$\begin{gathered} \hline \text { Q. } \\ \text { NO } \end{gathered}$	SOLUTION	TOTAL MARKS
	SECTION - A	
1.	(A) no net charge is enclosed by the surface.	
2.	(A) qLE	
3.	(B) no current is drawn from the cell at balance.	
4.	(B) $\frac{P_{1}}{P_{2}}=\frac{R_{2}}{R_{1}}=\frac{6}{4}=3: 2$	
5.	(D) material of the turns of the coil.	
6.	(A) Increases the resolving power of telescope	
7.	(A) 1.47	
8.	(A) red colour	
9.	(D) The stability of atom was established by the model.	
10.	(B) $1: 3$	
11.	$B_{V}=B \sin 30^{\circ}=0.15 G$	
12.	Eddy	
13.	4 times	
14.	Integral (or) Nucleons	
15.	$\sqrt{3}$	
16.	$\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0}\left(I+\varepsilon_{0} \frac{d \phi_{e}}{d t}\right)$	

17.	Decreases	
18.	$\begin{aligned} & \quad \frac{R_{2}}{R_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{\frac{1}{3}} \Rightarrow R_{2}=3.6\left(\frac{64}{27}\right)^{\frac{1}{3}}=3.6 \times \frac{4}{3} \\ & =4.3 \mathrm{Fermi} \\ & \frac{\lambda_{p}}{\lambda_{e}}=\frac{\frac{h}{m_{p} v_{p}}}{\frac{h}{m_{e} v_{2}}}=\frac{m_{p}}{m_{e}} \times \frac{v_{p}}{v_{e}}=\frac{1.67 \times 10^{-27}}{9.1 \times 10^{-31}}=1.8 \times 10^{23} \end{aligned}$	
19.	M_{2} has greater value of work function due to higher value of threshold frequency.	
20.	LEDs must have band gap in the order of 1.8 eV to 3 eV but $\mathrm{Si} \& \mathrm{Ge}$ have band gap less than 1.8 eV so these cannot be used to fabricate LEDs.	
	SECTION - B	
21.	Meter bridge works on the condition of balanced wheatstone bridge condition. $\begin{aligned} & \mathrm{X}=\text { Unknown resistance } \\ & \mathrm{Y}=\text { known resistance } \\ & l=\text { balancing length } \end{aligned}$	

	Then $X=Y \frac{l}{100-l}$	
22.	$C_{1}=\frac{K \varepsilon_{0} A}{d}$ $C_{2}=$ parallel combination of two capacitors $\begin{aligned} & =\frac{K_{1} \varepsilon_{0}\left(\frac{A}{2}\right)}{d}+\frac{K_{2} \varepsilon_{0}\left(\frac{A}{2}\right)}{d} \\ & =\frac{\varepsilon_{0} A}{2 d}\left(K_{1}+K_{2}\right) \\ \because C_{1}= & C_{2} \Rightarrow K=\frac{K_{1}+K_{2}}{2} \end{aligned}$	
23.	Half-life: It is the time interval after which the activity of a radioactive sample reduces to half of initial value. $\begin{aligned} & \because \quad R=\lambda N \Rightarrow \frac{R_{1}}{R_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \times \frac{N_{1}}{N_{2}} \\ & \because \quad \lambda=\frac{0.693}{T_{\frac{1}{2}}} \Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\frac{T_{2}}{T_{1}} \\ & \therefore \quad \frac{R_{1}}{R_{2}}=\frac{T_{2}}{T_{1}} \times \frac{N_{1}}{N_{2}} \end{aligned}$	
24.	Wavefront: It is a locus of all the disturbances oscillating with energy in same phase at a given instant.	

A plane wavefront $A B$ is incident in rarer medium at instant $t=0$ on interface $X Y$ separating it from a denser medium. When wavelet A is on interface, B is at a distance $B B$, from it. It takes t time to cover the distance $B B_{1}=v_{1} t$ to reach on interface XY. Mean while, the wavelet from A reaches to point A_{1} covering a distance $A A_{1}=v_{2} t$ in denser medium.

To locate A_{1}, draw a secondary wavelet with radius $A A_{1}=v_{2} t \&$ centre A. Draw tangent from B, onto this sec. wavelet intersecting at A_{1}.
$A_{1} B_{1}$ is refracted wavefront at instant t.
$i=$ angle of incidence
$r=$ angle of refraction.
$\therefore \triangle A B B_{1} \Rightarrow \sin i=\frac{B B_{1}}{A B_{1}}$
$\Delta A A_{1} B_{1} \Rightarrow \sin r=\frac{A A_{1}}{A B_{1}}$
$\therefore \quad \frac{\sin i}{\sin r}=\frac{B B_{1}}{A A_{1}}=\frac{v_{1} t}{v_{2} t}=\frac{v_{1}}{v_{2}}$
$\therefore \quad \frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}}=$ constant
Also, $n_{1}=\frac{c}{v_{1}} \quad n_{2}=\frac{c}{v_{2}}$

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \Rightarrow \frac{\sin i}{\sin r}=\frac{n_{2}}{n_{1}}=\text { constant }
$$

	Which is Snell's law. OR Ace to lens maker's formula $\begin{equation*} \frac{1}{v}-\frac{1}{u}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{1} \end{equation*}$ When object is at placed at infinity, $u=\infty$ Image is obtained at focus $v=f$ Using these values in Eq (1) $\begin{align*} & \frac{1}{f}-\frac{1}{\infty}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\ \Rightarrow \quad & \frac{1}{f}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{2}\\ \therefore \quad & \operatorname{ByEq}(1) \&(2) \Rightarrow \quad \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \end{align*}$	
25.	$\begin{aligned} \dot{B_{P}}=B_{A}+\dot{B_{B}} & =\frac{\mu_{0} I}{2 \pi x}(\text { upwards })+\frac{\mu_{0} I}{2 \pi(f x)}(\text { down }) \\ & =\frac{\mu_{0} I}{2 \pi}\left[\frac{1}{x}-\frac{1}{d-x}\right] \\ & =\frac{\mu_{0} I}{2 \pi}\left[\frac{d-x-x}{x(d-x)}\right]=\frac{\mu_{0} I}{2 \pi}\left(\frac{d-2 x}{x(d-x)}\right) \text { upwards }+\frac{\mu_{0} I}{2 \pi(d-x)}(\text { down }) \end{aligned}$ $(1) \div(2) \Rightarrow \frac{m v_{n}^{2} r_{n}}{m v_{n} r_{n}}=\left(\frac{z e^{2}}{4 \pi \varepsilon_{0}}\right)\left(\frac{2 \pi}{n h}\right)$	

	\Rightarrow speed of e^{-} As $\quad B_{A}>B_{B}$ (b)	
26.	Centripetal force $=$ Electrostatic attraction between nucleus \& $\begin{align*} & e^{-} \\ & \Rightarrow \quad \frac{m v_{n}^{2}}{r_{n}}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \frac{(z e)(e)}{r_{n}^{x}} \\ & \Rightarrow \quad m v_{n}^{2} r_{n}=\frac{z e^{2}}{4 \pi \varepsilon_{0}} \tag{1} \end{align*}$ By Bohr II postulali, Angular momentum of e^{-} $\begin{gather*} m v_{n} r_{n}=\frac{n h}{2 \pi} \tag{2}\\ (1) \div(2) \Rightarrow \frac{m v_{n}^{2} r_{n}}{m v_{n} r_{n}}=\left(\frac{z e 2}{4 \pi \varepsilon_{0}}\right) \times \frac{2 \pi}{r h} \end{gather*}$	

	$\Rightarrow \text { speed of } e^{-} \Rightarrow v_{n}=\frac{z e^{2}}{2 \varepsilon_{0} n h}$ OR Emission of photoelectrons is a phenomenon that is excited externally by incidence of photons on metal surface to provide necessary energy to eject e^{-}from metal. Emission of β^{-}particles is totally spontaneous in which no external excitation is involved. An unstable nucleus emits an e^{-}(β particle) to become stable. Also, in photoelectron emission, radiation energy is absorbed by metal atoms while in β-particle emission, radiation energy is released.	
27.	Depletion layer: It is a layer of immobile ions formed near the p-n junction by diffusion of majority charge carriers and electron-hole recombination. Potential barrier: It is the potential difference developed across the junction when diffusion current \& drift current attains equilibrium across the junction. (a) When forward biased, width of depletion layer decreases. (b) And value of barrier potential also reduces as $v_{0}-v$.	
	SECTION - C	
28.	(a) Potential difference across A \& B $\begin{equation*} V=V_{A}-V_{B}=E_{1}-I_{1} r_{1} \tag{1} \end{equation*}$	

$$
\begin{align*}
& V=V_{A}-V_{B}=E_{2}-I_{2} r_{2} \tag{2}\\
& \Rightarrow \quad I_{1}=\frac{E_{1}}{r_{1}}-\frac{V}{r_{1}} \tag{3}\\
& I_{2}=\frac{E_{2}}{r_{2}}-\frac{V}{r_{2}} \tag{4}
\end{align*}
$$

For Equivalent cell $I=\frac{E}{r}-\frac{V}{r}$

$$
\because \quad I=I_{1}+I_{2}
$$

$$
\therefore \quad \frac{E}{r}-\frac{V}{r}=\left(\frac{E_{1}}{r_{1}}-\frac{V}{r_{1}}\right)+\left(\frac{E_{2}}{r_{2}}-\frac{V}{r_{2}}\right)
$$

$$
=\left(\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}\right)-V\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

Comparing we get $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$
$\therefore \quad$ Equivalent internal resistance is

$$
r=\frac{r_{1} r_{2}}{r_{1}+r_{2}}
$$

Also $\frac{E}{r}=\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1} r_{2}}$
$\therefore \quad$ Equivalent emf is

$$
E=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}
$$

(b)

$$
\begin{gathered}
E=\frac{5 \times 2+5 \times 2}{2+2}=5 \mathrm{~V} \\
r=\frac{2 \times 2}{2+2}=1 r \\
I=\frac{E}{R+r}=\frac{5}{10+1}=\frac{5}{11} \mathrm{~A}
\end{gathered}
$$

	\therefore Voltage across $R \Rightarrow V=I R=\frac{5}{11} \times 10=\frac{50}{11} V=4.54 \mathrm{~V}$	
29.	(a) Magnetic moment $\vec{M}=N i\left(\pi r^{2}\right) \hat{n}$ (b) Magnetic field at point $\mathrm{P}(\mathrm{x}, 0,0)$ due to $I \overrightarrow{d l}$ $\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I d l \sin 90^{\circ}}{r_{1}^{2}} \text { along } \mathrm{PQ}$ For entire coil $\int \overrightarrow{d B} \cos \theta=0$ $\begin{aligned} & \therefore \quad \vec{B} \text { at } \mathrm{P} \Rightarrow B=\int d B \sin \theta=\frac{\mu_{0} I \sin R^{2 \pi r}}{4 \pi R^{2}} \int_{0} d l \\ & =\frac{\mu_{0} I}{4 \pi r_{1}^{2}} \times \frac{r}{r_{1}} \times(2 \pi r) \\ & \Rightarrow \quad \vec{B}=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+x^{2}\right)^{\frac{3}{2}}} \hat{i} \end{aligned}$ Coil has N turns then $\vec{B}=\frac{\mu_{0} I N r^{2}}{2\left(r^{2}+x^{2}\right)^{\frac{3}{2}}} \hat{i}$	

	(ii) Capacitor C is $V_{C}=I_{0} X_{C}=\frac{I_{0} X_{C}}{\sqrt{R^{2}+X_{C}{ }^{2}}}$ (b) $\phi=\tan ^{-1}\left(\frac{V_{c}}{V_{R}}\right)=\tan ^{-1}\left(\frac{X_{C}}{R}\right)=$ Phase difference between V \& I I is ahead of V	
31.	(a) Linear fringe width increases $\beta=\frac{\lambda D}{d} \Rightarrow \beta \propto D$ No effect on angular fringe width $\left(Q=\frac{\lambda}{d}\right)$ (b) Both linear fringe width $\&$ angular fringe width decrease $\left(\beta \propto \frac{1}{d}, Q \propto \frac{1}{d}\right)$ (c) If condition $\frac{s}{S}<\frac{\lambda}{d}$ is satisfied, interference will be obtained otherwise, no interference will be obtained.	
32.	(a) $v=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}$ (b) (i) Microwaves 10^{-1} to $10^{-3} \mathrm{~m}=\lambda$ (ii) Infrared $\quad 10-4$ to $10^{-6} m=\lambda$ $(>700 \mathrm{~nm})$	
33.	The binding energies per nucleon of the parent nucleus, the daughter nucleus and α-particle are $7.8 \mathrm{MeV}, 7.835 \mathrm{MeV}$ and 7.07 MeV , respectively. Assuming the daughter nucleus to be formed in the unexcited state and neglecting its share in the energy of the reaction, find the speed of the emitted α-particle. (Mass of α-particle $=6.68 \times 10^{-27} \mathrm{~kg}$)	

	$\begin{aligned} & \text { Energy released }=\mathrm{Q}=7.835 \times 231+7.07 \times 4-7.8 \times 235 \\ & \begin{aligned} \Rightarrow Q= & 1809.885+28.28-1833 \\ & =5.165 \mathrm{MeV} \\ & =5.165 \times 1.6 \times 10^{-13} \mathrm{~J} \end{aligned} \end{aligned}$ This energy will be taken away by α-particle as kinetic energy. $\begin{aligned} & \therefore \quad \frac{1}{2} m v^{2}=Q \\ & \Rightarrow \text { Speed of } \alpha-\text { particle } \end{aligned}$ $\begin{gathered} v=\sqrt{\frac{5.165 \times 1.6 \times 10^{-13} \times 2}{6.68 \times 10^{-27}}} \\ =\sqrt{\frac{16.528}{6.68} \times 10^{14}}=\sqrt{2.474} \times 10^{7} \\ =1.573 \times 10^{7} \mathrm{~m} / \mathrm{s} \end{gathered}$	
34.	From the circuit, $\mathrm{I}=\mathrm{I}_{\mathrm{z}}+\mathrm{I}_{\mathrm{L}}$ When the given voltage v becomes greater than the breakdown voltage of Zner diode $\left(\mathrm{V}>\mathrm{V}_{\mathrm{z}}\right)$, maximum current flows through Zener diode. \& the potential across the diode remains almost constant. This can be noted from the I-V graph. As the load resistor is connected in parallel to the Zener diode, the voltage drop across the R_{L} resistor will be constant and equal to V_{z}. Thus the voltage is regulated. (b) Heavy doping is necessary to make the internal E-field across the junction stronger, so that beyond V_{z}, there will be an abrupt rise in I_{z}.	
	SECTION - D	
35.	(a)	

$S_{1} \& S_{2}$ are two Gaussian spheres respectively for points

$$
P_{1}(x<R) \quad \& \quad P_{2}(x>R)
$$

(i) By Gauss law,

Net outward flux through S_{1}

$$
\begin{gathered}
\phi=\int_{S_{1}} \vec{E} \cdot \overrightarrow{d A}=\frac{q_{1}}{\varepsilon_{0}} \rightarrow \text { charge enclosed by } S_{1}=-0 \\
\Rightarrow E=0
\end{gathered}
$$

(ii) Net outward flux through S2

$$
\begin{aligned}
& \quad \phi=\int_{S_{2}} \vec{E} \cdot \overrightarrow{d A}=\frac{q_{2}}{\varepsilon_{0}} \rightarrow \text { charge enclosed by } S_{1}=\sigma\left(4 \pi R^{2}\right) \\
& \Rightarrow E \prod_{S_{2}} d A=\frac{\sigma\left(4 \pi R^{2}\right)}{\varepsilon_{0}} \\
& \because \quad \prod_{S_{2}} d A=4 \pi x^{2} \Rightarrow E=\frac{\sigma\left(4 \pi R^{2}\right)}{\left(4 \pi r^{2}\right) \varepsilon_{0}} \\
& \Rightarrow E=\frac{\sigma R^{2}}{\varepsilon_{0} x^{2}}
\end{aligned}
$$

(b)

(i) $d=d_{1}+d_{2}+d_{3}$

$$
\begin{aligned}
& =E\left(\pi r^{2}\right)+E\left(\pi r^{2}\right)+0 \\
& =2 E \pi r^{2} \\
& =2 \times 200 \times 3.14 \times\left(5 \times 10^{-2}\right)^{2} \\
& =31400 \times 10^{-4}=3.14 \mathrm{~N}-\frac{m^{2}}{C}
\end{aligned}
$$

(ii) Net charge $q=d \varepsilon_{0}$

$$
\begin{aligned}
& q=3.14 \times 8.854 \times 10^{-12} \\
& =27.8 \times 10^{-12} \mathrm{C}
\end{aligned}
$$

(OR)
(a)

$$
r_{12}=\left|r_{12} \dot{ }\right|=\left|\dot{r_{2}}-\dot{r_{1}}\right|
$$

Work done to bring q_{1} from ∞ in electric field

$$
\overrightarrow{E_{1}} \Rightarrow W_{1}=q_{1} V\left(\stackrel{\rightharpoonup}{r_{1}}\right)
$$

Work done to bring ${ }_{q_{2}}$ in field $\overrightarrow{E_{K}} \&$ of field of q_{2}

$$
W_{2}=q_{2} V\left(\vec{r}_{2}\right)+\frac{k q_{1} i_{2}}{r_{12}}
$$

$\therefore \quad$ Potential energy of system

$$
U=W_{1}+W_{2}=q_{1} V\left(\vec{r}_{1}\right)+q_{2} V\left(\overrightarrow{r_{2}}\right)+\frac{k q_{1} q_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}
$$

$$
\overrightarrow{F_{Q R}}=I b B \sin \left(90^{\circ}-\theta\right)=I b B \cos \theta \quad \text { up }
$$

$$
\overrightarrow{F_{S P}}=I b B \sin \left(90^{\circ}-\theta\right)=I b B \cos \theta \quad \text { down }
$$

Only $\overrightarrow{F_{P B}} \& \overrightarrow{F_{R S}}$ form a couple to apply torque on loop

$$
\Rightarrow \tau=M B \sin \theta
$$

Magnetic field is taken radial in Galvanometer coil in order to create $\theta=90^{\circ}$ at every orientation of coil in the magnetic field so that current varies linearly with deflection.
(b) $q V=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{\frac{2 q V}{m}}$

$$
\because \vec{v}=v i \perp \vec{B}(=B j)
$$

\therefore Particle deflects along circular path of radius $r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 q v}{m}}=\frac{1}{B} \sqrt{\frac{2 m v}{q}}$

$$
r=\frac{1}{2 \times 10^{-3}} \sqrt{\frac{2 \times 6.4 \times 10^{-27} \times 10^{4}}{2 \times 1.6 \times 10^{-19}}}
$$

$$
=\frac{1}{2 \times 10^{-3}} \times 2 \times 10^{-2}=10^{1} \mathrm{~m}=10 \mathrm{~m}
$$

(OR)

(a)

AC voltage v_{i} is applied at primary P of transformer (with turns N_{P}).

By self induction, pot diff developed is

$$
e_{P}=-N_{P} \frac{d \phi}{d t}=v_{i}
$$

Also, by mutual induction, pot diff developed in secondary (turns N_{S})

$$
e_{S}=-N_{S} \frac{d \phi}{d t}=v_{0}=\text { output AC voltage }
$$

Here $\frac{d \phi}{d t}=$ time rate of charge of magnetic flux of each turn

$$
\therefore \frac{e_{S}}{e_{S}}=\frac{N_{S}}{N_{P}}=\frac{v_{0}}{v_{i}}
$$

(i) Core is laminated to block or minimize the paths of eddy currents to minimize heat loss against resistance of core.

	(ii) Thick copper wire is used in order to reduce the resistance of transformer coil to minimize heat loss. (b) (i) $\begin{aligned} F & =i l B=\left(\frac{B l v}{R}\right) l B=\frac{B^{2} l^{2} v}{R} \\ & =\frac{(0.4)^{2} \times\left(20 \times 10^{-2}\right)^{2} \times\left(10 \times 10^{-2}\right)}{0.1} \\ & =640 \times 10^{-4+2+1}=6.4 \times 10^{-3} \mathrm{~N} \end{aligned}$ $\text { (ii) Power } \begin{array}{r} =P=F v=\frac{B^{2} l^{2} v^{2}}{R} \\ =6.4 \times 10^{-3} \times 10 \times 10^{-2} \\ =6.4 \times 10^{-4} \mathrm{watt} \end{array}$
37.	(a) $\text { Resolving power }=\frac{D}{1.22 \lambda}$ (b) (i) $m=-\frac{f_{0}}{f_{e}}=-\frac{20}{10-2}=-2000$

$\tan \alpha=\frac{d_{0}}{u}=\frac{d i}{f_{0}}$
$\Rightarrow d_{i}=\frac{3.5 \times 10^{6}}{3.8 \times 10^{8}} \times 20=0.18 \mathrm{~m}$
(OR)
(a)

$$
\begin{equation*}
\Delta A B C \sim \Delta A_{1} B_{1} C \Rightarrow \frac{A_{1} B_{1}}{A B}=\frac{A_{1} C}{A C}=\frac{(+v)+(-R)}{(-R)-(-u)} \tag{1}
\end{equation*}
$$

$\Delta A B P \sim \Delta A_{1} B_{1} P \Rightarrow \frac{A_{1} B_{1}}{A B}=\frac{A_{1} P}{A P}=\frac{+v}{-u}$
(1) $=(2) \Rightarrow \frac{v-R}{-R+u}=\frac{v}{-u}$

$$
\begin{gathered}
\Rightarrow \quad-u v+u R=-v R+u v \\
\Rightarrow \quad u R+v R=2 u v \\
\div \text { by } u v R \Rightarrow \frac{1}{v}+\frac{1}{u}=\frac{2}{R} \\
\because \quad R=2 f \quad \therefore \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \\
\text { (b) } \frac{1}{f}=(1.5-1)\left(\frac{1}{20}-\frac{1}{\infty}\right)=\frac{0.5}{20}=\frac{5}{200}=\frac{1}{40} \\
\therefore \quad f=40 \mathrm{~cm} \\
\text { Now } \quad \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \Rightarrow v=\frac{f u}{f+u}=\frac{40 \times-30}{40-30} \\
\Rightarrow v=
\end{gathered}
$$

Image is virtual, erect and enlarged in front of lens 120 cm away.

