OH)_{2}} CH_{3}CCH_{2}COCH_{3}$$
 OH
 $(A) \downarrow \Delta$
 $+CHI_{3} \longleftarrow CH_{3} - C = CHCOCH_{3}$
 CH_{3}
 CH_{3}
 $CH_{3} \rightarrow C = CHCOONa$

$$\begin{vmatrix} & & & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- iii) 4-hydroxy-4-methyl-2-pentanone
- b) i) Ethanol does not give reaction with NaHSO₃ while propanone give PPT with NaHCO₃
- ii) Benzoic acid give violet colour with FeCl₃

- a) i) Zero order
- ii) Rate constant
- iii) mol L-1 s-1

b)
$$K = \frac{2.303}{25} \log_{10} \frac{100}{75}$$

$$K = \frac{2.303}{25} \times (\log 4 - \log 3)$$

$$K = \frac{2.303 \times 0.1249}{25} = \frac{0.2976}{25} = 1.15 \times 10^{-2} \text{mol}^{-1}$$

$$= \frac{0.693}{K}$$

$$= \frac{0.693}{0.0115}$$

$$= 60.2 \text{ min}$$

[OR]

a)
$$t_{1/2} = \frac{0.693}{K} = \frac{0.691}{60} = 0.0115$$

$$1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16}$$

$$= 4 \times t_{1/2}$$

$$= 4 \times 0.0115$$

$$= 0.046 s^{-1}$$

- b) i) concentration of reactants
- ii) temperature
- c) i) greater than or equal to threshold energy
- ii) lesser activation emerge barriers

5