# **CBSE Class 12 Physics Question Paper 2020 Solution Set 3**

PHYSICS – BOARD EXAM – SET – 3 55/1/3

| Q.          | SOLUTION                                                                                  | TOTAL |  |
|-------------|-------------------------------------------------------------------------------------------|-------|--|
| NO          |                                                                                           | MARKS |  |
|             | SECTION – A                                                                               |       |  |
| SECTION - A |                                                                                           |       |  |
| 1.          | (A) 1.47                                                                                  |       |  |
| 2.          | (A) Red colour                                                                            |       |  |
| 3.          | (D) The stability of atom was established by the model                                    |       |  |
| 4.          | $\frac{KE_1}{KE_2} = \frac{1 - 0.5}{2 - 0.5} = \frac{0.5}{1.5} = 1:3 \longrightarrow (c)$ |       |  |
| 5.          | (D) Material of the turns of the coil                                                     |       |  |
| 6.          | (C) decrease in relaxation time                                                           |       |  |
| 7.          | (C) p.d. across the bigger resistor is greater                                            |       |  |
| 8.          | (D) $\frac{F}{8}$                                                                         |       |  |
| 9.          | (A) no net charge is enclosed by the surface                                              |       |  |
| 10.         | (B) lesser than the focal length of eyepiece                                              |       |  |
| 11.         | Four                                                                                      |       |  |
| 12.         | Integral                                                                                  |       |  |
|             | OR                                                                                        |       |  |
|             | Nucleons                                                                                  |       |  |
| 13.         | $\sqrt{3}$                                                                                |       |  |
| 14.         | Attracted                                                                                 |       |  |
|             |                                                                                           |       |  |

# PHYSICS – BOARD EXAM – SET – 3



**CLASS: XII** 

55/1/3

**CENTRE:** 

| 15. | Eddy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 16. | $\frac{R_2}{R_1} = \left(\frac{A_2}{A_1}\right)^{\frac{1}{3}} \Rightarrow R_2 = 3.6 \left(\frac{64}{27}\right)^{\frac{1}{3}} = 3.6 \times \frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|     | = 4.3 Fermi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | $\frac{h}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|     | $\frac{\lambda_p}{\lambda_e} = \frac{m_p v_p}{h} = \frac{m_p}{m_e} \times \frac{v_p}{v_e} = \frac{1.67 \times 10^{-27}}{9.1 \times 10^{-31}} = 1.8 \times 10^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|     | $\lambda_e = \frac{n}{m v_e} = m_e = v_e = 9.1 \times 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 17. | M <sub>2</sub> has greater value of work function due to higher value of threshold frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|     | the state of the s |  |  |  |  |
| 18. | LEDs must have band gap in the order of 1.8 eV to 3 eV but Si & Ge have band gap less than 1.8 eV so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|     | these cannot be used to fabricate LEDs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 19. | Conduction current is established by actual movement of free electrons through a metallic conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|     | while displacement current is established by polarization of molecules of a dielectric under the influence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|     | of an external electric field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 20. | Decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|     | SECTION – B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|     | SECTION 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 21. | Depletion layer: It is a layer of immobile ions formed near the p-n junction by diffusion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|     | majority charge carriers and electron-hole recombination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | Potential barrier: It is the potential difference developed across the junction when diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     | current & drift current attains equilibrium across the junction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|     | (a) When forward biased, width of depletion layer decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|     | (b) And value of barrier potential also reduces as $v_0 - v$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

## PHYSICS - BOARD EXAM - SET - 3

**CLASS: XII** 

**CENTRE:** 

55/1/3

22.



Centripetal force = Electrostatic attraction between nucleus &  $e^-$ 

$$\Rightarrow \frac{mv_n^2}{r_n} = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{(ze)(e)}{r_n^x}$$

$$\Rightarrow mv_n^2 r_n = \frac{ze^2}{4\pi\varepsilon_0} \qquad \dots (1)$$

By Bohr II postulali,

Angular momentum of  $e^-$ 

$$mv_n r_n = \frac{nh}{2\pi} \qquad \dots (2)$$

$$(1) \div (2) \Rightarrow \frac{mv_n^2 r_n}{mv_n r_n} = \left(\frac{ze2}{4\pi\varepsilon_0}\right) \times \frac{2\pi}{rh}$$

$$\Rightarrow$$
 speed of  $e^- \Rightarrow v_n = \frac{ze^2}{2\varepsilon_0 nh}$ 

OR

Emission of photoelectrons is a phenomenon that is excited externally by incidence of photons on metal surface to provide necessary energy to eject  $e^-$  from metal.

Emission of  $\beta^-$  particles is totally spontaneous in which no external excitation is involved. An unstable nucleus emits an  $e^-$  ( $\beta$  particle) to become stable. Also, in photoelectron emission, radiation energy is absorbed by metal atoms while in  $\beta$ -particle emission, radiation energy is released.



55/1/3

**CENTRE:** 



$$B_{P} = B_{A} + \dot{B}_{B} = \frac{\mu_{0}I}{2\pi x} \text{(upwards)} + \frac{\mu_{0}I}{2\pi (fx)} \text{(down)}$$

$$= \frac{\mu_{0}I}{2\pi} \left[ \frac{1}{x} - \frac{1}{d-x} \right]$$

$$= \frac{\mu_{0}I}{2\pi} \left[ \frac{d-x-x}{x(d-x)} \right] = \frac{\mu_{0}I}{2\pi} \left( \frac{d-2x}{x(d-x)} \right) \text{upwards}$$

As  $B_A > B_B$ 

(b)



24. Wavefront: It is a locus of all the disturbances oscillating with energy in same phase at a given instant.

## PHYSICS - BOARD EXAM - SET - 3



**CLASS: XII** 

55/1/3

**CENTRE:** 



A plane wavefront AB is incident in rarer medium at instant t = 0 on interface XY separating it from a denser medium. When wavelet A is on interface, B is at a distance BB, from it. It takes t time to cover the distance  $BB_1 = v_1 t$  to reach on interface XY. Mean while, the wavelet from A reaches to point  $A_1$  covering a distance  $AA_1 = v_2 t$  in denser medium.

To locate  $A_1$ , draw a secondary wavelet with radius  $AA_1 = v_2t$  & centre A. Draw tangent from B, onto this sec. wavelet intersecting at  $A_1$ .

A<sub>1</sub>B<sub>1</sub> is refracted wavefront at instant t.

i =angle of incidence

r = angle of refraction.

$$\therefore \Delta ABB_1 \Rightarrow \sin i = \frac{BB_1}{AB_1}$$

$$\Delta A A_1 B_1 \Longrightarrow \sin r = \frac{A A_1}{A B_1}$$

$$\therefore \frac{\sin i}{\sin r} = \frac{BB_1}{AA_1} = \frac{v_1 t}{v_2 t} = \frac{v_1}{v_2}$$

$$\therefore \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \text{constant}$$

Which is Snell's law.

OR

Ace to lens maker's formula



55/1/3

**CENTRE:** 

$$\frac{1}{v} - \frac{1}{u} = (n_{21} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \qquad \dots (1)$$

When object is at placed at infinity,

$$u = \infty$$

Image is obtained at focus

$$v = f$$

Using these values in Eq (1)

$$\frac{1}{f} - \frac{1}{\infty} = \left(n_{21} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\Rightarrow \frac{1}{f} = \left(n_{21} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

... (2)

: By Eq (1) & (2) 
$$\Rightarrow \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

25. Half-life: It is the time interval after which the activity of a radioactive sample reduces to half of initial value.

$$\therefore \qquad R = \lambda N \qquad \Rightarrow \qquad \frac{R_1}{R_2} = \frac{\lambda_1}{\lambda_2} \times \frac{N_1}{N_2}$$

$$\therefore \qquad \lambda = \frac{0.693}{T_{\frac{1}{2}}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{T_2}{T_1}$$

$$\therefore \frac{R_1}{R_2} = \frac{T_2}{T_1} \times \frac{N_1}{N_2}$$

$$C_1 = \frac{K\varepsilon_0 A}{d}$$

 $C_2$  = parallel combination of two capacitors

$$=\frac{K_1\varepsilon_0\left(\frac{A}{2}\right)}{d}+\frac{K_2\varepsilon_0\left(\frac{A}{2}\right)}{d}$$

6 Class

## PHYSICS - BOARD EXAM - SET - 3



CLASS: XII

55/1/3

**CENTRE:** 

$$= \frac{\varepsilon_0 A}{2d} (K_1 + K_2)$$

$$\therefore C_1 = C_2 \implies K = \frac{K_1 + K_2}{2}$$

27. Meter bridge works on the condition of balanced wheatstone bridge condition.



X = Unknown resistance

Y = known resistance

l =balancing length

Then

29.

$$X = Y \frac{l}{100 - l}$$

# SECTION - C

28. (a) 
$$v = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$

- (b) (i) Microwaves  $10^{-1}$  to  $10^{-3}$   $m = \lambda$ 
  - (ii) Infrared  $10-4 \text{ to } 10^{-6} \text{ } m = \lambda$

(>700nm)

(a) Due to redistribution of light energy because of interference of light which undergo constructive & destructive interference at difference points.

BYJU's Classes

#### PHYSICS - BOARD EXAM - SET - 3



**CLASS: XII** 

55/1/3

**CENTRE:** 

- (b) The polaroid molecule absorb and retransmit only those light vectors which are incident parallel to their pass axis. Hence, light beyond polaroid is obtained with reduced intensity.
- (c) White light has different component with different wavelength & hence all components undergo constructive interference at the central position to give white maximum but around it the positions of destructive interference for one component is overlapped by constructive component of other colour. Hence coloured fringes are observed around the central maximum.

30.







For +ve half cycle of AC input, terminal A or transformer T will be as low voltage relative centre tap terminal C & B at high voltage. So,  $D_1$  will be reverse biased &  $D_2$  will be forward biased. Diode  $D_2$  conducts to give an output across  $R_L$  through M. For –ve half cycle of input AC, A will be at high voltage & B will be at low voltage to make  $D_1$  forward and  $D_2$  reverse biased.  $D_1$  conducts to give an output across  $R_L$  with same polarity.

## PHYSICS - BOARD EXAM - SET - 3

**CLASS: XII** 

55/1/3

**CENTRE:** 

31. (a)



Potential difference across A & B

$$V = V_A - V_B = E_1 - I_1 r_1$$
 ... (1)

$$V = V_A - V_B = E_2 - I_2 r_2$$
 ... (2)

$$\Rightarrow I_1 = \frac{E_1}{r_1} - \frac{V}{r_1} \qquad \dots (3) \quad (from (1))$$

$$I_2 = \frac{E_2}{r_2} - \frac{V}{r_2}$$
 ... (4) (from (2))

For Equivalent cell  $I = \frac{E}{r} - \frac{V}{r}$  ... (5)

$$: I = I_1 + I_2$$

$$\therefore \frac{E}{r} - \frac{V}{r} = \left(\frac{E_1}{r_1} - \frac{V}{r_1}\right) + \left(\frac{E_2}{r_2} - \frac{V}{r_2}\right)$$
$$= \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

Comparing we get  $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$ 

Equivalent internal resistance is

$$r = \frac{r_1 r_2}{r_1 + r_2}$$

Also 
$$\frac{E}{r} = \frac{E_1}{r_1} + \frac{E_2}{r_2} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$$

BYJU's Classes



55/1/3

**CENTRE:** 

∴ Equivalent emf is

$$E = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$$

$$E = \frac{5 \times 2 + 5 \times 2}{2 + 2} = 5 \text{ V}$$

$$r = \frac{2 \times 2}{2 + 2} = 1r$$

$$I = \frac{E}{R+r} = \frac{5}{10+1} = \frac{5}{11}A$$

$$\therefore$$
 Voltage across  $R \Rightarrow V = IR = \frac{5}{11} \times 10 = \frac{50}{11}V = 4.54V$ 

32.

(a) 
$$z = \sqrt{R^2 + X_C^2} = \text{impedance}$$

$$\therefore I = \frac{V}{Z} = \frac{v_1 \sin \omega t}{\sqrt{R^2 + X_C^2}}$$



$$v = v_0 \sin \omega t$$

$$V_R = IR$$
,

$$V_C = IX_C$$

lags I by 
$$\frac{\pi}{2}$$



55/1/3

**CENTRE:** 



BYJU'S
The Learning App

**CLASS: XII** 

S: XII 55/1/3

**CENTRE:** 



Magnetic field at point P(x, 0, 0) due to  $I\vec{dl}$ 

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{Idl \sin 90^{\circ}}{r_1^2} \text{ along PQ}$$

For entire coil  $\int \overrightarrow{dB} \cos \theta = 0$ 

$$\vec{B} \text{ at P} \Rightarrow B = \int dB \sin \theta = \frac{\mu_0 I \sin R}{4\pi R^2} \int_0^{2\pi r} dl$$
$$= \frac{\mu_0 I}{4\pi r_1^2} \times \frac{r}{r_1} \times (2\pi r)$$

$$\Rightarrow \qquad \vec{B} = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

Coil has N turns then

$$\vec{B} = \frac{\mu_0 I N r^2}{2(r^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

(OR)

(a) Current sensitivity: It is defined as the amount of deflection produced per unit magnitude of current passes.

$$C_S = \frac{\phi}{I}$$
 or  $C_S = \frac{NAB}{\mu_r}$ 

(b) (i)

#### PHYSICS - BOARD EXAM - SET - 3

BYJU'S
The Learning App

**CLASS: XII** 

55/1/3

**CENTRE:** 



(G) can be converted into an ammeter by connected a small stunt resistance parallel to (G) coil so that

$$IgG = \left(I_0 - I_g\right)S$$

$$\therefore \qquad S = \frac{IgG}{I_0 - I_g}$$

(ii) Effective resistance of (A) 
$$\Rightarrow \frac{GS}{G+S}$$

The binding energies per nucleon of the parent nucleus, the daughter nucleus and α-particle are 7.8 MeV, 7.835 MeV and 7.07 MeV, respectively. Assuming the daughter nucleus to be formed in the unexcited state and neglecting its share in the energy of the reaction, find the speed of the emitted α-particle. (Mass of α-particle =  $6.68 \times 10^{-27}$  kg)

Energy released =  $Q = 7.835 \times 231 + 7.07 \times 4 - 7.8 \times 235$ 

$$\Rightarrow Q = 1809.885 + 28.28 - 1833$$
$$= 5.165 MeV$$
$$= 5.165 \times 1.6 \times 10^{-13} J$$

This energy will be taken away by  $\alpha$ -particle as kinetic energy.

$$\therefore \frac{1}{2}mv^2 = Q$$

 $\Rightarrow$  Speed of  $\alpha$ -particle

$$v = \sqrt{\frac{5.165 \times 1.6 \times 10^{-13} \times 2}{6.68 \times 10^{-27}}}$$
$$= \sqrt{\frac{16.528}{6.68} \times 10^{14}} = \sqrt{2.474 \times 10^{7}}$$
$$= 1.573 \times 10^{7} \,\text{m/s}$$

13

BYJU'S
The Learning App

CLASS: XII

55/1/3

**CENTRE:** 

# SECTION - D

35. (a)



Resolving power = 
$$\frac{D}{1.22\lambda}$$

(b) (i) 
$$m = -\frac{f_0}{f_0} = -\frac{20}{10 - 2} = -2000$$



$$\tan \alpha = \frac{d_0}{u} = \frac{di}{f_0}$$

$$\Rightarrow d_i = \frac{3.5 \times 10^6}{3.8 \times 10^8} \times 20 = 0.18 m$$

(OR)

(a)

# PHYSICS - BOARD EXAM - SET - 3

BYJU'S
The Learning App

**CLASS: XII** 

55/1/3

**CENTRE:** 



$$\Delta ABC \sim \Delta A_1 B_1 C \Rightarrow \frac{A_1 B_1}{AB} = \frac{A_1 C}{AC} = \frac{(+v) + (-R)}{(-R) - (-u)} \qquad \dots (1)$$

$$\triangle ABP \sim \triangle A_1 B_1 P \Rightarrow \frac{A_1 B_1}{AB} = \frac{A_1 P}{AP} = \frac{+v}{-u}$$
 ... (2)

$$(1) = (2) \Rightarrow \frac{v - R}{-R + u} = \frac{v}{-u}$$

$$\Rightarrow$$
  $-uv + uR = -vR + uv$ 

$$\Rightarrow uR + vR = 2uv$$

$$\div \text{ by } uvR \Longrightarrow \frac{1}{v} + \frac{1}{u} = \frac{2}{R}$$

$$\therefore \qquad R = 2f \ \therefore \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

(b) 
$$\frac{1}{f} = (1.5 - 1)(\frac{1}{20} - \frac{1}{\infty}) = \frac{0.5}{20} = \frac{5}{200} = \frac{1}{40}$$

$$\therefore f = 40 \,\mathrm{cm}$$

55/1/3



CLASS: XII

**CENTRE:** 

Now 
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow v = \frac{fu}{f+u} = \frac{40 \times -30}{40 - 30}$$

$$\Rightarrow v = \frac{-40 \times 30}{10} = -120 \, cm$$

Image is virtual, erect and enlarged in front of lens 120 cm away.

36.

(a)



S<sub>1</sub> & S<sub>2</sub> are two Gaussian spheres respectively for points

$$P_1(x < R) \qquad \& \qquad P_2(x > R)$$

(i) By Gauss law,

Net outward flux through S1

$$\phi = \iint_{S_1} \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{q_1}{\mathcal{E}_0}$$
  $\rightarrow$  charge enclosed by  $S_1 = -0$ 

$$\Rightarrow E = 0$$

(ii) Net outward flux through S2

$$\phi = \iint_{S_2} \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{q_2}{\varepsilon_0} \rightarrow \text{charge enclosed by } S_1 = \sigma \left( 4\pi R^2 \right)$$

$$\Rightarrow E \iint_{S_2} dA = \frac{\sigma \left(4\pi R^2\right)}{\varepsilon_0}$$

55/1/3



CLASS: XII

**CENTRE:** 

 $\vdots \qquad \iint_{S_2} dA = 4\pi x^2 \Rightarrow E = \frac{\sigma(4\pi R^2)}{(4\pi r^2)\varepsilon_0}$   $\Rightarrow E = \frac{\sigma R^2}{\varepsilon_0 x^2}$ 

(b)



(i) 
$$d = d_1 + d_2 + d_3$$
  

$$= E(\pi r^2) + E(\pi r^2) + 0$$

$$= 2E\pi r^2$$

$$= 2 \times 200 \times 3.14 \times (5 \times 10^{-2})^2$$

$$= 31400 \times 10^{-4} = 3.14 \ N - \frac{m^2}{C}$$

(ii) Net charge 
$$q=d\varepsilon_0$$
 
$$q=3.14\times8.854\times10^{-12}$$
 
$$=27.8\times10^{-12}\,C$$

(OR)

(a)



$$r_{12} = |\vec{r_{12}}| = |\vec{r_2} - \vec{r_1}|$$

Work done to bring  $q_1$  from  $\infty$  in electric field

BYJU'S
The Learning App

**CLASS: XII** 

55/1/3

**CENTRE:** 

$$\vec{E_1} \Longrightarrow W_1 = q_1 V(\vec{r_1})$$

Work done to bring  $_{q2}$  in field  $\overrightarrow{E_K}$  & of field of  $q_2$ 

$$W_2 = q_2 V\left(\overrightarrow{r_2}\right) + \frac{kq_1 i_2}{r_{12}}$$

:. Potential energy of system

$$U = W_1 + W_2 = q_1 V(\vec{r_1}) + q_2 V(\vec{r_2}) + \frac{kq_1q_2}{|\vec{r_2} - \vec{r_1}|}$$

(b)



(c) W = Energy of system
$$= U_{12} + U_{13} + U_{23}$$

$$= \frac{k}{r} (q_1 q_2 + q_2 q_3 + q_1 q_3)$$

$$= \frac{9 \times 10^9}{10 \times 10^{-2}} ((+1) \times (-1) + (+1)(+2) + (-1)(+2)) \times 10^{-12}$$

 $=9\times10^{-2}(-1+2-2)=-0.09J$ 

37. (a)

# PHYSICS - BOARD EXAM - SET - 3

BYJU'S
The Learning App

**CLASS: XII** 

55/1/3

**CENTRE:** 



$$PQ = RS = l$$

$$PS = QR = b$$

Area A = 
$$lb$$

$$\overrightarrow{M} \times I\overrightarrow{A}$$

$$\overrightarrow{F_{PQ}} = IlB \otimes$$

$$\overrightarrow{F_{RS}} = IlB\Theta$$

$$\overrightarrow{F_{QR}} = IbB\sin(90^{\circ} - \theta) = IbB\cos\theta$$
 up

$$\overrightarrow{F_{SP}} = IbB\sin(90^{\circ} - \theta) = IbB\cos\theta$$
 down

Only  $\overrightarrow{F_{PB}} \& \overrightarrow{F_{RS}}$  form a couple to apply torque on loop



$$\tau = F_{PQ}(AQ) = (IlB)(B\sin\theta)$$

BYJU'S
The Learning App

CLASS: XII 55/1/3

**CENTRE:** 

$$=I(lb)B\sin\theta$$

$$\Rightarrow \tau = MB \sin \theta$$

Magnetic field is taken radial in Galvanometer coil in order to create  $\theta = 90^{\circ}$  at every orientation of coil in the magnetic field so that current varies linearly with deflection.

(b) 
$$qV = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2qV}{m}}$$

$$\vec{v} = vi \perp \vec{B} (= Bj)$$

 $\therefore \text{ Particle deflects along circular path of radius } r = \frac{mv}{qB} = \frac{m}{qB} \sqrt{\frac{2qv}{m}} = \frac{1}{B} \sqrt{\frac{2mv}{q}}$ 

$$r = \frac{1}{2 \times 10^{-3}} \sqrt{\frac{2 \times 6.4 \times 10^{-27} \times 10^4}{2 \times 1.6 \times 10^{-19}}}$$

$$= \frac{1}{2 \times 10^{-3}} \times 2 \times 10^{-2} = 10^{1} m = 10 m$$

(OR)

(a)



55/1/3

**CENTRE:** 

AC voltage  $v_i$  is applied at primary P of transformer (with turns  $N_P$ ).

By self induction, pot diff developed is

$$e_P = -N_P \frac{d\phi}{dt} = v_i$$

Also, by mutual induction, pot diff developed in secondary (turns  $N_S$ )

$$e_S = -N_S \frac{d\phi}{dt} = v_0 = \text{output AC voltage}$$

Here  $\frac{d\phi}{dt}$  = time rate of charge of magnetic flux of each turn

$$\therefore \frac{e_S}{e_S} = \frac{N_S}{N_P} = \frac{v_0}{v_i}$$

- (i) Core is laminated to block or minimize the paths of eddy currents to minimize heat loss against resistance of core.
- (ii) Thick copper wire is used in order to reduce the resistance of transformer coil to minimize heat loss.

(b) (i) 
$$F = ilB = \left(\frac{Blv}{R}\right)lB = \frac{B^2l^2v}{R}$$
$$= \frac{(0.4)^2 \times (20 \times 10^{-2})^2 \times (10 \times 10^{-2})}{0.1}$$

$$= 640 \times 10^{-4+2+1} = 6.4 \times 10^{-3} N$$

(ii) Power = 
$$P = Fv = \frac{B^2 l^2 v^2}{R}$$
  
=  $6.4 \times 10^{-3} \times 10 \times 10^{-2}$ 

| DATE: | PHYSICS – BOARD EXAM – SET – 3 |
|-------|--------------------------------|



CLASS: XII 55/1/3

**CENTRE:** 

 $=6.4 \times 10^{-4}$  watt