CBSE Class 12 Physics Question Paper 2020 Set 1 Solution

PHYSICS – BOARD EXAM – SET – 1 55/1/1

Q.	SOLUTION	TOTAL
NO		MARKS
	SECTION – A	
1.	(A) no net charge is enclosed by the surface.	
2.	(A) qLE	
3.	(B) no current is drawn from the cell at balance.	
4.	(B) $\frac{P_1}{P_2} = \frac{R_2}{R_1} = \frac{6}{4} = 3:2$	
5.	(D) material of the turns of the coil.	
6.	(A) Increases the resolving power of telescope	
7.	(A) 1.47	
8.	(A) red colour	
9.	(D) The stability of atom was established by the model.	
10.	(B) 1:3	
11.	$B_V = B\sin 30^\circ = 0.15G$	
12.	Eddy	
13.	4 times	
14.	Integral (or) Nucleons	
15.	$\sqrt{3}$	
16.	$\vec{ \mathbb{ J}} \vec{B}. \vec{dl} = \mu_0 \bigg(I + \varepsilon_0 \frac{d\phi_e}{dt} \bigg)$	

17.	Decreases
18.	
10.	$\frac{R_2}{R_1} = \left(\frac{A_2}{A_1}\right)^{\frac{1}{3}} \Rightarrow R_2 = 3.6 \left(\frac{64}{27}\right)^{\frac{1}{3}} = 3.6 \times \frac{4}{3}$
	=4.3 Fermi
	OR
	$\frac{\lambda_p}{\lambda_e} = \frac{\frac{h}{m_p v_p}}{\frac{h}{m_e v_2}} = \frac{m_p}{m_e} \times \frac{v_p}{v_e} = \frac{1.67 \times 10^{-27}}{9.1 \times 10^{-31}} = 1.8 \times 10^{23}$
19.	M ₂ has greater value of work function due to higher value of threshold frequency.
20.	LEDs must have band gap in the order of 1.8 eV to 3 eV but Si & Ge have band gap less than 1.8 eV so these cannot be used to fabricate LEDs.
	SECTION – B
21.	Meter bridge works on the condition of balanced wheatstone bridge condition.
	X = Unknown resistance

Y = known resistance

l = balancing length

	Then
	$X = Y \frac{l}{100 - l}$
22.	$C_1 = \frac{K\varepsilon_0 A}{d}$
	C_2 = parallel combination of two capacitors
	$=\frac{K_1\varepsilon_0\left(\frac{A}{2}\right)}{d}+\frac{K_2\varepsilon_0\left(\frac{A}{2}\right)}{d}$
	$=\frac{\varepsilon_0 A}{2d} \left(K_1 + K_2\right)$
	$\therefore C_1 = C_2 \implies K = \frac{K_1 + K_2}{2}$
23.	Half-life: It is the time interval after which the activity of a radioactive sample reduces to half
	of initial value.
	$\therefore \qquad R = \lambda N \qquad \Rightarrow \qquad \frac{R_1}{R_2} = \frac{\lambda_1}{\lambda_2} \times \frac{N_1}{N_2}$
	$\therefore \qquad \lambda = \frac{0.693}{T_{\frac{1}{2}}} \Longrightarrow \frac{\lambda_1}{\lambda_2} = \frac{T_2}{T_1}$
	$\therefore \qquad \frac{R_1}{R_2} = \frac{T_2}{T_1} \times \frac{N_1}{N_2}$
24.	Wavefront: It is a locus of all the disturbances oscillating with energy in same phase at a
	given instant.

A plane wavefront AB is incident in rarer medium at instant t = 0 on interface XY separating it from a denser medium. When wavelet A is on interface, B is at a distance BB, from it. It takes t time to cover the distance $BB_1 = v_1t$ to reach on interface XY. Mean while, the wavelet from A reaches to point A_1 covering a distance $AA_1 = v_2t$ in denser medium.

To locate A_1 , draw a secondary wavelet with radius $AA_1 = v_2t$ & centre A. Draw tangent from B, onto this sec. wavelet intersecting at A_1 .

A₁B₁ is refracted wavefront at instant t.

i =angle of incidence

r = angle of refraction.

$$\therefore \Delta ABB_1 \Rightarrow \sin i = \frac{BB_1}{AB_1}$$

$$\Delta A A_1 B_1 \Rightarrow \sin r = \frac{A A_1}{A B_1}$$

$$\therefore \frac{\sin i}{\sin r} = \frac{BB_1}{AA_1} = \frac{v_1 t}{v_2 t} = \frac{v_1}{v_2}$$

$$\therefore \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \text{constant}$$

Also,
$$n_1 = \frac{c}{v_1}$$
 $n_2 = \frac{c}{v_2}$

$$\frac{n_1}{n_2} = \frac{v_2}{v_1} \Rightarrow \frac{\sin i}{\sin r} = \frac{n_2}{n_1} = \text{constant}$$

Which is Snell's law.

OR

Ace to lens maker's formula

$$\frac{1}{v} - \frac{1}{u} = \left(n_{21} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \qquad \dots (1)$$

When object is at placed at infinity,

$$u = \infty$$

Image is obtained at focus

$$v = f$$

Using these values in Eq (1)

$$\frac{1}{f} - \frac{1}{\infty} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\Rightarrow \frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_2} - \frac{1}{R_2} \right) \dots$$

$$\therefore \qquad \text{By Eq (1) & (2)} \Rightarrow \qquad \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

25.

$$B_{P} = B_{A} + \dot{B}_{B} = \frac{\mu_{0}I}{2\pi x} \text{ (upwards)} + \frac{\mu_{0}I}{2\pi (fx)} \text{ (down)}$$

$$= \frac{\mu_{0}I}{2\pi} \left[\frac{1}{x} - \frac{1}{d-x} \right]$$

$$= \frac{\mu_{0}I}{2\pi} \left[\frac{d-x-x}{x(d-x)} \right] = \frac{\mu_{0}I}{2\pi} \left(\frac{d-2x}{x(d-x)} \right) \text{ upwards} + \frac{\mu_{0}I}{2\pi (d-x)} \text{ (down)}$$

$$(1) \div (2) \Rightarrow \frac{mv_{n}^{2}r_{n}}{mv_{n}r_{n}} = \left(\frac{ze^{2}}{4\pi\varepsilon_{0}} \right) \left(\frac{2\pi}{nh} \right)$$

As
$$B_A > B_B$$

(b)

26.

Centripetal force = Electrostatic attraction between nucleus &

ē

$$\Rightarrow \frac{mv_n^2}{r_n} = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{(ze)(e)}{r_n^x}$$

$$\Rightarrow mv_n^2 r_n = \frac{ze^2}{4\pi\varepsilon_0} \qquad \dots (1)$$

By Bohr II postulali,

Angular momentum of e^-

$$mv_n r_n = \frac{nh}{2\pi} \qquad \dots (2)$$

$$(1) \div (2) \Rightarrow \frac{mv_n^2 r_n}{mv_n r_n} = \left(\frac{ze2}{4\pi\varepsilon_0}\right) \times \frac{2\pi}{rh}$$

\Rightarrow speed of $e^- \Rightarrow v_n =$	ze^2
\rightarrow spectron $e \rightarrow v_n$	$-\frac{1}{2\varepsilon_0 nh}$

OR

Emission of photoelectrons is a phenomenon that is excited externally by incidence of photons on metal surface to provide necessary energy to eject e^- from metal.

Emission of β^- particles is totally spontaneous in which no external excitation is involved. An unstable nucleus emits an e^- (β particle) to become stable. Also, in photoelectron

emission, radiation energy is absorbed by metal atoms while in β -particle emission,

radiation energy is released.

27. Depletion layer: It is a layer of immobile ions formed near the p-n junction by diffusion of majority charge carriers and electron-hole recombination.

Potential barrier: It is the potential difference developed across the junction when diffusion current & drift current attains equilibrium across the junction.

- (a) When forward biased, width of depletion layer decreases.
- (b) And value of barrier potential also reduces as $v_0 v$.

SECTION - C

28. (a)

Potential difference across A & B

$$V = V_A - V_B = E_1 - I_1 r_1$$
 ... (1)

$$V = V_A - V_B = E_2 - I_2 r_2$$
 ... (2)

$$\Rightarrow I_1 = \frac{E_1}{r_1} - \frac{V}{r_1} \qquad \dots (3) \quad (from (1))$$

$$I_2 = \frac{E_2}{r_2} - \frac{V}{r_2}$$
 ... (4) (from (2))

For Equivalent cell $I = \frac{E}{r} - \frac{V}{r}$... (5)

$$: I = I_1 + I_2$$

$$\frac{E}{r} - \frac{V}{r} = \left(\frac{E_1}{r_1} - \frac{V}{r_1}\right) + \left(\frac{E_2}{r_2} - \frac{V}{r_2}\right)$$

$$= \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

Comparing we get $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$

: Equivalent internal resistance is

$$r = \frac{r_1 r_2}{r_1 + r_2}$$

Also
$$\frac{E}{r} = \frac{E_1}{r_1} + \frac{E_2}{r_2} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$$

: Equivalent emf is

$$E = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$$

(b)
$$E = \frac{5 \times 2 + 5 \times 2}{2 + 2} = 5 \text{ V}$$

$$r = \frac{2 \times 2}{2 + 2} = 1r$$

$$I = \frac{E}{R+r} = \frac{5}{10+1} = \frac{5}{11}A$$

$$\therefore$$
 Voltage across $R \Rightarrow V = IR = \frac{5}{11} \times 10 = \frac{50}{11}V = 4.54V$

29. (a) Magnetic moment $\overrightarrow{M} = Ni(\pi r^2)\hat{n}$

(b)

Magnetic field at point P(x, 0, 0) due to $I \vec{dl}$

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{Idl \sin 90^{\circ}}{r_1^2} \text{ along PQ}$$

For entire coil $\int \overrightarrow{dB} \cos \theta = 0$

$$\therefore \qquad \overrightarrow{B} \text{ at P} \Rightarrow B = \int dB \sin \theta = \frac{\mu_0 I \sin R}{4\pi R^2} \int_0^{2\pi r} dl$$
$$= \frac{\mu_0 I}{4\pi r_1^2} \times \frac{r}{r_1} \times (2\pi r)$$

$$\Rightarrow \qquad \vec{B} = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

Coil has N turns then

$$\vec{B} = \frac{\mu_0 I N r^2}{2(r^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

(OR)

$$C_S = \frac{\phi}{I}$$
 or $C_S = \frac{NAB}{\mu_r}$

(b) (i)

(G) can be converted into an ammeter by connected a small stunt resistance parallel to (G) coil so that

$$IgG = \left(I_0 - I_g\right)S$$

$$\therefore \qquad S = \frac{IgG}{I_0 - I_g}$$

(ii) Effective resistance of (A)
$$\Rightarrow \frac{GS}{G+S}$$

30.

$$I_0 = \frac{V_0}{\sqrt{R^2 + X_C^2}}$$

(a) Peak Voltage Across

(i) Resistance R is
$$V_R = I_0 R = \frac{V_0 R}{\sqrt{R^2 + X_C^2}}$$

	(ii) Capacitor C is $V_C = I_0 X_C = \frac{I_0 X_C}{\sqrt{R^2 + X_C^2}}$	
	(b)	
	Ve to the state of	
	$\phi = \tan^{-1} \left(\frac{V_c}{V_R} \right) = \tan^{-1} \left(\frac{X_C}{R} \right) = $ Phase difference between V & I	
	I is ahead of V	
31.	(a) Linear fringe width increases $\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto D$	
	No effect on angular fringe width $\left(Q = \frac{\lambda}{d}\right)$	
	(b) Both linear fringe width & angular fringe width decrease $\left(\beta \propto \frac{1}{d}, Q \propto \frac{1}{d}\right)$	
	(c) If condition $\frac{s}{S} < \frac{\lambda}{d}$ is satisfied, interference will be obtained otherwise, no interference	
	will be obtained.	
32.	(a) $v = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$	
	(b) (i) Microwaves 10^{-1} to 10^{-3} $m = \lambda$	
	(ii) Infrared $10-4 \text{ to } 10^{-6} m = \lambda$	
	(>700nm)	
33.	The binding energies per nucleon of the parent nucleus, the daughter nucleus and α-particle	
	are 7.8 MeV, 7.835 MeV and 7.07 MeV, respectively. Assuming the daughter nucleus to be	
	formed in the unexcited state and neglecting its share in the energy of the reaction, find the	
	speed of the emitted α -particle. (Mass of α -particle = $6.68 \times 10^{-27} \text{kg}$)	

Energy released = Q =
$$7.835 \times 231 + 7.07 \times 4 - 7.8 \times 235$$

 $\Rightarrow Q = 1809.885 + 28.28 - 1833$
= $5.165 \, MeV$

$$=5.165\times1.6\times10^{-13}J$$

This energy will be taken away by α –particle as kinetic energy.

$$\therefore \frac{1}{2}mv^2 = Q$$

 \Rightarrow Speed of α -particle

$$v = \sqrt{\frac{5.165 \times 1.6 \times 10^{-13} \times 2}{6.68 \times 10^{-27}}}$$
$$= \sqrt{\frac{16.528}{6.68} \times 10^{14}} = \sqrt{2.474 \times 10^{7}}$$
$$= 1.573 \times 10^{7} \text{ m/s}$$

34. (a)

From the circuit, $I = I_z + I_L$

When the given voltage v becomes greater than the breakdown voltage of Zner diode $(V > V_z)$, maximum current flows through Zener diode. & the potential across the diode remains almost constant. This can be noted from the I-V graph. As the load resistor is connected in parallel to the Zener diode, the voltage drop across the R_L resistor will be constant and equal to V_z . Thus the voltage is regulated.

(b) Heavy doping is necessary to make the internal E-field across the junction stronger, so that beyond V_z , there will be an abrupt rise in I_z .

SECTION - D

35.

S₁ & S₂ are two Gaussian spheres respectively for points

$$P_1(x < R)$$
 & $P_2(x > R)$

(i) By Gauss law,

Net outward flux through S_1

$$\phi = \iint_{S_1} \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{q_1}{\varepsilon_0} \implies \text{charge enclosed by } S_1 = -0$$

$$\implies E = 0$$

(ii) Net outward flux through S2

$$\phi = \iint_{S_2} \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{q_2}{\varepsilon_0} \rightarrow \text{charge enclosed by } S_1 = \sigma \left(4\pi R^2 \right)$$

$$\Rightarrow E \iint_{S_2} dA = \frac{\sigma \left(4\pi R^2\right)}{\varepsilon_0}$$

$$\therefore \qquad \iint_{S_2} dA = 4\pi x^2 \Rightarrow E = \frac{\sigma(4\pi R^2)}{(4\pi r^2)\varepsilon_0}$$

$$\Rightarrow E = \frac{\sigma R^2}{\varepsilon_0 x^2}$$

(b)

(i)
$$d = d_1 + d_2 + d_3$$

$$= E(\pi r^2) + E(\pi r^2) + 0$$

$$= 2E\pi r^2$$

$$= 2 \times 200 \times 3.14 \times (5 \times 10^{-2})^2$$

$$= 31400 \times 10^{-4} = 3.14 \ N - \frac{m^2}{C}$$

(ii) Net charge $q = d\varepsilon_0$

$$q = 3.14 \times 8.854 \times 10^{-12}$$
$$= 27.8 \times 10^{-12} C$$

(OR)

(a)

$$r_{12} = |\vec{r_{12}}| = |\vec{r_2} - \vec{r_1}|$$

Work done to bring q_1 from ∞ in electric field

$$\vec{E_1} \Longrightarrow W_1 = q_1 V(\vec{r_1})$$

Work done to bring $_{q2}$ in field $\overrightarrow{E_{K}}$ & of field of q_{2}

$$W_2 = q_2 V(\vec{r_2}) + \frac{kq_1 i_2}{r_{12}}$$

:. Potential energy of system

$$U = W_1 + W_2 = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{kq_1q_2}{|\vec{r_2} - \vec{r_1}|}$$

(b) Equipotential surfaces (Concentric sphere) (c) W = Energy of system $=U_{12}+U_{13}+U_{23}$ $= \frac{k}{r} (q_1 q_2 + q_2 q_3 + q_1 q_3)$ $=\frac{9\times10^9}{10\times10^{-2}}\left((+1)\times(-1)+(+1)(+2)+(-1)(+2)\right)\times10^{-12}$ $=9\times10^{-2}(-1+2-2)=-0.09J$ (a) 36. PQ = RS = lPS = QR = bArea A = lb $\overrightarrow{M} \times I \overrightarrow{A}$ $\overrightarrow{F_{PQ}} = IlB \otimes$ $\overrightarrow{F_{RS}} = IlB\Theta$

$$\overrightarrow{F_{QR}} = IbB\sin(90^{\circ} - \theta) = IbB\cos\theta$$
 up

$$\overrightarrow{F_{SP}} = IbB\sin(90^{\circ} - \theta) = IbB\cos\theta$$
 down

Only $\overrightarrow{F_{PB}} \& \overrightarrow{F_{RS}}$ form a couple to apply torque on loop

$$\tau = F_{PQ}(AQ) = (IlB)(B\sin\theta)$$
$$= I(lb)B\sin\theta$$

$$\Rightarrow \tau = MB \sin \theta$$

Magnetic field is taken radial in Galvanometer coil in order to create $\theta = 90^{\circ}$ at every orientation of coil in the magnetic field so that current varies linearly with deflection.

(b)
$$qV = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2qV}{m}}$$

 $\therefore \vec{v} = vi \perp \vec{B} (=Bj)$

$$\therefore$$
 Particle deflects along circular path of radius $r = \frac{mv}{qB} = \frac{m}{qB} \sqrt{\frac{2qv}{m}} = \frac{1}{B} \sqrt{\frac{2mv}{q}}$

$$r = \frac{1}{2 \times 10^{-3}} \sqrt{\frac{2 \times 6.4 \times 10^{-27} \times 10^4}{2 \times 1.6 \times 10^{-19}}}$$

$$= \frac{1}{2 \times 10^{-3}} \times 2 \times 10^{-2} = 10^{1} m = 10 m$$

(OR)

(a)

AC voltage v_i is applied at primary P of transformer (with turns N_P).

By self induction, pot diff developed is

$$e_P = -N_P \frac{d\phi}{dt} = v_i$$

Also, by mutual induction, pot diff developed in secondary (turns N_S)

$$e_S = -N_S \frac{d\phi}{dt} = v_0 = \text{output AC voltage}$$

Here $\frac{d\phi}{dt}$ = time rate of charge of magnetic flux of each turn

$$\therefore \frac{e_S}{e_S} = \frac{N_S}{N_P} = \frac{v_0}{v_i}$$

(i) Core is laminated to block or minimize the paths of eddy currents to minimize heat loss against resistance of core.

(ii) Thick copper wire is used in order to reduce the resistance of transformer coil to minimize heat loss.

(b) (i)
$$F = ilB = \left(\frac{Blv}{R}\right)lB = \frac{B^2l^2v}{R}$$
$$= \frac{\left(0.4\right)^2 \times \left(20 \times 10^{-2}\right)^2 \times \left(10 \times 10^{-2}\right)}{0.1}$$
$$= 640 \times 10^{-4+2+1} = 6.4 \times 10^{-3} N$$

(ii) Power =
$$P = Fv = \frac{B^2 l^2 v^2}{R}$$

= $6.4 \times 10^{-3} \times 10 \times 10^{-2}$
= 6.4×10^{-4} watt

37. (a)

Resolving power =
$$\frac{D}{1.22\lambda}$$

(b) (i)
$$m = -\frac{f_0}{f_e} = -\frac{20}{10 - 2} = -2000$$

$$\tan \alpha = \frac{d_0}{u} = \frac{di}{f_0}$$

$$\Rightarrow d_i = \frac{3.5 \times 10^6}{3.8 \times 10^8} \times 20 = 0.18 \, m$$

(OR)

(a)

$$\Delta ABC \sim \Delta A_1 B_1 C \Rightarrow \frac{A_1 B_1}{AB} = \frac{A_1 C}{AC} = \frac{(+v) + (-R)}{(-R) - (-u)} \qquad \dots (1)$$

$$\triangle ABP \sim \triangle A_1 B_1 P \Rightarrow \frac{A_1 B_1}{AB} = \frac{A_1 P}{AP} = \frac{+v}{-u}$$
 ... (2)

$$(1) = (2) \implies \frac{v - R}{-R + u} = \frac{v}{-u}$$

$$\Rightarrow$$
 $-uv + uR = -vR + uv$

$$\Rightarrow uR + vR = 2uv$$

$$\div$$
 by $uvR \Rightarrow \frac{1}{v} + \frac{1}{u} = \frac{2}{R}$

$$R = 2f : \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

(b)
$$\frac{1}{f} = (1.5 - 1)(\frac{1}{20} - \frac{1}{\infty}) = \frac{0.5}{20} = \frac{5}{200} = \frac{1}{40}$$

$$\therefore f = 40 \,\mathrm{cm}$$

Now
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow v = \frac{fu}{f+u} = \frac{40 \times -30}{40 - 30}$$

$$\Rightarrow v = \frac{-40 \times 30}{10} = -120 \, cm$$

Image is virtual, erect and enlarged in front of lens 120 cm away.