CBSE Class 12 Maths Question Paper 2020 Set 2

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises **four** Sections A, B, C and D. This question paper carries **36** questions. **All** questions are compulsory.
- (ii) Section A Questions no. 1 to 20 comprises of 20 questions of 1 mark each.
- (iii) Section B Questions no. 21 to 26 comprises of 6 questions of 2 mark each.
- (iv) Section C Questions no. 27 to 32 comprises of 6 questions of 4 mark each.
- (v) Section D Questions no. 33 to 36 comprises of 4 questions of 6 mark each.
- (vi) There is no overall choice in the question paper. However, an internal choice has been provided in 3 questions of one mark, 2 questions of two marks, 2 questions of four marks and 2 questions of six marks. Only one of the choices in such questions have to be attempted.
- (vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (viii) Use of calculators is **not** permitted.

SECTION - A

Question numbers 1 to 20 carry 1 mark each.

Question numbers 1 to 10 are multiple choice type questions. Select the correct option.

1.	If f and g are	e two functions from	R to R	defined as	$f\left(x\right) = \left x\right + x$	and $g(x) =$	= x - x,	then	fog(x)	fo
	x < 0 is									
	(a) 4 <i>x</i>	(b) 2 <i>x</i>		(c) 0		(d) $-4x$				

2. The principal value of $\cot^{-1}(-\sqrt{3})$ is

(a)
$$-\frac{\pi}{6}$$
 (b) $\frac{\pi}{6}$ (c) $\frac{2\pi}{3}$ (d) $\frac{5\pi}{6}$

3. If
$$A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
, then the value of $\begin{vmatrix} adj & A \end{vmatrix}$ is

- (a) 64 (b) 16 (c) 0 (d) -8
- (a) 15 (b) 12 (c) 9 (d) 0

4. The maximum value of slope of the curve $y = -x^3 + 3x^2 + 12x - 5$ is

5. $\int \frac{e^x (1+x)}{\cos^2 (xe^x) dx}$ is equal to

CLASS:

CENTRE:

TOPIC

- (a) $\tan(xe^x) + c$ (b) $\cot(xe^x) + c$ (c) $\cot(e^x) + c$
- (d) $\tan \left[e^{x} \left(1 + x \right) \right] + c$
- 6. The degree of the differential equation $x^2 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} y\right)^3$ is

- (d) 6
- 7. The value of p for which $p(\hat{i} + \hat{j} + \hat{k})$ is a unit vector is
 - (a) 0

- (b) $\frac{1}{\sqrt{3}}$
- (c) 1

- (d) $\sqrt{3}$
- The coordinates of the foot of the perpendicular drawn from the point (-2,8,7) on the ZX-plane is
 - (a) (-2, -8, 7)
- (b) (2,8,-7)
- (c) (-2,0,7)
- (d) (0,8,0)

- 9. The vector equation of XY-plane is
 - (a) $\vec{r} \cdot \hat{k} = 0$
- (b) $\vec{r} \cdot \hat{j} = 0$
- (c) $\vec{r} \cdot \hat{i} = 0$
- (d) $\vec{r} \cdot \vec{n} = 1$

10. The feasible region for an LPP is shown below:

Let z = 3x - 4y be the objective function. Minimum of z occurs at

- (a) (0,0)
- (b) (0,8)
- (c) (5,0)
- (d) (4,10)

Fill in the blanks in question numbers 11 to 15.

11. If $y = \tan^{-1} x + \cot^{-1} x$, $x \in \mathbb{R}$, then $\frac{dy}{dx}$ is equal to _____.

(OR)

If $\cos(xy) = k$, where k is a constant and $xy \neq n\pi$, $n \in \mathbb{Z}$, then $\frac{dy}{dx}$ is equal to ______.

DATE:

SUBJECT

CLASS:

CENTRE:

TOPIC

- 12. The value of λ so that the function f defined by $f(x) = \begin{cases} \lambda x, & \text{if } x \leq \pi \\ \cos x, & \text{if } x > \pi \end{cases}$ is continuous at $x = \pi$ is
- 13. The equation of the tangent to the curve $y = \sec x$ at the point (0, 1) is ______.
- 14. The area of the parallelogram whose diagonals are $2\hat{i}$ and $-3\hat{k}$ is ______ square units. (OR)

The value of λ for which the vectors $2\hat{i} - \lambda \hat{j} + \hat{k}$ and $i + 2\hat{j} - \hat{k}$ are orthogonal is ______.

15. A bag contains 3 black, 4 red and 2 green balls. If three balls are drawn simultaneously at random, then the probability that the balls are of different colours is ______.

Question numbers 16 to 20 are very short answer type questions.

- 16. Construct $a \ 2 \times 2 \, \text{matrix} \ A = \left[a_{ij} \right]$ whose elements are given by $a_{ij} = \left| \left(i \right)^2 j \right|$.
- 17. Differentiate $\sin^2(\sqrt{x})$ with respect to x.
- 18. Find the interval in which the function f given by $f(x) = 7 4x x^2$ is strictly increasing.
- 19. Evaluate: $\int_{-2}^{2} |x| dx$

(OR)

Find:
$$\int \frac{dx}{3+4x^2}$$

20. An unbiased coin is tossed 4 times. Find the probability of getting at least one head.

SECTION - B

Question numbers 21 to 26 carry 2 marks each.

21. Solve for x:

$$\sin^{-1} 4x + \sin^{-1} 3x = -\frac{\pi}{2}$$

(OR)

Express
$$\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right), -\frac{3\pi}{2} < x < \frac{\pi}{2}$$
 in the simplest form.

22. Express $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ as a sum of a symmetric and a skew symmetric matrix.

CLASS:

CENTRE:

TOPIC

23. If
$$y^2 \cos\left(\frac{1}{x}\right) = a^2$$
, then find $\frac{dy}{dx}$.

24. Show that for any two non-zero vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ if \vec{a} and \vec{b} are perpendicular vectors.

(OR)

Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + 7\hat{j} + \hat{k}$ and $5\hat{i} + 6\hat{j} + 1\hat{k}$ form the sides of a right-angled triangle.

- 25. Find the coordinates of the point where the line through (-1, 1, -8) and (5, -2, 10) crosses the ZX-plane.
- 26. If A and B are two events such that P(A) = 0.4, P(B) = 0.3 and $P(A \cup B) = 0.6$, then find $P(B \cap A)$.

SECTION - C

Question numbers 27 to 32 carry 4 marks each.

27. Show that the function $f:(-\infty,0)\to(-1,0)$ defined by $f(x)=\frac{x}{1+|x|}, x\in(-\infty,0)$ is one-one and onto.

(OR)

Show that the reaction R in the set $A = \{1, 2, 3, 4, 5, 6\}$ given by $R = \{(a,b): |a-b| \text{ is divisible by } 2\}$ is an equivalence relation.

- 28. If $y = x^3 (\cos x)^x + \sin^{-1} \sqrt{x}$, find $\frac{dy}{dx}$.
- 29. Evaluate: $\int_{-1}^{5} (|x| + |x+1| + |x-5|) dx$
- 30. Find the general solution of the differential equation $x^2y dx (x^3 + y^3)dy = 0$.
- 31. Solve the following LPP graphically:

Minimize z = 5x + 7y

subject to the constraints

$$2x + y \ge 8$$

$$x + 2y \ge 10$$

$$x, y \ge 0$$

32. A bag contains two coins, one biased and the other unbiased. When tossed, the biased coin has a 60% chance of showing heads. One of the coin is selected at random and on tossing it shows tails. What is the probability it was an unbiased coin?

CLASS:

CENTRE:

TOPIC

(OR)

The probability distribution of a random variable X, where k is a constant is given below:

$$P(X = x) = \begin{cases} 0.1 & if & x = 0 \\ kx^{2}, & if & x = 1 \\ kx, & if & x = 2 \text{ or } 3 \\ 0, & otherwise \end{cases}$$

Determine

- (a) the value of k
- (b) $P(X \le 2)$
- (c) Mean of the distribution

SECTION - D

Question numbers 33 to 36 carry 6 marks each.

33. Solve the following system of equations by matrix method:

$$x - y + 2z = 7$$

$$2x - y + 3z = 12$$

$$3x + 2y - z = 5$$

(OR)

Obtain the inverse of the following matrix using elementary operations:

$$A = \begin{bmatrix} 2 & 1 & -3 \\ -1 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix}$$

- 34. Find the points on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts with both the axes. Also find the equation of the normals.
- 35. Find the area of the following region using integration: $|(x, y): y \le |x| + 2, y \ge x^2$

(OR)

Using integration, find the area of a triangle whose vertices are (1,0), (2,2) and (3,1).

36. Show that the lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ intersect. Also, find the coordinates of

the point of intersection. Find the equation of the plane containing the two lines.