

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे - ४११ ००४

आपके स्मार्टफोन में DIKSHA APP द्वारा पाठ्यपुस्तक के पहले पृष्ठ का Q. R. Code द्वारा डिजिटल पाठ्यपुस्तक और प्रत्येक पाठ में दिए गए Q. R. Code द्वारा आपको पाठ से संबंधित अध्ययन अध्यापन के लिए उपयुक्त दृकश्राव्य साहित्य उपलब्ध होगा।

प्रथमावृत्ति : २०१७

पुनर्मुद्रण : २०१९

© महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे - ४११००४

इस पुस्तक का सर्वाधिकार महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ के अधीन सुरक्षित है। इस पुस्तक का कोई भी भाग महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ के संचालक की लिखित अनुमित के बिना प्रकाशित नहीं किया जा सकता।

मुख्य समन्वयक :

श्रीमती प्राची रविंद्र साठे

शास्त्र विषय समिती:

डॉ. चंद्रशेखर वसंतराव मुरुमकर, अध्यक्ष

डॉ. दिलीप सदाशिव जोग, सदस्य

डॉ. अभय जेरे, सदस्य

डॉ. सुलभा नितिन विधाते, सदस्य

श्रीमती मृणालिनी देसाई, सदस्य

श्री गजानन शिवाजीराव सूर्यवंशी, सदस्य

श्री सुधीर यादवराव कांबळे, सदस्य

श्रीमती दिपाली धनंजय भाले, सदस्य

श्री राजीव अरुण पाटोळे, सदस्य-सचिव

शास्त्र विषय अभ्यास गट:

डॉ. प्रभाकर नागनाथ क्षीरसागर

डॉ. शेख मोहम्मद वाकीओददीन एच.

डॉ. विष्णू वझे

डॉ. गायत्री गोरखनाथ चौकदे

डॉ. अजय दिगंबर महाजन

श्रीमती श्वेता दिलीप ठाकूर

श्रीमती पुष्पलता गावंडे

श्री राजेश वामनराव रोमन

श्री हेमंत अच्यत लागवणकर

श्री नागेश भिमसेवक तेलगोटे

श्रीमती दिप्ती चंदनसिंग बिश्त

श्री विश्वास भावे

श्री प्रशांत पंडीतराव कोळसे

श्री सुकुमार श्रेणिक नवले

श्री दयाशंकर विष्णू वैद्य

श्रीमती कांचन राजेंद्र सोरटे

श्रीमती अंजली लक्ष्मीकांत खडके श्रीमती मनिषा राजेंद्र दहीवेलकर

श्रीमती ज्योती मेडपिलवार

श्री शंकर भिकन राजपूत

श्री मोहम्मद आतिक अब्दुल शेख

श्री मनोज रहांगडाळे

श्रीमती ज्योती दामोदर करणे

निमंत्रित सदस्य : कागद

डॉ. सुषमा दिलीप जोग

डॉ. पुष्पा खरे

डॉ. जयदीप साळी

श्री संदीप पोपटलाल चोरडिया

श्री सचिन अशोक बारटक्के

70 जी.एस.एम. क्रिमवोव **मृद्रणादेश**

मुद्रक

मुखपुष्ठ एवं सजावट:

श्री विवेकानंद शिवशंकर पाटील क. आशना अडवाणी

अक्षरांकन:

रासी ग्राफिक्स, मुंबई

संयोजक

श्री राजीव अरुण पाटोळे विशेषाधिकारी, शास्त्र विभाग पाठ्यपुस्तक मंडळ, पुणे

भाषांतरकारः डॉ. निलिमा मुळगुंद

श्रीमती अनुपमा एस. पाटील

समीक्षक : श्रीमती माया व्ही. नाईक

श्रीमती प्रतिमा तिवारी

विषयतज्ञ : श्री संजय भारद्वाज

डॉ. मो. शाकिर बशीर शेख श्रीमती मंजुला त्रिपाठी, मिश्रा

भाषांतर संयोजक : डॉ. अलका पोतदार,

विशेषाधिकारी, हिंदी

संयोजन सहायक : सौ संध्या विनय उपासनी,

विषय सहायक, हिंदी

निर्मित

श्री सच्चितानंद आफळे मुख्य निर्मिति अधिकारी श्री राजेंद्र विसपुते निर्मिति अधिकारी

प्रकाशक

श्री विवेक उत्तम गोसावी नियंत्रक पाठ्यपुस्तक निर्मिती मंडळ, प्रभादेवी, मुंबई-25.

उद्देशिका

हैंम, भारत के लोग, भारत को एक संपूर्ण प्रभुत्व-संपन्न समाजवादी पंथनिरपेक्ष लोकतंत्रात्मक गणराज्य बनाने के लिए, तथा उसके समस्त नागरिकों को :

सामाजिक, आर्थिक और राजनैतिक न्याय, विचार, अभिव्यक्ति, विश्वास, धर्म और उपासना की स्वतंत्रता, प्रतिष्ठा और अवसर की समता

प्राप्त कराने के लिए, तथा उन सब में

व्यक्ति की गरिमा और राष्ट्र की एकता और अखंडता सुनिश्चित करने वाली **बंधुता** बढ़ाने के लिए

दृढ़संकल्प होकर अपनी इस संविधान सभा में आज तारीख 26 नवंबर, 1949 ई. (मिति मार्गशीर्ष शुक्ला सप्तमी, संवत् दो हजार छह विक्रमी) को एतद् द्वारा इस संविधान को अंगीकृत, अधिनियमित और आत्मार्पित करते हैं।

राष्ट्रगीत

जनगणमन - अधिनायक जय हे
भारत - भाग्यविधाता ।
पंजाब, सिंधु, गुजरात, मराठा,
द्राविड, उत्कल, बंग,
विंध्य, हिमाचल, यमुना, गंगा,
उच्छल जलिधतरंग,
तव शुभ नामे जागे, तव शुभ आशिस मागे,
गाहे तव जयगाथा,
जनगण मंगलदायक जय हे,
भारत - भाग्यविधाता ।
जय हे, जय हे, जय जय, जय हे ।।

प्रतिज्ञा

भारत मेरा देश है । सभी भारतीय मेरे भाई-बहन हैं ।

मुझे अपने देश से प्यार है। अपने देश की समृद्ध तथा विविधताओं से विभूषित परंपराओं पर मुझे गर्व है।

मैं हमेशा प्रयत्न करूँगा/करूँगी कि उन परंपराओं का सफल अनुयायी बनने की क्षमता मुझे प्राप्त हो ।

मैं अपने माता-पिता, गुरुजनों और बड़ों का सम्मान करूँगा/करूँगी और हर एक से सौजन्यपूर्ण व्यवहार करूँगा/करूँगी।

मैं प्रतिज्ञा करता/करती हूँ कि मैं अपने देश और अपने देशवासियों के प्रति निष्ठा रखूँगा/रखूँगी। उनकी भलाई और समृद्धि में ही मेरा सुख निहित है।

पस्तावना

विद्यार्थी मित्रो,

आप सभी का नौवीं कक्षा में स्वागत है। नए पाठ्यक्रम पर आधारित विज्ञान और प्रौद्योगिकी की इस पाठ्यपुस्तक को आपके हाथों में देते हुए हमें विशेष आनंद का अनुभव हो रहा है। प्राथमिक स्तर से अब तक आपने विज्ञान का अध्ययन विभिन्न पाठ्यपुस्तकों द्वारा किया है। नौवीं कक्षा से आप विज्ञान की मूलभूत संकल्पनाओं और प्रौद्योगिकी का अध्ययन एक अलग दृष्टिकोण से और विज्ञान की विविध शाखाओं के माध्यम से कर सकेंगे।

'विज्ञान और प्रौद्योगिकी' की पाठ्यपुस्तक का मूल उद्देश्य अपने दैनिक जीवन से संबंधित विज्ञान और प्रौद्योगिकी 'समझिए और दूसरों को समझाइए' है। विज्ञान की संकल्पनाओं, सिद्धांतों और नियमों को समझते समय उनका व्यवहार के साथ सहसंबंध समझ लें। इस पाठ्यपुस्तक से अध्ययन करते समय 'थोड़ा याद कीजिए', 'बताइएँ तो' इन कृतियों का उपयोग पुनरावृत्ति के लिए कीजिए। 'प्रेक्षण कीजिए और चर्चा कीजिए' 'आओ करके देखें' जैसी अनेक कृतियों से आप विज्ञान सीखने वाले हैं। इन सभी कृतियों को आप अवश्य कीजिए। 'थोड़ा सोचिए', 'खोजिए', 'विचार कीजिए' जैसी कृतियाँ आपकी विचार प्रक्रिया को प्रेरणा देगी।

पाठ्यपुस्तक में अनेक प्रयोगों का समावेश किया गया है। ये प्रयोग, उनका कार्यान्वय और उस समय आवश्यक प्रेक्षण आप स्वयं सावधानीपूर्वक कीजिए तथा आवश्यकतानुसार आपके शिक्षकों, माता-पिता और कक्षा के सहपाठियों की सहायता लीजिए। आपके दैनिक जीवन की अनेक घटनाओं में विद्यमान विज्ञान का रहस्योद्घाटन करने वाली विशेषतापूर्ण जानकारी और उस पर आधारित विकसित हुई प्रौद्योगिकी इस पाठ्यपुस्तक की कृतियों के माध्यम से स्पष्ट की गई हैं। वर्तमान तकनीकी के गतिशील युग में संगणक, स्मार्टफोन आदि से तो आप परिचिति ही हैं। पाठ्यपुस्तक से अध्ययन करते समय सूचना एवं संचार प्रौद्योगिकी के साधनों का सुयोग्य उपयोग कीजिए, जिसके कारण आपका अध्ययन सरलतापूर्वक होगा।

कृति और प्रयोग करते समय विभिन्न उपकरणों, रासायनिक सामग्रियों के संदर्भ में सावधानी बरतें और दूसरों को भी सतर्क रहने को कहें। वनस्पति, प्राणी से संबंधित कृतियाँ, अवलोकन करते समय पर्यावरण संवर्धन का भी प्रयत्न करना अपेक्षित है, उन्हें हानि नहीं पहुँचने का ध्यान रखना आवश्यक ही है।

इस पाठ्यपुस्तक को पढ़ते समय, अध्ययन करते समय और समझते समय उसका पसंद आया हुआ भाग और उसी प्रकार अध्ययन करते समय आने वाली परेशानियाँ, निर्मित होने वाले प्रश्न हमें जरूर बताएँ।

आपको आपकी शैक्षणिक प्रगति के लिए हार्दिक शुभकामनाएँ।

(डॉ. सनिल बा. मगर)

संचालक

दिनांक : २८ अप्रैल २०१७, अक्षय तृतीया

भारतीय सौर दिनांक : ८ वैशाख १९३९

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे

पूणे

शिक्षकों के लिए

- तीसरी से पाँचवीं कक्षा तक परिसर अध्ययन के माध्यम से दैनिक जीवन के सरल विज्ञान को आपने विद्यार्थियों को बताया है तथा छठी से आठवीं की पाठयपस्तकों दवारा विज्ञान से परिचित करवाया है।
- विज्ञान शिक्षण का वास्तविक उद्देश्य यह है कि दैनिक जीवन में घटित होने वाली घटनाओं के बारे में तर्कपूर्ण और विवेकपूर्ण विचार किया जा सके।
- नौवीं कक्षा के विद्यार्थियों की आयु को ध्यान में रखते हुए आसपास घटित होने वाली घटनाओं के बारे में उनकी जिज्ञासा, उन घटनाओं के पीछे छुपे कार्यकारणभाव खोजने की शोध वृत्ति और स्वयं नेतृत्व करने की भावना इन सबका अध्ययन के लिए समृचित उपयोग करने के अवसर विद्यार्थियों को देना आवश्यक है।
- विज्ञान सीखने की प्रक्रिया में अवलोकन, तर्क, अनुमान, तुलना करने और प्राप्त जानकारी का अनुप्रयोग करने के लिए प्रयोग कौशल्य आवश्यक है इसलिए प्रयोगशाला में किए जाने वाले प्रयोग करवाते समय इन कौशल्यों को विकसित करने का प्रयत्न अवश्य करना चाहिए। विद्यार्थियों द्वारा आने वाले सभी अवलोकनों के पाठ्यांकों को स्वीकार करके अपेक्षित निष्कर्ष तक पहुँचने के लिए उन्हें सहायता करना चाहिए।
- विद्यार्थियों के विज्ञान संबंधी उच्च शिक्षण की नींव माध्यमिक स्तर के दो वर्ष होते हैं, इस कारण हमारा दायित्व है कि उनकी विज्ञान विषय के प्रति अभिरुचि समृद्ध और संपन्न हो। विषय, वस्तु और कौशल्य के साथ वैज्ञानिक दृष्टिकोण और सर्जनात्मकता विकसित करने के लिए आप सभी हमेशा की तरह ही अग्रणी होंगे।
- विद्यार्थियों को अध्ययन में सहायता करते समय 'थोड़ा याद कीजिए' जैसी कृति का उपयोग करके पाठ के पूर्व ज्ञान का पुन:परीक्षण किया जाना चाहिए तथा विद्यार्थियों को अनुभव से प्राप्त ज्ञान और उसकी अतिरिक्त जानकारी एकत्रित करके पाठ की प्रस्तावना करने के लिए पाठ्यांश के प्रारंभ में 'बताइए तो' जैसे भाग का उपयोग करना चाहिए। यह सब करते समय आपको ध्यान में आने वाले प्रश्नों, कृतियों का भी अवश्य उपयोग कीजिए। विषय वस्तु के बारे में स्पष्टीकरण देते समय 'आओ करके देखें' (यह अनुभव आपके द्वारा देना है) तथा 'करें और देखें' इन दो कृतियों का उपयोग पाठ्यपुस्तक में प्रमुख रूप से किया गया है। पाठ्यांश और पूर्वज्ञान के एकत्रित अनुप्रयोग के लिए 'थोड़ा सोचिए', 'इसे सदैव ध्यान में रखिए' के माध्यम से विद्यार्थियों के लिए कुछ महत्त्वपूर्ण सूचनाएँ या आदर्श मूल्य दिए गए हैं। 'खोजिए,' 'जानकारी प्राप्त कीजिए,' 'क्या आप जानते हैं?' 'परिचय वैज्ञानिकों का,' 'संस्थानों के कार्य' जैसे शीर्षक पाठ्यपुस्तक से बाहर की जानकारी की कल्पना करने के लिए, अतिरिक्त जानकारी प्राप्त करने के लिए स्वतंत्र रूप से संदर्भ खोजने की आदत लगने के लिए हैं।
- यह पाठ्यपुस्तक केवल कक्षा में पढ़कर और समझाकर सिखाने के लिए नहीं हैं, अपितु इसके अनुसार कृति करके विद्यार्थियों द्वारा ज्ञान कैसे प्राप्त किया जाए, इसका मार्गदर्शन करने के लिए है। पाठ्यपुस्तक का उद्देश्य सफल करने के लिए कक्षा में अनौपचारिक वातावरण होना चाहिए। अधिक से अधिक विद्यार्थियों को चर्चा, प्रयोग और कृति में भाग लेने के लिए प्रोत्साहित कीजिए। विद्यार्थियों द्वारा किए गए उपक्रमों, प्रकल्पों आदि के विषय में कक्षा में प्रतिवेदन प्रस्तुत करना, प्रदर्शनी लगाना, विज्ञान दिवस के साथ विभिन्न महत्त्वपूर्ण दिन मनाना जैसे कार्यक्रमों का आयोजन अवश्य कीजिए।
- पाठ्यपुस्तक में विज्ञान और प्रौद्योगिकी की विषयवस्तु के साथ सूचना एवं संचार प्रौद्योगिकी को समाहित किया गया
 है। विभिन्न संकल्पनाओं का अध्ययन करते समय उनका उपयोग करना आवश्यक होने के कारण उसे अपने मार्गदर्शन के
 अंतर्गत करवा लीजिए।

मुख पृष्ठ एवं मलपृष्ठ: पाठ्यपुस्तक की विभिन्न कृतियाँ, प्रयोग और संकल्पना चित्र

DISCLAIMER Note: All attempts have been made to contact copy righters (©) but we have not heard from them. We will be pleased to acknowledge the copy right holder (s) in our next edition if we learn from them.

क्षमता विधान : नौवीं कक्षा

मजीव जगत

- प्राणियों और वनस्पतियों की विभिन्न जीवनप्रक्रियाओं में अंतर स्पष्ट करना।
- सजीव जगत के रासायनिक नियंत्रण की जानकारी का उपयोग करके उससे दैनिक जीवन की घटनाओं को स्पष्ट करना ।
- ऊतकों के विभिन्न प्रकारों के मध्य अंतर अचूक संरचना के आधार पर स्पष्ट करना।
- 4. प्रतिजैविकों की निर्मिति में सूक्ष्मजीवों का महत्त्व/उपयोग स्पष्ट करना।
- सजीवों की विविध जीवन प्रिकयाओं और सूक्ष्मजीवों के बीच कार्यकारण संबंध स्पष्ट करना।
- 6. हानिकारक सूक्ष्मजीवों के कारण उत्पन्न होने वाले रोग और उनको दूर करने के उपाय स्पष्ट करके स्वयं के और समाज के स्वास्थ्य का ध्यान रखना।
- 7. वनस्पतियों का वैज्ञानिक वर्गीकरण कर सकना।
- मानवी उत्सर्जन संस्थान और तंत्रिका तंत्र की आकृति अचूक बनाकर उनका हमारे जीवन के लिए महत्त्व स्पष्ट करना।
- 9. मानवीय शरीर की अंत:स्नावी ग्रंथियों के संप्रेरकों का शरीर के विकास के लिए महत्त्व और स्वमग्नता, अतिउत्तेजकता, अतिभावुकता जैसी समस्याओं के वैज्ञानिक कारणों को स्पष्ट कर सकना।

आहार और पोषण

- ऊतक संवर्धन और उसका कृषि और कृषिपूरक व्यवसायों में होने वाला उपयोग स्पष्ट करके उसके संदर्भ की प्रक्रिया की जानकारी दे सकना ।
- 2. सामाजिक विकास के लिए विविध कृषिपूरक व्यवसायों का महत्त्व समझाना।
- 3. आहारशृंखला, ऊर्जा पिरामिड के बीच के सहसंबंध का विश्लेषण कर सकना।
- 4. प्राकृतिक चक्र के परिवर्तनों के कारणों को खोजना।
- 5. व्यक्तिगत और सामाजिक स्वास्थ्य को संकट में लाने वाले घटकों की जानकारी का विश्लेषण करके दूर करने के उपाय बताना।
- 6. विभिन्न रोगों के परिणामों को जानकर स्वयं की जीवनशैली बदलना।

ऊर्जा

- 1. कार्य और ऊर्जा का परस्पर संबंध स्पष्ट करके दैनिक जीवन के कार्य का प्रकार पहचानना।
- 2. दैनिक जीवन के कार्य, ऊर्जा और शक्ति पर आधारित उदाहरणों के कारणों को स्पष्ट करना और गणितीय उदाहरण हल करना।
- 3. ध्विन से संबंधित विभिन्न संकल्पनाओं का दैनिक जीवन में महत्त्व स्पष्ट करके विभिन्न प्रश्नों को हल करना।
- 4. 'सोनार' (SONAR) की आकृति बना सकना और उसका स्पष्टीकरण कर सकना।
- 5. मानवीय कान का ध्वनि के संदर्भ में कार्य आकृति दवारा स्पष्ट करना।
- 6. दर्पण के विभिन्न प्रकारों को पहचान सकना और दर्पणों द्वारा प्राप्त होने वाले प्रतिबिंबों का वैज्ञानिक स्पष्टीकरण देकर उनकी रेखाकृति खींचना।
- प्रयोगों द्वारा गुणित प्रतिबिंबों की संख्या ज्ञात करना।
- दैनिक जीवन में उपयोग में लाए जाने वाले विभिन्न दर्पणों के पीछे छिपे वैज्ञानिक कारणों को खोजना।

पदार्थ

- विश्व के पदार्थों की रचना में निहित विज्ञान बताकर पदार्थ के स्वरूप, रचना और आकार को स्पष्ट करना।
- 2. रासायनिक संयोग, द्रव्यमान की अविनाशिता, स्थिर अनुपात के नियमों की जाँच करके निष्कर्ष प्राप्त करना।
- अणु द्रव्यमान और मोल संकल्पना बता सकना और यौगिकों के अणुसूत्र पहचानना, लिखना और उसके बारे में स्पष्टीकरण दे सकना ।
- 4. दैनिक उपयोगी पदार्थों का सूचकों की सहायता से वर्गीकरण करके उनके उपयोग प्रयोग के आधार पर स्पष्ट करना।
- 5. अम्लों, क्षारकों, धातुओं और अधातुओं पर होने वाले प्रभाव का प्रयोग के आधार पर परीक्षण कर सकना।
- 6. सूचक, अम्ल व क्षारक के संबंध की सहायता समाज के अंधविश्वास, रूढ़ियों का निर्मूलन कर सकना।
- 7. प्राकृतिक सूचकों को निर्मित करना।
- 8. दैनिक उपयोगी रासायनिक पदार्थों की परिणामकारकता स्पष्ट करना ।

प्राकृतिक संपदा और आपदा प्रबंधन

- आधुनिक विज्ञान और प्रौद्योगिकी का मौसम विभाग के कार्यों पर होने वाला परिणाम स्पष्ट करना।
- 2. घर और परिसर के कचरे का वर्गीकरण कर सकना।
- 3. कचरे से उर्वरक निर्मिति और कचरे का पुर्नप्रयोग करना।
- 4. परिसर स्वच्छता के लिए कार्य करके अन्य लोगों को उसके लिए प्रवृत्त करना।
- 5. आपदा प्रबंधन तंत्र कैसे कार्यान्वित किया जाता है, उसके बारे में जानकारी संकलित करके उसका प्रस्तुतीकरण करके दैनिक जीवन में आने वाली आपदाओं का सामना कर सकना।

गति. बल और यंत्र

- गित संबंधी समीकरणों को प्रतिस्थापित करना और उसके आधार पर गणितीय उदाहरण हल करना।
- 2. विस्थापन और वेग, दूरी, समय और वेग के आधार पर आलेख द्वारा सूत्रों की निर्मिति कर सकना।
- दैनिक जीवन की विभिन्न घटनाओं में निहित गित और गित संबंधी नियमों के कार्यकारण संबंध का परीक्षण करना।

विश्व

- 1. दुरबीनों की सहायता से अंतरिक्ष का अवलोकन करना।
- 2. आधुनिक प्रौद्योगिकी और अंतरिक्ष विज्ञान का मानवीय विकास के लिए योगदान स्पष्ट करना।
- 3. दरबीनों के विविध प्रकार स्पष्ट करना।

सूचना एवं संचार प्रौद्योगिकी

- 1. संगणक प्रौद्योगिकी के कारण समाज, वित्त, विज्ञान, उद्योग जैसे क्षेत्रों में हुए आमूलाग्र परिवर्तनों को उदाहरणसहित बताना।
- 2. संगणक द्वारा विभिन्न समस्याओं के निराकरण के लिए जानकारी प्राप्त करना।
- 3. विज्ञान की संकल्पनाएँ स्पष्ट करने के लिए संगणक का उपयोग करना।
- 4. संगणक की कार्यप्रणाली में निर्मित होने वाली समस्याएँ पता करके उन्हें हल करना।
- 5. संगणक द्वारा प्राप्त की गई जानकारी पर प्रक्रियाएँ करना।

अनुक्रमणिका

	अ.क्र	5. पाठ का नाम	पृष्ठ क्र.
J	1.	गति के नियम	1
	2.	कार्य और ऊर्जा	18
		धारा विद्युत	
	4.	द्रव्य का मापन	46
	5.	अम्ल, क्षारक तथा लवण	58
	6.	वनस्पतियों का वर्गीकरण	75
	7.	परितंत्र के ऊर्जा प्रवाह	81
	8.	उपयुक्त और उपद्रवी सूक्ष्मजीव	88
	9.	पर्यावरण व्यवस्थापन	96
		सूचना एवं संचार प्रौद्योगिकी : प्रगति की नई दिशा	
	11.	प्रकाश का परावर्तन	115
	12.	ध्विन का अध्ययन	128
	13.	कार्बन : एक महत्त्वपूर्ण तत्त्व	138
	14.	हमारे उपयोगी पदार्थ	150
	15.	सजीवों की जीवन प्रक्रियाएँ	163
	16.	आनुवंशिकता और परिवर्तन	179
		जैव प्रौद्योगिकी की पहचान	
	18.	अंतरिक्ष अवलोकन : दूरबीनें (दूरदर्शी)	209

1, गति के नियम

- > गति
- > विस्थापन और दुरी
- > त्वरण
- > न्यूटन के गति संबंधी नियम और समीकरण

पिंड की गति (Motion of an Object)

बताइए तो

नीचे दिए गए कौन-कौन-से उदाहरणों में आपको गति की अनुभूति होती है? गति के होने या ना होने का स्पष्टीकरण आप कैसे करेंगे?

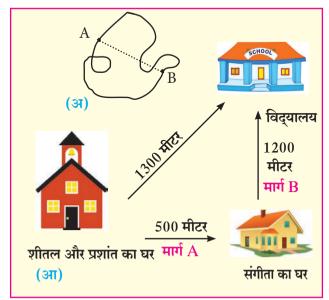
1. पक्षी का उड़ना।

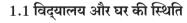
- 2. रुकी हुई रेलगाड़ी।
- 3. हवा में उडने वाले घास-पात।
- 4. पहाड पर स्थित-स्थिर पत्थर।

दैनिक जीवन में हम विभिन्न पिंडों की गित देखते हैं। कई बार हम पिंडों की गित प्रत्यक्ष रूप से नहीं देख सकते, जैसे कि बहने वाली हवा। उपर्युक्त उदाहरणों की भाँति हम अनेक उदाहरण बता सकते हैं। वे कौन-से हैं?

विचार कीजिए

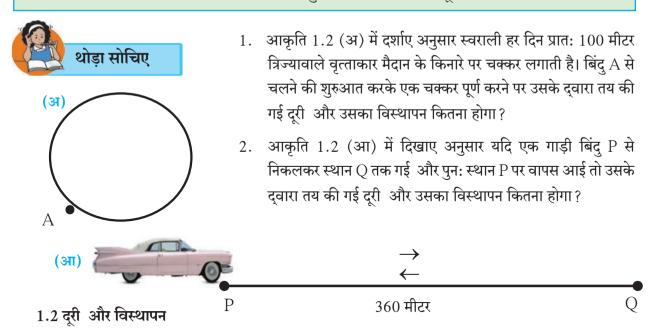
- 1. आप बस में सफर कर रहे हैं। क्या आपके पड़ोस में बैठा हुआ व्यक्ति गतिशील है?
- 2. किसी पिंड के गतिशील होने या न होने को निश्चित करने के लिए आपको कौन-कौन-सी बातों का विचार करना पड़ेगा? आपने पिछली कक्षा में पढ़ा है कि गति एक सापेक्ष संकल्पना है। यदि कोई पिंड अपने चारों ओर के पिंडों के संदर्भ में अपना स्थान परिवर्तित कर रहा हो तो, हम कह सकते हैं कि वह पिंड गतिशील है और यदि वह अपने चारों ओर के पिंडों के संदर्भ में अपना स्थान परिवर्तित न करे तो हम कह सकते हैं कि वह स्थिर है।

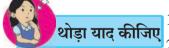

विस्थापन और दुरी


(Displacement and Distance)

आओ करके देखें

- आकृति 1.1 (अ) में दिखाए अनुसार धागे की सहायता से A तथा B के बीच की दूरी अलग-अलग प्रकार से नापिए।
- 2. अब पुन: A से B तक की दूरी सीधी खंडित रेखा द्वारा दर्शाए गए पथ से नापें। आपके मतानुसार किस पथ से नापी गई दूरी योग्य है ? क्यों?




- 1. शीतल विद्यालय जाते समय अपनी सहेली संगीता के घर जाकर फिर विद्यालय गई। आकृति 1.1 (आ) देखिए।
- 2. लेकिन प्रशांत सीधे विद्यालय गया। यदि दोनों एकसमान चाल से चले हों तो कौन कम समय में विद्यालय पहुँचेगा? क्यों? क्या उपर्युक्त उदाहरण में प्रत्यक्ष तय की गई द्री और यथार्थ द्री में अंतर होगा? क्यों?

दूरी का अर्थ दो बिंदुओं के बीच गतिशील रहने पर पिंड द्वारा प्रत्यक्ष रूप से तय किया गया पथ है। विस्थापन का अर्थ गतिशीलता के प्रारंभ और अंतिम बिंद के बीच की सबसे कम दरी है।

किसी पिंड का विस्थापन शून्य होने पर भी पिंड द्वारा प्रत्यक्ष रूप से तय की गई दूरी शून्य नहीं हो सकती।

चाल और वेग (Speed and Velocity)

- 1. सदिश (Vectors) और अदिश (Scalars) राशि का क्या अर्थ है?
- 2. दूरी (Distance), चाल (Speed), वेग (Velocity), समय (Time), विस्थापन (Displacement) में से सदिश और अदिश राशियाँ कौन-सी हैं?

किसी पिंड द्वारा इकाई समय में एक ही दिशा में तय की गई दूरी को वेग (Velocity) कहते हैं। यहाँ इकाई समय का अर्थ एक सेकंड, एक मिनिट, एक घंटा इत्यादि हो सकता है। बड़ी इकाई द्वारा समय नापने पर एक वर्ष भी इकाई समय हो सकता है। इकाई समय में होने वाले विस्थापन को वेग कहते हैं।

इसे सदैव ध्यान में रखिए

- चाल और वेग की इकाइयाँ समान होती हैं।
 उनकी SI प्रणाली में इकाई m/s और CGS
 प्रणाली में इकाई cm/s है।
- 2. चाल दूरी से संबंधित है तो वेग विस्थापन से संबंधित है।
- 3. यदि गित सरल रेखा में है तो चाल और वेग का मान समान होता है अन्यथा वे अलग-अलग हो सकते हैं।

इकाई समय में होने वाले विस्थापन को वेग कहते हैं।

पिछले उदाहरण (पृष्ठ क्र.1) में शीतल और संगीता के घरों के बीच की दूरी सरल रेखा में 500 मीटर है। संगीता के घर और विद्यालय की दूरी सरल रेखा में 1200 मीटर है और शीतल के घर और विद्यालय की दूरी सरल रेखा में 1300 मीटर है। यदि शीतल को संगीता के घर जाने के लिए 5 मिनिट लगे और वहाँ से विद्यालय जाने के लिए 24 मिनट लगे तो.

शीतल की
$$A$$
 पथ पर चाल $=$ $\frac{\zeta \chi l}{HHau} = \frac{500 \text{ H/Z}\chi}{5 \text{ Hif-Z}} = 100 \text{ H/Z}\chi/\text{Hif-Z}$
शीतल की B पथ पर चाल $=$ $\frac{\zeta \chi l}{HHau} = \frac{1200 \text{ H/Z}\chi}{24 \text{ Hif-Z}} = 50 \text{ H/Z}\chi/\text{Hif-Z}$
शीतल की औसत चाल $=$ $\frac{G}{G}$ समय $=$ $\frac{1700 \text{ H/Z}\chi}{29 \text{ Hif-Z}} = 58.6 \text{ H/Z}\chi/\text{Hif-Z}$

शीतल का वेग = 44.83 मीटर/मिनिट

चाल और दिशा का वेग पर होने वाला प्रभाव

सचिन मोटर साइकिल से सफर कर रहा है। सफर करते समय निम्नलिखित प्रसंगों में क्या घटित हुआ बताइए। (आकृति 1.3 देखिए)

- 1. सचिन द्वारा मोटर साइकिल से सफर करते समय, गित की दिशा बदलते हुए मोटर साइकिल की चाल बढ़ाने या कम करने से वेग पर क्या प्रभाव होगा?
- 2. क्या सचिन के सफर करते समय किसी मोड़ के आने पर चाल और वेग समान होंगे? सचिन द्वारा मोटर साइकिल की चाल स्थिर रखकर दिशा बदलने से वेग पर क्या प्रभाव होगा?
- 3. घुमावदार रास्ते पर मोटर साइकिल चलाते समय सचिन द्वारा मोटर साइकिल की चाल और दिशा दोनों परिवर्तित करने से वेग पर क्या प्रभाव होगा?

उपर्युक्त प्रसंगों से यह स्पष्ट होता है कि वेग, चाल और दिशा दोनों पर निर्भर करता है और वेग आगे दिए अनुसार बदलता है।

- 1. चाल परिवर्तित करके और दिशा वही रखकर।
- 2. दिशा परिवर्तित करके और चाल वही रखकर।
- चाल और गति की दिशा दोनों परिवर्तित करके।

1.3 वेग पर होने वाला प्रभाव

इसे सदैव ध्यान में रखिए

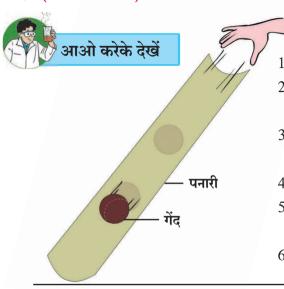
चाल का मापन दूरी/समय के अनुसार सर्वप्रथम गैलेलियों ने किया। हवा में ध्विन का वेग $343.2~\mathrm{m/s}$ और प्रकाश का वेग $3~\mathrm{x}~10^8~\mathrm{m/s}$ है। पृथ्वी की सूर्य के परित: परिभ्रमण करने की चाल $29770~\mathrm{m/s}$ है।

एकरेखीय एकसमान और असमान गति (Uniform and Nonuniform Motion along a straight line)

अमर, अकबर और एंथनी उनकी स्वयं की गाड़ी से अलग-अलग वेग से सफर कर रहे हैं। उनकी अलग-अलग समय में तय की गई दूरी नीचे तालिका में दी गई है।

घड़ी के समय अनुसार	अमर द्वारा तय की गई दूरी किमी में	अकबर द्वारा तय की गई दूरी किमी में	एंथनी द्वारा तय की गई दूरी किमी में
5.00	0	0	0
5.30	20	18	14
6.00	40	36	28
6.30	60	42	42
7.00	80	70	56
7.30	100	95	70
8.00	120	120	84

थोड़ा सोचिए


- 1. अमर, अकबर और एंथनी द्वारा सफर करते समय नोट की गई दूरियों के लिए समय कितना है?
- 2. निश्चित समय में समान द्री किसने तय की है?
- 3. क्या अकबर द्वारा निश्चित समय में तय की गई दूरी समान है?
- 4. अमर, अकबर और एंथनी द्वारा निश्चित समय में तय की गई दूरी का विचार करते हुए उनकी चाल किस प्रकार की हैं?

यदि पिंड द्वारा समान समय में समान दूरी तय की जाती है तो उसकी गति को

यदि पिंड समान समय में असमान दूरी तय करता है तो उसकी गति को असमान गति कहते हैं, जैसे – भीड़वाले रास्ते पर वाहनों की गति या साइकिल चलाने की गति।

एकसमान गति कहते हैं।

त्वरण (Acceleration)

1.4 वेग में परिवर्तन

- 1 मीटर लंबाई वाली एक पनारी (नली) लो।
- 2. आकृति 1.4 के अनुसार पनारी का एक सिरा जमीन पर टिकाकर उसका दूसरा सिरा जमीन से कुछ ऊँचाई पर हाथ से पकड़ें।
- 3. एक छोटी गेंद लेकर उसे पनारी के ऊँचे भाग की ओर से छोड़ दें।
- 4. गेंद के नीचे आते समय उसके वेग का अवलोकन करें।
- 5. क्या गेंद के ऊपर से नीचे आते समय, उसका वेग सभी स्थानों पर समान था?
- प्रारंभ में, बीच में और जमीन के पास आते समय वेग कैसे
 बदलता है, उसका अवलोकन करें।

बचपन में आप सभी फिसलपट्टी पर खेले होंगे। फिसलपट्टी से फिसलते समय प्रारंभ में वेग कम होता है, बीच में वह बढ़ता है और अंत में वह कम होकर शून्य हो जाता है, यह हमें पता है। इस वेग परिवर्तन की दर को ही हम त्वरण कहते हैं।

यदि प्रारंभिक वेग u समय t के पश्चात बदलकर अंतिम वेग v हो जाता है 2.

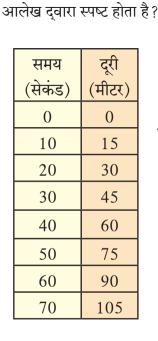
त्वरण =
$$a = \frac{3i$$
तिम वेग - प्रारंभिक वेग
समय
$$\therefore a = \frac{(v-u)}{t}$$

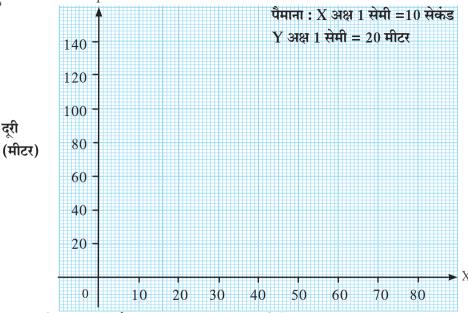
इसे सदैव ध्यान में रखिए

- जब गित की शुरुआत होते समय पिंड विराम अवस्था में होता है तब पिंड का प्रारंभिक वेग कितना होता है?
- जब गित के अंत में पिंड विरामावस्था में आता है तब उसका अंतिम वेग कितना होगा?

यदि कोई गतिशील पिंड निश्चित समय में वेग बदलता है तो उस पिंड की गति को त्वरित गति कहते हैं। गतिशील पिंड में दो प्रकार के त्वरण हो सकते हैं।

- 1. यदि समान समय में वेग में समान परिवर्तन होता है तो एकसमान त्वरण होता है।
- 2. यदि समान समय में वेग में असमान परिवर्तन होता है तो असमान त्वरण होता है।


धनात्मक, ऋणात्मक और शून्य त्वरण


धनात्मक, ऋणात्मक और शून्य त्वरण

किसी पिंड का त्वरण धनात्मक या ऋणात्मक हो सकता है। जब किसी पिंड का वेग बढ़ता है तब त्वरण धनात्मक होता है। यहाँ त्वरण वेग की दिशा में होता है। जब किसी वस्तु का वेग कम होता है तब त्वरण ऋणात्मक होता है। ऋणात्मक त्वरण को 'अवत्वरण' या 'मंदन' (Deceleration) कहते हैं। यह वेग की विपरीत दिशा में होता है। वेग स्थिर रहने पर त्वरण शून्य होता है।

एकसमान गति के लिए दुरी - समय आलेख

नीचे दी गई तालिका में एक गाड़ी द्वारा निश्चित समय में तय की गई दूरी दी गई हैं। तालिका के अनुसार समय X अक्ष पर तथा दूरी Y अक्ष पर लेकर आकृति 1.5 में आलेख बनाइए। क्या दूरी और समय के बीच समानुपात का संबंध

1.5 दूरी – समय आलेख

समय (सेकंड)

एकसमान गति में पिंड समान समयाविधि में समान दरी तय करता है । यह दरी-समय आलेख की सरल रेखा दर्शाती है।

दरी – समय आलेख की सरल रेखा का ढाल (slope) निकालने पर वह क्या दर्शाता है?

असमान गति के लिए दरी - समय आलेख

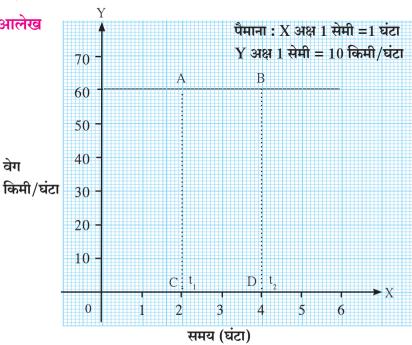
दी गई सारिणी में बस द्वारा निश्चित समय में तय की गई दूरियाँ दी गई हैं। समय को X – अक्ष पर तथा दूरी को Y- अक्ष पर लेकर आकृति 1.6 में आलेख बनाइए। क्या दरी और समय के बीच समानुपात का संबंध आलेख की सहायता

से स्पष्ट होता है?

समय	दूरी
(सेकंड)	(मीटर)
0	0
5	7
10	12
15	20
20	30
25	41
30	50
35	58

1.6 दुरी - समय आलेख

यहाँ समयानुसार द्री में असमान परिवर्तन होता है। अत: यहाँ गति असमान है।

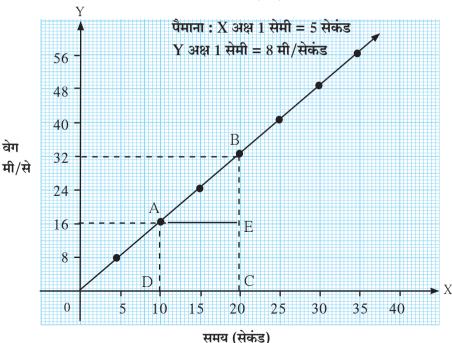

थोडा सोचिए

एकसमान गति और असमान गति के द्री-समय आलेखों में आपको क्या अंतर दिखाई दिया?

एकसमान गति के लिए वेग – समय आलेख

एक रेलगाडी 60 किमी प्रति घंटे के एकसमान वेग से सतत रूप से गतिशील है। इस एकसमान गति के लिए वेग और समय का परिवर्तन वेग-समय आलेख (आकृति 1.7) में दर्शाया गया है ।

- 1. रेलगाड़ी द्वारा 2 से 4 घंटों के बीच तय की गई दूरी कैसे ज्ञात की जा सकती है?
- 2. क्या 2 से 4 घंटों के बीच रेलगाडी द्वारा तय की गई द्री और आकृति के एक चतुर्भज ABCD के क्षेत्रफल का संबंध है क्या? यहाँ गाडी का त्वरण कितना है?


1.7 वेग – समय आलेख

एकसमान त्वरित गति के लिए वेग – समय आलेख

वेग

निश्चित समयावधिनुसार कार के वेग में होने वाले परिवर्तन सारिणी में दिए गए हैं।

समय	वेग
(सेकंड)	(मी/से)
0	0
5	8
10	16
15	24
20	32
25	40
30	48
35	56

1.8 वेग - समय आलेख

आकृति 1.8 का आलेख दर्शाता है कि,

- 1. निश्चित समयावधि में वेग में समान परिवर्तन होता है। यह वेग त्वरित है और त्वरित एकसमान है। प्रत्येक 5 मिनिट में वेग में कितना परिवर्तन होता है?
- 2. सभी एकसमान त्वरित गति के लिए वेग-समय आलेख सरल रेखा होता है।
- 3. असमान त्वरित गति के लिए वेग-समय आलेख समयानुसार त्वरण में होने वाले परिवर्तन के अनुसार किसी भी आकार का हो सकता है।

आकृति 1.8 के आलेख की सहायता से कार द्वारा 10 सेकंड से 20 सेकंड की समयावधि के बीच तय की गई दरी हम रेलगाड़ी के पिछले उदाहरण की तरह ज्ञात कर सकते हैं, लेकिन यहाँ कार का वेग स्थिर न रहकर एकसमान त्वरण के कारण सतत रूप से परिवर्तित हो रहा है। ऐसे समय हम दी गई समयावधि के बीच कार के औसत वेग का उपयोग करके कार द्वारा तय की गई दूरी ज्ञात कर सकते हैं।

आलेख द्वारा दिखाई देता है कि कार का औसत वेग $\frac{32 + 16}{2} = 24$ मीटर/सेकंड है।

इसे दी गई समयाविध अर्थात 10 सेकंड से गुणा करने पर कार दवारा तय की गई दरी प्राप्त होती है। दूरी = 24 मीटर/सेकंड \times 10 सेकंड = 240 मीटर

पिछले उदाहरण की तरह कार द्वारा तय की गई दूरी चतुर्भुज ABCD के क्षेत्रफल के बराबर होगी, इसकी पड़ताल करके देखिए।

$$A (\square ABCD) = A (\square AECD) + A (\triangle ABE)$$

आलेख पद्धति द्वारा गति संबंधी समीकरण (Equations of Motion using graphical method)

न्यूटन ने पिंड की गति का अध्ययन किया और बाद में गति संबंधी तीन समीकरण का समुच्चय प्रतिपादित किया। एक रेखा में गतिशील पिंड के विस्थापन, वेग, त्वरण और समय में संबंध इन समीकरणों दवारा स्थापित किया गया है।

एक पिंड प्रारंभ में 'u' वेग से सरल रेखा में गतिशील है। 't' समय के अंतर्गत त्वरण के कारण वह अंतिम वेग 'v' प्राप्त करता है और उसका विस्थापन 's' है तो तीन समीकरणों का समुच्चय इस प्रकार दे सकते हैं,

$$v = u + at$$
 यह वेग – समय संबंध दर्शाता है।

$$s = ut + \frac{1}{2}at^2$$
 यह विस्थापन – समय संबंध दर्शाता है।

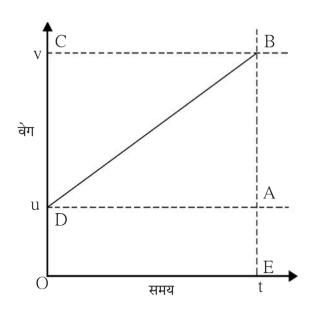
 $v^2 = u^2 + 2as$ यह विस्थापन – वेग संबंध दर्शाता है।

हम देखेंगे कि ये समीकरण आलेख पद्धति से कैसे प्राप्त किए जा सकते हैं।

वेग – समय संबंध का समीकरण

एक समान त्विरत वेग से गितमान पिंड के वेग में समयानुसार होने वाला परिवर्तन आकृति 1.9 में आलेख की सहायता से दर्शाया गया है। पिंड आलेख के बिंदु D से गितशील होता है। समयानुसार पिंड का वेग बढ़ता जाता है और समय t के पश्चात पिंड आलेख के बिंदु B तक पहुँचता है।

पिंड का प्रारंभिक वेग = 11 = OD


पिंड का अंतिम वेग = v = OC

कालावधि = t = OE

बिंदु B से Y अक्ष के समांतर रेखा खींचें। वह X अक्ष को बिंदु E पर प्रतिच्छेदित करती है। बिंदु D से X अक्ष के समांतर रेखा खींचें। वह रेखा BE को बिंदु A पर प्रतिच्छेदित करती है।

आलेख के अनुसार.... BE = BA + AE

$$\therefore$$
 v = CD + OD

1.9 वेग - समय आलेख

विस्थापन - समय संबंध का समीकरण

माना किसी पिंड ने एकसमान त्वरण 'a' के अनुसार समय 't' मे दूरी 's' तय की है। आकृति 1.9 के आलेख के अनुसार वस्तु द्वारा तय की गई दूरी चतुर्भुज DOEB के क्षेत्रफल द्वारा ज्ञात की जा सकती है।

= आयत DOEA का क्षेत्रफल + त्रिभुज DAB का क्षेत्रफल

$$\therefore s = (AE \times OE) + (\frac{1}{2} \times [AB \times DA])$$

परंतु
$$AE = u$$
, $OE = t$ और $(OE = DA = t)$
 $AB = at ---(AB = CD) --- (i) से$

$$\therefore$$
 s = u × t + $\frac{1}{2}$ × at × t

... गति संबंधी दूसरा समीकरण
$$s = ut + \frac{1}{2} at^2 है।$$

विस्थापन – वेग संबंध का समीकरण

आकृति 1.9 के आलेख से, पिंड द्वारा तय की गई दूरी चतुर्भुज DOEB के क्षेत्रफल द्वारा ज्ञात की जा सकती है, यह हम देख चुके हैं। चूँिक चतुर्भुज DOEB एक समलंब चतुर्भुज है अत: समलंब चतुर्भुज के सूत्र का उपयोग करके हम पिंड द्वारा तय की गई दूरी ज्ञात कर सकते हैं।

$$\therefore$$
 s = $\frac{1}{2}$ × समांतर भुजाओं की लंबाइयों का योगफल × समांतर भुजाओं के बीच की लंब दूरी

$$\therefore$$
 s = $\frac{1}{2}$ × (OD + BE) × OE परंतु , OD = u, BE = v और OE = t

$$\therefore s = \frac{1}{2} \times (u + v) \times t \quad ----- (ii)$$

परंतु,
$$a = \frac{(v-u)}{t}$$

$$\therefore t = \frac{(v-u)}{2} \qquad -----(iii)$$

$$\therefore s = \frac{1}{2} \times (u + v) \times \frac{(v-u)}{a}$$

$$\therefore s = \frac{(v+u)(v-u)}{2a}$$

$$\therefore$$
 2 as = (v+u) (v-u) = v²-u²

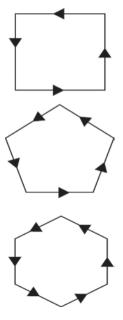
$$\therefore$$
 $v^2 = u^2 + 2as$

यह गति संबंधी तीसरा समीकरण है।

इसे सदैव ध्यान में रखिए

जिस समय पिंड त्वरित होता है उस समय उसका वेग परिवर्तित होता है। वेग में होने वाला परिवर्तन वेग के परिमाण या दिशा या दोनों ही परिवर्तित होने के कारण होता है।

एकसमान वृत्ताकार गति (Uniform Circular Motion)


आओ करके देखें

घड़ी के सेकंड के काँटे की नोंक का अवलोकन कीजिए। उसके चाल और वेग के बारे में क्या कहा जा सकता है?

घड़ी के काँटे की नोंक की चाल स्थिर रहती है परंतु उसके विस्थापन की दिशा निरंतर बदलने के कारण उसका वेग निरंतर बदलता रहता है। सेकंड के काँटे की नोंक के वृत्ताकार पथ पर घूमने के कारण इस गति को एकसमान वृत्ताकार गति कहते हैं। इस प्रकार की गति के अन्य कौन-से उदाहरण आप बता सकते हैं?

करके देखिए और विचार कीजिए

- 1. आकृति 1.10 में दिखाए अनुसार एक वर्गाकार पथ बनाइए।
- 2. उस वर्गाकार पथ पर एक भुजा के मध्यभाग के एक बिंदु पर पेंसिल रखकर एक चक्कर पूर्ण कीजिए।
- 3. एक चक्कर पूर्ण करते समय आपको कितनी बार दिशा बदलनी पड़ी, उसे नोट कीजिए।
- 4. अब यही कृति पंचभुज, षटभुज, अष्टभुज पथ पर कीजिए और आपको कितनी बार दिशा बदलनी पडी. उसे नोट करें।
- 5. यदि भुजाओं की संख्या बढ़ाते हुए उसे असंख्य किया जाए तो कितनी बार दिशा बदलनी पड़ेगी और पथ का आकार कौन-सा होगा? अर्थात भुजाओं की संख्या बढ़ाते जाएँ तो बार-बार दिशा बदलनी पड़ती है और भुजाओं की संख्या बढ़ाते हुए उसे असंख्य करने पर पथ वृत्ताकार होगा।

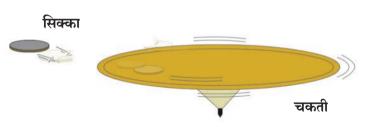
1.10 दिशा में परिवर्तन

जब पिंड स्थिर चाल से वृत्ताकार पथ पर गतिशील होता है तब वेग में होने वाला परिवर्तन केवल गति की दिशा बदलने से होता है। इस कारण वह त्वरित वेग होता है। जब कोई पिंड एकसमान चाल से वृत्ताकार पथ पर जाता है तब उस गति को एकसमान वृत्ताकार गति कहते हैं। उदाहरणार्थ, एकसमान चाल घुमनेवाला गुलेल के पत्थर की गति, साइकिल के पहिए के किसी भी बिंदु की गति।

वृत्ताकार गित में गितशील पिंड t समय के पश्चात अपने मूल स्थान पर पुन: आता है तो पिंड की चाल निम्निलिखित सूत्र की सहायता से ज्ञात की जा सकती है।

$$v = \frac{2 \pi r}{t}$$
 $r = apr (\pi h) त्रिज्या$

दैनिक जीवन में वृत्ताकार गति से गतिशील होने वाले उदाहरणों को खोजिए।


एकसमान वृत्ताकार वेग की दिशा ज्ञात करना

आओ करके देखें

एक गोल घूमने वाली चकती लो। उसके किनारे पर पाँच रुपए का एक सिक्का रखें।

आकृति 1.11 में दर्शाए अनुसार चकती को गोल घुमाएँ। चकती को अधिक वेग से घुमाने पर, अवलोकन करें कि सिक्का कौन-सी दिशा में फेंका जाता है। चकती पर सिक्का विभिन्न स्थानों पर रखकर इस कृति को पुन:-पुन: करें और निरीक्षण करें कि प्रत्येक बार सिक्का कौन-सी दिशा में फेंका जाता है।

1.11 चकती के ऊपर का सिक्का

सिक्का वृत्ताकार चकती की त्रिज्या के लंबवत रहने वाली स्पर्श रेखा की दिशा में जाएगा। सिक्का फेंके जाते समय जिस स्थिति में होगा उसके अनुसार वह विशेष दिशा में फेंका जाएगा अर्थात् सिक्का वृत्ताकार दिशा में घूमते समय गति की दिशा प्रत्येक बिंद के पास परिवर्तित होती है।

हल किए गए उदाहरण

उदाहरण 1 : एक खिलाड़ी वृत्ताकार मार्ग पर दौड़ते समय 25 सेकंड में 400 मीटर दूरी दौड़कर पुन: प्रारंभिक स्थान पर वापस आता है। उसकी औसत चाल और औसत वेग कितना होगा?

द्रतः तय की गई कुल द्री = 400 मी.

कुल विस्थापन = 0 मीटर (उसके पुन: प्रारंभिक स्थान पर आने के कारण)

लगा हुआ कुल समय = 25 सेकंड

औसत चाल = ?. औसत वेग = ?

औसत चाल =
$$\frac{\text{तय की गई कुल दूरी}}{\text{लगा हुआ कुल समय}} = \frac{400}{25} = 16 \text{ मीटर/सेकंड}$$

औसत वेग =
$$\frac{\text{कुल विस्थापन}}{\text{लगा हुआ कुल समय}} = \frac{0}{25} = 0 \text{ मीटर/सेकंड}$$

उदाहरण 2: एक हवाई जहाज 3.2 m/s^2 के त्वरण से 30 सेकंड धावन पथ पर दौड़ने के बाद हवा में उड़ता है तो हवाई जहाज ने उड़ने के पहले कितनी दरी तय की?

द्रत: $a = 3.2 \text{ m/s}^2$, t = 30 सेकंड, u = 0, s = ?

s = ut
$$+\frac{1}{2}$$
 at² = 0 × 30 $+\frac{1}{2}$ × 3.2 × 30² = 1440 m.

उदाहरण 3: एक कंगारू की क्षितिज के लंब दिशा में 2.5 m ऊँची छलाँग मारने की क्षमता होने पर उस कंगारू की हवा में छलाँग मारने की चाल कितनी होगी?

दत्त:

$$a = 9.8 \text{ m/s}^2$$

$$s = 2.5 \text{ m}$$

$$v = 0$$

$$u = ?$$

$$v^2 = u^2 + 2as$$

 $(0)^2 = u^2 + 2 \times (-9.8)$ (2.5) त्वरण वेग की विपरीत दिशा में होने के कारण ऋण चिह्न का उपयोग किया है।

$$0 = u^2 - 49$$

$$u^2 = 49$$

$$u = 7 \text{ m/s}$$

उदाहरण 4: एक मोटरबोट विरामावस्था से निकलकर एकसमान त्वरण से जाती है। यदि वह 5 सेकंड में 15 मीटर / सेकंड का वेग प्राप्त करती है तो निर्मित त्वरण और दिए गए समय में तय की गई दूरी कितनी होगी?

दत्त:

प्रारंभिक वेग (u) = 0 मीटर/सेकंड,

अंतिम वेग (v) = 15 मीटर/सेकंड,

कुल समय (t) = 5 सेकंड

त्वरण = ?

गति संबंधी पहले समीकरण से त्वरण,

त्वरण =
$$\frac{v-u}{t} = \frac{15-0}{5} = 3$$
 मीटर/ सेकंड²

गति संबंधी दसरे समीकरण से, तय की गई दरी

s = ut +
$$\frac{1}{2}$$
 at²
s = 0 × 5 + $\frac{1}{2}$ 3 × 5²
= 0 + $\frac{75}{2}$ = 37.5 मीटर

न्य्टन के गति संबंधी नियम (Newton's Laws of Motion)

ऐसा क्यों होता होगा?

- 1. स्थिर अवस्था वाली कोई वस्तु बल लगाए बिना जगह से हिलती नहीं है।
- 2. टेबल पर रखी पुस्तक उठाने के लिए आवश्यक पर्याप्त बल दवारा टेबल उठाया नहीं जाता।
- 3. टहनी हिलाने पर वृक्ष से फल नीचे गिरते हैं।
- 4. विदुयत दवारा घूमने वाला पंखा बंद करने पर भी पूर्ण रूप से रुकने के पहले वह कुछ समय तक घूमता रहता है। उपर्युक्त घटनाओं के कारणों को खोजने पर हमें यह स्पष्ट होता है कि पिंड में जड़त्व होता है। पिंड का जड़त्व पिंड के दृव्यमान से संबंधित होता है. यह आपने सीखा है। न्यूटन के गति संबंधी पहले नियम में पदार्थ के इसी गुणधर्म का वर्णन किया गया है इसलिए उसे 'जडत्व का नियम' भी कहते हैं।

न्यूटन का गति संबंधी पहला नियम (Newton's first Law of Motion)

एक गिलास में बालू भर लीजिए। उस गिलास पर एक गत्ता रखिए। गत्ते पर आओ करके देखें पाँच रुपए का एक सिक्का रखिए। अब गत्ते को ऊँगली द्वारा थपकी मारें। क्या होता है उसका अवलोकन करें।

संतुलित और असंतुलित बल (Balanced and Unbalanced Force)

आपने रस्सी खींचने का खेल खेला होगा। जब तक दोनों ओर से प्रयुक्त बल समान होता है तब तक रस्सी का मध्यभाग स्थिर रहता है। यहाँ दोनों ओर से प्रयुक्त बल समान रहने अर्थात बल 'संतुलित' रहने के कारण बल प्रयुक्त करने पर भी रस्सी का मध्यभाग स्थिर रहता है परंत् जब एक सिरे द्वारा प्रयुक्त बल बढ़ता है, उस समय प्रयुक्त बल 'असंतुलित' हो जाते हैं और परिणामी बल अधिक बल के सिर की ओर प्रयुक्त होता है और रस्सी का मध्य उस दिशा में सरकता है।

'यदि किसी पिंड पर कोई भी बाह्य असंतुलित बल कार्यरत नहीं होता तो उसकी विरामावस्था अथवा सरल रेखा में एक समान गति में सातत्य रहता है।'

कोई पिंड विरामावस्था अथवा सरल रेखा में एकसमान गति की अवस्था में होता है तब उस पर किसी भी प्रकार का बल कार्यरत नहीं होता ऐसा नहीं है। वास्तविक रूप से उस पिंड पर विभिन्न बाह्य बल कार्यरत होते हैं परंतु उनके एक-दूसरे को निष्फल करने के कारण कुल परिणामी बल शून्य होता है। न्यूटन के पहले नियम द्वारा जड़त्व का अर्थात पिंड की गति संबंधी अवस्था अपने आप परिवर्तित न होने का स्पष्टीकरण दिया जाता है। इसी प्रकार पिंड की विरामावस्था या पिंड की सरलरेखा में एकसमान गति में परिवर्तन करने वाले या परिवर्तन के लिए उद्यत करने वाले असंतुलित बल का स्पष्टीकरण दिया जाता है।

जड़त्व संबंधी सब उदाहरण न्यूटन के गति संबंधी पहले नियम के उदाहरण हैं।

न्यूटन का गति संबंधी दसरा नियम (Newton's second Law of Motion)

- अ. 1. अपने मित्र को समान आकार की प्लास्टिक और रबड़ की गेंदे ऊँचाई से नीचे डालने के लिए कहें।
 - 2. आप गेंदों को पकड़ें। आप कौन-सी गेंद सरलता से पकड़ सकते हैं? क्यों?
- **आ.** 1. आपके मित्र को एक गेंद धीरे से फेंकने के लिए कहें और आप उसे पकड़ने का प्रयत्न करें।
 - 2. अब उसी गेंद को आप अपने मित्र को जोर से फेंकने के लिए कहें और आप उसे पकड़ने का प्रयत्न करें। किस समय आप गेंद सरलता से पकड सके? क्यों?

एक पिंड द्वारा दूसरे पिंड पर किए गए आघात (टक्कर) का परिणाम उस पिंड के द्रव्यमान और उसके वेग दोनों पर निर्भर करता है अर्थात् बल का परिणाम प्राप्त करने के लिए पिंड के द्रव्यमान और वेग को एकत्र जोड़ने वाला गुणधर्म कारणीभूत है। इस गुणधर्म को न्यूटन ने 'संवेग' द्वारा संबोधित किया।

संवेग में परिमाण और दिशा दोनों होते हैं। संवेग की दिशा वेग की दिशा में होती है।

SI प्रणाली के अनुसार संवेग की इकाई $kg\ m/s$ और CGS प्रणाली में $gm\ cm/s$ है I

जब पिंड पर प्रयुक्त किया गया असंतुलित बल वेग में परिवर्तन करता है तो वही बल संवेग में भी परिवर्तन करता है। पिंड के संवेग में परिवर्तन लाने के लिए आवश्यक बल संवेग परिवर्तन की दर पर निर्भर करता है।

संवेग (Momentum) (P): पिंड के वेग और द्रव्यमान के गुणनफल को संवेग कहते हैं। P = mv संवेग एक सिंदश राशि है।

'संवेग परिवर्तन की दर प्रयुक्त बल के समानुपाती होती है और संवेग का परिवर्तन बल की दिशा में होता है।' माना, द्रव्यमान, m का एक पिंड प्रारंभिक वेग 'u' से जाते समय उसके गति की दिशा में बल F प्रयुक्त करने से समय t के पश्चात पिंड का वेग V हो जाता है।

∴ पिंड का प्रारंभिक संवेग = mu, समय t के पश्चात पिंड का अंतिम वेग = mv

∴ संवेग परिवर्तन की दर = संवेग में होने वाला परिवर्तन समय

$$\therefore$$
 संवेग परिवर्तन की दर $=$ $\frac{mv - mu}{t} = \frac{m(v - u)}{t} = ma$

न्यूटन के गति संबंधी दूसरे नियम के अनुसार, संवेग परिवर्तन की दर प्रयुक्त बल के समानुपाती होती है।

∴ ma α F

 \therefore F = k ma (k = एक स्थिरांक है उसका मान 1 है।) F = m × a दो विभिन्न द्रव्यमानों तथा प्रारंभ में विरामावस्था में स्थित दो पिंडों का विचार कीजिए। दोनों का प्रारंभिक संगेव शून्य होगा। माना, दोनों पिंडों पर विशेष समयाविध (t) के लिए निश्चित बल (F) प्रयुक्त किया। हल्का पिंड भारी पिंड की तुलना में अधिक वेग से जाने लगेगा परंतु उपर्युक्त सूत्र से स्पष्ट होता है कि, दोनों पिंडों की संवेग परिवर्तन की दर लेकिन समान है अर्थात F होगी और उनमें होने वाला परिवर्तन भी (Ft) समान होगा। अतः विभिन्न पिंडों पर समान समयाविध में समान बल प्रयुक्त करने पर संवेग में परिवर्तन समान होता है।

SI प्रणाली में बल की इकाई न्यूटन है। न्यूटन (N): 1 kg द्रव्यमान में $1 \text{ m}/\text{s}^2$ का त्वरण उत्पन्न करने वाले बल को 1 am न्यूटन कहते हैं। $1 \text{ N} = 1 \text{ kg} \times 1 \text{ m/s}^2$ CGS प्रणाली में बल की इकाई डाइन है। sis (dyne): 1 g द्रव्यमान में $1 \text{ cm}/\text{s}^2$ का त्वरण उत्पन्न करने वाले बल को 2 sis कहते हैं। $2 \text{ dyne} = 1 \text{ g} \times 1 \text{ cm/s}^2$

थोड़ा सोचिए

ऊँची छलाँग मारने वाले मैदानी खेलों में खिलाड़ी जमीन पर बालू की मोटी परत पर गिरे, ऐसी व्यवस्था क्यों की जाती है?

न्यूटन का गति संबंधी तीसरा नियम (Newton's third law of Motion)

- 1. पीछे की ओर छिद्र वाली प्लास्टिक की एक नाव लीजिए।
- 2. एक गुब्बारे में हवा भरकर उसे नाव के छिद्र पर लगाओ और नाव को पानी में छोडिए।

जैसे जैसे गुब्बारे की हवा बाहर निकलेगी वैसे-वैसे नाव पर क्या प्रभाव होता है और क्यों?

न्यूटन के गति संबंधी पहले दो नियमों से बल और बल के परिणाम की जानकारी मिलती है।

'परंतु प्रकृति में बल अकेला हो ही नहीं सकता' बल दो पिंडों के बीच की अन्योन्य क्रिया है। बल हमेशा जोड़ी द्वारा ही प्रयुक्त होते हैं। जब एक पिंड दूसरे पिंड पर बल प्रयुक्त करता है उसी समय दूसरा पिंड भी पहले पिंड पर बल प्रयुक्त करता है। दो पिंडों के बीच के बल हमेशा समान और विपरीत होते हैं। यह संकल्पना न्यूटन के गित संबंधी तीसरे नियम में प्रतिपादित की गई है। पहले पिंड द्वारा दूसरे पिंड पर प्रयुक्त किए गए बल को प्रतिक्रिया बल कहते हैं।

'प्रत्येक क्रिया बल के लिए समान परिमाण वाले और उसी समय प्रयुक्त होने वाले प्रतिक्रिया बल का अस्तित्व होता है और उनकी दिशा परस्पर विपरीत होती है।'

- 1. क्रिया और प्रतिक्रिया ये बल को स्पष्ट करने वाली बातें हैं।
- 2. ये बल जोड़ी द्वारा ही प्रयुक्त होते हैं। बल स्वतंत्र रूप से कभी भी अस्तित्व में नहीं रहता।
- 3. क्रिया बल और प्रतिक्रिया बल एक ही समय कार्यरत होते हैं।
- 4. क्रिया और प्रतिक्रिया बल विभिन्न पिंडों पर प्रयुक्त होते हैं। वे एक ही पिंड पर प्रयुक्त नहीं होते। इस कारण ये बल एक-दूसरे का प्रभाव नष्ट नहीं कर सकते।

थोड़ा सोचिए

- बल्ले द्वारा गेंद को मारते समय बल्ले की गति का कम होना।
- 2. बंदूक से गोली दागते समय बंदूक का पीछे सरकना।
- 3. अग्निबाण (रॉकेट) का प्रक्षेपण इन उदाहरणों का स्पष्टीकरण न्यूटन के तीसरे नियम के आधार पर कैसे करोगे?

संवेग की अविनाशिता का नियम (Law of Conservation of Momentum)

माना पिंड, A का द्रव्यमान $m_{_1}$ तथा उसका प्रारंभिक वेग $u_{_1}$ है । इसी प्रकार पिंड B का द्रव्यमान $m_{_2}$ तथा उसका प्रारंभिक वेग $u_{_2}$ है ।

संवेग के सूत्र के अनुसार पिंड $\,{\rm A}$ का प्रारंभिक संवेग = ${\rm m_1^{}u_1^{}}$ और $\,{\rm B}$ का प्रारंभिक संवेग = ${\rm m_2^{}u_2^{}}$

जिस समय दोनों पिंडों की परस्पर टक्कर होती है उस समय पिंड A पर पिंड B के कारण बल $F_{_1}$ प्रयुक्त होकर पिंड A त्विरत होता है और उसका वेग $v_{_1}$ हो जाता है ।

∴ पिंड A का टक्कर के पश्चात संवेग = m,v,

न्यूटन के गति संबंधी तीसरे नियम के अनुसार पिंड A भी पिंड B पर समान बल विपरीत दिशा में प्रयुक्त करता है। उस समय उसके संवेग में परिवर्तन होता है। माना उसका वेग $v_{_2}$ हो जाता है तो

तो पिंड B का टक्कर के पश्चात संवेग = $m_{\gamma} v_{\gamma}$ यदि पिंड B पर बल F_{γ} प्रयुक्त होता है, तो

$$F_{2} = -F_{1}$$

$$m_{2} a_{2} = -m_{1} a_{1} \qquad F = ma$$

$$m_{2} \frac{(v_{2} - u_{2})}{t} = -m_{1} \times \frac{(v_{1} - u_{1})}{t} \qquad a = \frac{(v - u)}{t}$$

$$m_{2} (v_{2} - u_{2}) = -m_{1} (v_{1} - u_{1})$$

$$m_{2} v_{2} - m_{2} u_{2} = -m_{1} v_{1} + m_{1} u_{1}$$

$$m_{3} v_{4} + m_{4} v_{4} = (m_{1} u_{1} + m_{2} u_{2})$$

कुल अंतिम संवेग का परिमाण = कुल प्रारंभिक संवेग का परिमाण

अत: यदि दो पिंडों पर बाह्य बल कार्यरत न हो तो उनका प्रारंभिक संवेग और अंतिम संवेग समान होता है। पिंडों की संख्या कितनी भी होगी तब भी यह कथन सत्य है।

'दो पिंडों की अन्योन्य क्रिया होते समय यदि उनपर कोई बाह्य बल कार्यरत न हो तो उनका कुल संवेग स्थिर रहता है, वह बदलता नहीं है।'

यह न्यूटन के गित संबंधी तीसरे नियम का उपसिद्धांत है। टक्कर होने के पश्चात भी संवेग स्थिर रहता है। टक्कर होने वाले पिंडों में संवेग पुनर्वितरित होता है। एक पिंड का संवेग कम होता है तो दूसरे पिंड का संवेग बढ़ता है। इसलिए सिद्धांत निम्नानुसार भी प्रतिपादित कर सकते हैं।

यदि दो पिंडों की टक्कर होती है तो उनका टक्कर के पूर्व का कुल संवेग उनके टक्कर के पश्चात के कुल संवेग के बराबर होता है।

यह सिद्धांत समझने के लिए बंदूक से दागी गई गोली के उदाहरण पर विचार करते हैं। जब द्रव्यमान m_1 की गोली द्रव्यमान m_2 की बंदूक से दागी जाती है, तब वेग से आगे जाते समय उसका संवेग $m_1 V_1$ होता है। गोली दागने के पूर्व बंदूक और गोली स्थिर रहने के कारण प्रारंभिक संवेग शून्य होता है। और कुल संवेग शून्य होता है। गोली दागने के पश्चात भी उपर्युक्त नियमानुसार कुल संवेग शून्य होता है। अतः गोली आगे जाने के कारण बंदूक पीछे की दिशा में सरकती है। इस सरकने को 'प्रतिक्षेप' (Recoil) कहते हैं।

बंदूक प्रतिक्षेप वेग से (v_2) ऐसी पद्धित से सरकती है कि,

$$m_1 v_1 + m_2 v_2 = 0$$
 या $v_2 = -\frac{m_1}{m_2} \times v_1$

बंदूक का द्रव्यमान गोली के द्रव्यमान की तुलना में बहुत अधिक होने के कारण बंदूक का वेग गोली के वेग की तुलना में बहुत कम होता है। बंदूक के संवेग और गोली के संवेग के परिमाण समान और दिशा विपरीत होती है। इस कारण संवेग स्थिर रहता है। अग्निबाण (रॉकेट) के प्रक्षेपण में भी संवेग स्थिर रहता है।

हल किए गए उदाहरण

उदाहरण 1: एक तोप का द्रव्यमान 500 kg है। उससे गोला दागने के पश्चात तोप 0.25 m/s वेग से प्रतिक्षेपित होती है तो तोप का संवेग ज्ञात कीजिए।

दत्त : तोप का द्रव्यमान = $500~{
m kg}$, प्रतिक्षेप वेग = $0.25~{
m m/s}$ संवेग = ? संवेग = ${
m m} \times {
m v}$ = 500×0.25 = $125~{
m kg}$ m/s

उदाहरण 2: गेंदों के द्रव्यमान क्रमश: 50 ग्राम और 100 ग्राम हैं। वे एक ही रेखा पर एक ही दिशा में 3 m/s और 1.5 m/s के वेग से जा रही हैं। उनकी टक्कर होती है और टक्कर होने के पश्चात पहली गेंद 2.5 m/s के वेग से गतिशील होती है तो दूसरी गेंद का वेग ज्ञात कीजिए।

दत्तः

पहली गेंद का द्रव्यमान = m_1 = 50 g = 0.05 kg पहली गेंद का प्रारंभिक वेग = u_1 = 3 m/s पहली गेंद का अंतिम वेग = v_1 = 2.5 m/s दूसरी गेंद का द्रव्यमान = m_2 = 100 g = 0.1 kg दूसरी गेंद का प्रारंभिक वेग = u_2 = 1.5 m/s दूसरी गेंद का अंतिम वेग = v_2 = ?

संवेग की अविनाशिता के सिद्धांत के अनुसार, प्रारंभिक कुल संवेग = अंतिम कुल संवेग

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

(0.05 × 3) + (0.1 × 1.5) = (0.05 × 2.5) + (0.1 × v_2)

$$(0.15) + (0.15) = 0.125 + 0.1v_2$$

$$\therefore$$
 0.3 = 0.125 + 0.1 v_2

$$\therefore 0.1v_2 = 0.3 - 0.125$$

$$v_2 = \frac{0.175}{0.1} = 1.75 \text{ m/s}$$

स्वाध्याय 🗸 🧖

1. नीचे दी गई तालिका के पहले स्तंभ को दूसरे और तीसरे स्तंभ से जोड़िए और नई सारिणी तैयार कीजिए :

쿍.	स्तंभ-1	स्तंभ-2	स्तंभ -3
1	ऋण त्वरण	पिंड का वेग स्थिर रहता है।	एक कार शुरुआत में विरामावस्था के बाद 50 किमी/
			घंटा वेग 10 सेकंड में प्राप्त करती है।
2	धन त्वरण	पिंड का वेग कम होता है।	एक वाहन 25 मी/सेकंड के वेग से गतिशील है।
3	शून्य त्वरण	वस्तु का वेग बढ़ता है।	एक वाहन 10 मी/सेकंड के वेग से जाकर 5 सेकंड के
			बाद रुकता है।

2. अंतर स्पष्ट कीजिए।

- अ. दुरी और विस्थापन
- आ. एकसमान गति और असमान गति

3. नीचे दी गई सारिणी पूर्ण कीजिए।

	• • • • • • • • • • • • • • • • • • • •		
u (m/s)	a (m/s²)	t (sec)	v = u + at (m/s)
2	4	3	-
-	5	2	20
u (m/s)	a (m/s²)	t (sec)	$s = ut + \frac{1}{2} at^2(m)$
5	12	3	-
7	-	4	92
u (m/s)	a (m/s²)	s (m)	$v^2 = u^2 + 2as (m/s)^2$
4	3	_	8
_	5	8.4	10

4. रिक्त स्थानों की पूर्ति करके वाक्यों को पूर्ण करें और उनका स्पष्टीकरण लिखिए।

- अ. पिंड की गित के प्रारंभ और अंतर्बिंदु के बीच की कम-से-कम दूरी को पिंड का कहते हैं।
- आ. अवत्वरण अर्थात.....त्वरण है।
- इ. जब पिंड एकसमान वृत्ताकार गित से जाता है तब उसका प्रत्येक बिंदु के पास बदलता है।
- ई. टक्कर होते समयहमेशा अक्षय रहता है।
- ए. अग्निबाण (रॉकेट) का कार्य न्यूटन के नियम पर आधारित है।

5. वैज्ञानिक कारण लिखिए।

- अ. जब कोई पिंड मुक्त रूप से जमीन पर गिरता है तब गति का त्वरण एकसमान होता है।
- आ. क्रिया बल और प्रतिक्रिया बल के परिमाण समान और दिशा विपरीत होने पर भी वे एक-दूसरे को निष्फल नहीं करते।
- इ. समान वेग वाली गेंदों में से क्रिकेट की गेंद को रोकने की अपेक्षा टेनिस की गेंद को रोकना सरल होता है।
- ई. विरामावस्था के पिंड की गति एकसमान मानी जाती है।
- न्यूटन के गति संबंधी प्रत्येक नियम पर आधारित
 उदाहरण देकर उनका स्पष्टीकरण लिखिए।

7. उदाहरण हल कीजिए।

- अ. एक पिंड प्रारंभ के 3 सेकंड में 18 मीटर और बाद के 3 सेकंड में 22 मीटर जाता है तथा अंतिम 3 सेकंड में 14 मीटर जाता है तो उनकी औसत चाल ज्ञात कीजिए। (उत्तर: 6 m/s)
- आ. एक पिंड का द्रव्यमान 16 kg है तथा वह 3 m/s^2 के त्वरण से गतिशील है। उस पर प्रयुक्त बल की गणना कीजिए। उतना ही बल 24 kg द्रव्यमान के पिंड पर प्रयुक्त करने पर निर्मित होने वाला त्वरण कितना होगा? (उत्तर : $48 \text{ N}, 2 \text{ m/s}^2$)
- इ. बंदूक की एक गोली का द्रव्यमान 10 g है। वह 1.5 m/s के वेग से 900 g ग्राम द्रव्यमान के लकड़ी की मोटी पट्टी में घुसती है। प्रारंभ में पट्टी विरामावस्था में है परंतु गोली दागने के पश्चात वह पट्टी में घुसती है और दोनों विशिष्ट वेग से गतिशील होते हैं। बंदूक की गोली के साथ लकड़ी की पट्टी जिस वेग से गतिशील होती है, उसका वेग ज्ञात कीजिए। (उत्तर: 0.15 m/s)
- ई. एक व्यक्ति शुरुआत में 40 सेकंड में 100 मीटर दूरी तक तैरता है। बाद में 40 सेकंड में वह व्यक्ति 80 मीटर दूरी तय करता है और अंतिम 20 सेकंड में 45 मीटर दूरी तय करता है तो उस व्यक्ति की औसत चाल क्या होगी? (उत्तर: 2.25 m/s)

उपक्रम:

न्यूटन के गति संबंधी नियमों पर आधारित दैनिक जीवन के विभिन्न उपकरणों/साधनों की जानकारी प्राप्त कीजिए।

2. कार्य और ऊर्जा

> कार्य

ऊर्जा
 यांत्रिक ऊर्जा

> ऊर्जा की अविनाशिता का नियम 💛 मुक्त पतन

2.1 विभिन्न घटनाएँ

1. उपर्युक्त चित्र 2.1 में में कौन-कौन-सी घटनाओं में कार्य हुआ है? कार्य का वैज्ञानिक दृष्टिकोण से विचार करते हुए कार्य नहीं हुआ, ऐसा हम कब कहते हैं?

सामान्यत: किसी भी शारीरिक या बौद्धिक कृति को कार्य संबोधित करने की प्रथा है। जब हम चलते या दौड़ते हैं तब अपने शरीर की ऊर्जा कार्य करने के लिए उपयोग में लाई जाती है।

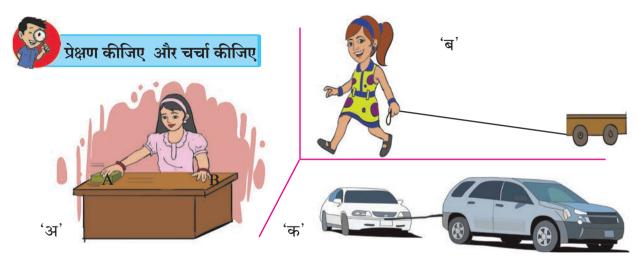
अध्ययन करने वाली लड़की ने भी कार्य किया है ऐसा हम कहते हैं परंतु वह उसका मानसिक कार्य है। भौतिकी के अध्ययन में हम भौतिक कार्य का विचार करते हैं। भौतिकी में कार्य शब्द का विशिष्ट अर्थ है।

'किसी पिंड पर बल प्रयुक्त करने पर उस पिंड का विस्थापन होने पर वैज्ञानिक दृष्टि से कार्य हुआ, ऐसा कहते हैं।

पदार्थ पर प्रयुक्त किए गए बल द्वारा किया गया कार्य, बल के परिमाण और पदार्थ के बल की दिशा में होने वाले विस्थापन के गुणनफल के बराबर होता है, आप यह सीख चुके हैं। अर्थात

कार्य = बल × विस्थापन

थोड़ा याद कीजिए


बल के प्रकार और उनके उदाहरण कौन-से हैं?

मीनाक्षी को लकड़ी का कुंदा स्थान A से स्थान B तक विस्थापित करना है। आगे के पृष्ठ पर चित्र 2.2 'अ' देखिए। उस समय उसके द्वारा F बल लगाने पर खर्च हुई संपूर्ण ऊर्जा का उपयोग क्या उस कुंदे में त्वरण उत्पन्न करने के लिए किया गया? उस ऊर्जा का उपयोग कौन-कौन-से बलों को निष्फल करने के लिए किया गया होगा?

थोड़ा सोचिए

पिंड का विस्थापन बल की दिशा में होते समय किए गए कार्य को ज्ञात करने की पद्धति आपने सीखी है परंतु यदि वस्तु का विस्थापन बल की दिशा में नहीं होता है तब निष्पन्न किए गए कार्य को कैसे ज्ञात किया जा सकता है?

2.2 पिंड का विस्थापन

चित्र 2.2 के 'ब' और 'क' में दिखाई गई घटनाएँ आपने देखी होगी। छोटे बच्चे द्वारा गाड़ी खेलते समय उसके द्वारा लगाए गए बल और गाड़ी का होने वाला विस्थापन एक ही दिशा में नहीं होता है। उसी प्रकार बड़े वाहन द्वारा छोटे वाहन को खींचकर ले जाते हुए आपने देखा होगा। इस समय भी बल और विस्थापन की दिशा समान नहीं होती अर्थात विस्थापन की दिशा से कुछ अंश कोण पर बल लगाया गया होगा। ऐसे समय किए गए कार्य को कैसे ज्ञात किया जा सकता है, उसे देखेंगे।

उपर्युक्त उदाहरण में छोटा बच्चा खिलौने की गाड़ी धागे की सहायता से खींचता है तब बल धागे की दिशा में लगाया जाता है और गाड़ी क्षैतिज समांतर (Horizontal) पृष्ठभाग पर खींची जाती है। इस समय किया गया कार्य ज्ञात करने के लिए लगाए गए बल को विस्थापन की दिशा में लगाए गए बल में रूपांतरित करना पड़ता है।

माना प्रत्यक्ष रूप से लगाया गया बल F और विस्थापन की दिशा में लगा बल F_1 है तथा विस्थापन g है। इस समय किया गया कार्य

$$W = F_1 S$$
(1)

बल (F) धागे की दिशा में अर्थात् क्षैतिज के समांतर रेखा से कुछ अंश के कोण पर प्रयुक्त किया गया है।

F का क्षैतिज के समांतर दिशा में कार्य करने वाला घटक F_1 त्रिकोणिमिति की सहायता से ज्ञात किया जा सकता है।

2.3 विस्थापन के लिए लगा हुआ बल

 $\cos \theta =$ कोण की संलग्न भुजा / कर्ण

$$\cos \theta = \frac{F_1}{F}$$

$$F_1 = F \cos \theta$$

इसलिए इस बल द्वारा किया गया कार्य

$$W = F \cos \theta s$$

$$W = F s cos \theta$$

के विशेष मान के लिए किए गए कार्य के बारे में
 निष्कर्ष सारिणी में लिखिए।

θ	$\cos \theta$	$W = F s cos \theta$	निष्कर्ष
0_0	1	W = F s	
900	0	0	
180^{0}	-1	W = -F s	

 F_{1}

कार्य की डकार्ड

कार्य = बल × विस्थापन

SI प्रणाली में बल की इकाई न्यूटन (N) और विस्थापन की इकाई मीटर (m) है । इसलिए कार्य की इकाई न्यूटन-मीटर है। इसे ही ज्यूल कहते हैं।

1 ज्यूल : 1 न्यूटन बल की क्रिया द्वारा पिंड का बल की दिशा में 1 मीटर स्थापन होता है तो किए गए कार्य को 1 ज्यूल कहते हैं।

∴ $1 \overline{} \sqrt{}$ ज्यूल = $1 \overline{} \sqrt{}$ न्यूटन $\times 1 \overline{}$ मीटर

 $1 J = 1 N \times 1 m$

CGS प्रणाली में बल की इकाई डाइन और विस्थापन की इकाई सेंटीमीटर (cm) है। इसलिए कार्य की इकाई डाइन-सेंटीमीटर है। इसे ही अर्ग कहते हैं।

1 अर्ग : 1 डाइन बल की क्रिया द्वारा पिंड का बल की दिशा में 1 सेंटीमीटर विस्थापन होता है तो किए गए कार्य को 1 अर्ग कहते हैं।

1 अर्ग = 1 डाइन × 1 सेमी

ज्यूल और अर्ग में संबंध

हमें ज्ञात है कि, 1 न्यूटन = 10^5 डाइन और 1 मीटर = 10^2 सेमी

कार्य = बल × विस्थापन

1 ज्यूल = 1 न्यूटन $\times 1$ मीटर

1 ज्यूल = 10^5 डाइन $\times 10^2$ सेमी

= 10⁷ डाइन सेमी

1 ज्यूल = 10^7 अर्ग

धनात्मक, ऋणात्मक और शून्य कार्य (Positive, Negative and Zero work)

विचार कीजिए और बताइए

बल और विस्थापन की दिशाओं के बारे में चर्चा कीजिए।

- 1. बंद पड़ी हुई गाड़ी को धक्का देना।
- 2. आपके मित्र दुवारा आपकी ओर फेंकी गेंद को पकड़ना।
- 3. धागे के सिरे से पत्थर बाँधकर गोल-गोल घुमाना।
- 4. सीढ़ियाँ चढ़ना और उतरना, वृक्ष पर चढ़ना।
- 5. गतिशील गाड़ी को ब्रेक लगाकर रोकना।

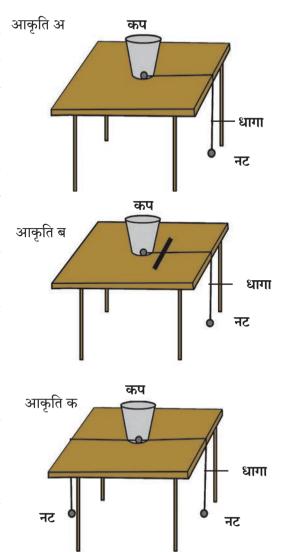
उपर्युक्त उदाहरणों का अध्ययन करने पर स्पष्ट होता है कि कुछ उदाहरणों में बल और विस्थापन की दिशा समान है, कुछ में दोनों एक-दूसरे के विपरीत हैं, तो कुछ उदाहरणों में बल और विस्थापन की दिशा एक-दूसरे के लंबवत है। ऐसे समय बल दुवारा किया गया कार्य निम्नानुसार होगा।

- 1. जिस समय बल और विस्थापन की दिशा समान होती है $(\theta = 0^{\circ})$ उस समय उस बल द्वारा किया गया कार्य धनात्मक कार्य होता है।
- 2. जिस समय बल और विस्थापन की दिशा एक-दूसरे के विपरीत होती है ($\theta = 180^\circ$) तब उस बल द्वारा किया गया कार्य ऋणात्मक कार्य होता है।
- 3. जिस समय बल लगाने पर विस्थापन नहीं होता या बल और विस्थापन एक-दूसरे के लंबवत होते हैं ($\theta = 90^{\circ}$) उस समय बल द्वारा किया गया कार्य शून्य होता है।

आओ करके देखें

प्लास्टिक का एक कप लीजिए। उसके नीचे के भाग में बीचोंबीच एक छिद्र बनाएँ। उस छिद्र में से दुहरा लंबा धागा ऊपर लें और उसकी पर्याप्त मोटी गाँठ बाँधें जिससे कि धागा छिद्र में से बाहर न आ पाए। धागे के दोनों खुले हुए सिरों से एक-एक नट बाँधें। आकृति 2.4 में दिखाए अनुसार कृति करें।

आकृति अ – कप टेबल पर रखकर एक सिरे का नट प्लास्टिक के कप में रखकर दूसरे सिरे का नट आकृति में दिखाए अनुसार नीचे की दिशा में छोडें। क्या होता है?


आकृति ब – कप के आगे सरकते समय पट्टी लेकर रुकावट खड़ी कीजिए और सिरों के कप को रुकाएँ।

आकृति क - कप आगे सरकते समय टेबल पर रखकर टेबल को दोनों सिरों के नट छोड़ दे।

प्रश्न

- 1. आकृति (अ) का कप क्यों खिंचा जाता है?
- 2. आकृति (ब) के कप की विस्थापन की दिशा और पट्टी द्वारा लगाए गए बल की दिशा में क्या संबंध है?
- 3. आकृति (क) में कप का विस्थापन क्यों नहीं होता?
- 4. आकृति (अ), (ब) और (क) में निष्पन्न हुए कार्य कौन-से प्रकार के हैं?

उपर्युक्त तीनों कृतियों में बल और होने वाले विस्थापन के संदर्भ में कार्यकारण भाव क्या है?

2.4 धनात्मक,ऋणात्मक तथा शून्य कार्य

माना एक कृत्रिम उपग्रह पृथ्वी के परित: वृत्ताकार कक्षा में परिभ्रमण कर रहा है। उपग्रह पर लगने वाला गुरुत्वाकर्षण बल और उपग्रह का विस्थापन एक-दूसरे के लंबवत दिशा में होने के कारण गुरुत्वाकर्षण बल द्वारा किया गया कार्य शून्य होता है।

संस्थानों के कार्य

राष्ट्रीय भौतिकी प्रयोगशाला, दिल्ली (National Physical Laboratory) नामक संस्था की संकल्पना सन 1943 में प्रतिपादित की गई। यह प्रयोगशाला वैज्ञानिक और औद्योगिक अनुसंधान परिषद के नियंत्रण में कार्यरत है। यहाँ भौतिकी की विभिन्न शाखाओं में मूलभूत संशोधन के कार्य चलते हैं तथा उद्योगों और विकास कार्यों से संबंधित विभिन्न संस्थाओं को सहायता दी जाती है। मापन के राष्ट्रीय मानक (मानदंड) प्रस्थापित करना, इस संस्था का प्रमुख उद्देश्य है।

हल किए गए उदाहरण

उदाहरण $1:20~{\rm kg}$ किलो भार के पिंड को $10~{\rm m}$ ऊँचाई पर ले जाने के लिए किए जाने वाले कार्य की गणना कीजिए। $(g=9.8~{\rm m/s^2})$

$$g = 20 \text{ kg}$$
; s = 10 m
 $g = 9.8 \text{ m/s}^2$
∴ F = m.g
 $= 20 \times (-9.8)$

(बल की दिशा विस्थापन की विपरीत दिशा में होने के कारण ऋण चिहन लिया गया है।)

उदाहरण 2: प्रवीण द्वारा क्षैतिज के समांतर दिशा से 60° के कोण पर लगाए गए 100 N बल द्वारा पिंड का क्षैतिज के समांतर दिशा में विस्थापन होता है तथा 400 J कार्य होने के कारण पिंड का होने वाला विस्थापन कितना होगा?

$$\frac{200}{100} = \frac{1}{2}$$

$$\theta = 60^{0}$$

$$F = 100 \text{ N}$$

$$W = 400 \text{ J},$$

$$W = F \text{ s} \cos \theta \text{ s} = ?$$

$$400 = 100 \times \text{ s} \times \frac{1}{2}$$

$$\frac{400}{100} = \frac{1}{2} \times \text{ s}$$

$$\therefore \text{ s} = 8 \text{ m}$$

$$4 \times 2 = \text{ s}$$

पिंड का 8 m विस्थापन होगा।

ऊर्जा (Energy)

कारण ऋण चिहन आया है।)

ऐसा क्यों होता है ?

- 1. पौधा लगाया हुआ गमला अंधेरे में रखने पर मुरझा जाता है।
- 2. घर में टेप या टीवी (टेलिविजन) की आवाज अत्यधिक बढ़ने पर घर के बरतन हिलते हैं।
- 3. सूर्यप्रकाश में पकड़े हुए उत्तल लैंस की सहायता से कागज पर प्रकाश एकत्र करने पर कागज जलता है। पदार्थ में समाविष्ट कार्य करने की क्षमता को उस पदार्थ की ऊर्जा कहते हैं। कार्य और ऊर्जा की इकाइयाँ समान हैं। SI प्रणाली में इकाई ज्यूल और CGS प्रणाली में इकाई अर्ग (erg) है।

ऊर्जा विभिन्न रूपों में पाई जाती है जैसे यांत्रिक, उष्मा, प्रकाश, ध्विन, विद्युत चुंबकीय, रासायनिक, परमाणु ऊर्जा, सौर ऊर्जा इनका आपने अध्ययन किया है। इस प्रकरण में हम यांत्रिक ऊर्जा के दो प्रकार गतिज और स्थितिज ऊर्जा का अध्ययन करेंगे।

गतिज ऊर्जा (Kinetic Energy)

क्या घटित होगा ? बताइए

- 1. गतिशील गेंद स्टंप पर टकराए।
- 2. कैरम के स्ट्राइकर से गोटी को मारा जाए।
- 3. कंचे खेलते समय कंचा, कंचे पर टकराए।

उपर्युक्त उदाहरणों द्वारा हमें स्पष्ट होता है कि, गतिशील पिंड, स्थिर पिंड से टकराने पर स्थिर पिंड गतिशील हो जाता है। **पदार्थ की गतिशील अवस्था के कारण पदार्थ को प्राप्त होने वाली ऊर्जा को गतिज ऊर्जा कहते हैं।** किसी बल द्वारा किसी पिंड को S दूरी से विस्थापित करने के लिए किया गया कार्य ही उस पिंड द्वारा प्राप्त की गई गतिज ऊर्जा होती है।

$$\therefore$$
 K.E. = F × s

गितज ऊर्जा का समीकरण : माना m द्रव्यमान का एक पिंड स्थिर अवस्था में है, बल लगाने पर वह गितशील हुआ। उसका प्रारंभिक वेग (यहाँ u=0) है। उस पिंड पर बल F लगाने से उसमें त्वरण a निर्मित हुआ और समय t के पश्चात उसका अंतिम वेग v हो गया। इस समयाविध में उसका होने वाला विस्थापन s है। अत: पिंड पर किया गया कार्य.....

$$W = F \times s$$

न्यूटन के दूसरे नियमानुसार

F = ma ----- (1) इसी प्रकार न्यूटन के गित संबंधी दूसरे समीकरण का उपयोग करके

$$s = ut + \frac{1}{2} at^2 vtd yxthe an an area sin and u=0$$

$$s = 0 + \frac{1}{2} at^2$$

$$s = \frac{1}{2} at^2$$
 ----(2)

∴ W = ma ×
$$\frac{1}{2}$$
 at² ---- समीकरण (1) और (2) से

$$W = \frac{1}{2} \text{ m (at)}^2$$
 ----(3)

न्यूटन के गति संबंधी पहले नियम से

$$v = u + at$$

$$\therefore$$
 v = 0 + at

$$\therefore$$
 v = at

$$\therefore$$
 v² = (at)² -----(4)

∴ W =
$$\frac{1}{2}$$
 mV² ----- समीकरण (3) और (4) से

पिंड द्वारा प्राप्त की गई गतिज ऊर्जा अर्थात उस पिंड पर किया गया कार्य होता है।

$$\therefore \text{ K. E.} = \frac{1}{2} \text{ mv}^2$$

उदाहरण : 250 ग्राम द्रव्यमान का एक पत्थर 2 m/s वेग से ऊँचाई से नीचे गिरता हो तो उसकी गति 2 m/s होगी उसी समय उसमें कितनी गतिज ऊर्जा होगी?

$$m = 250 \text{ g}$$
 $m = 0.25 \text{ kg}$ $v = 2 \text{ m/s}$ $K.E. = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \times 0.25 \times (2)^2 = 0.5 \text{ J}$

किसी गतिशील पिंड का द्रव्यमान दोगुना करने पर उस पिंड की गतिज ऊर्जा कितने गुना होगी?

स्थितिज ऊर्जा (Potential Energy)

- 1. खींचे हए धनुष से तीर छोडा।
- 2. ऊँचाई पर रखा हआ पानी नीचे वाले नल में अपने आप आता है।
- 3. दबाई गई कमानी (स्प्रिंग) को छोडा।

उपर्युक्त उदाहरणों में स्थिति दर्शाने वाले शब्द कौन-से हैं? इन क्रियाओं में पिंड गतिशील होने के लिए आवश्यक ऊर्जा कहाँ से आई?

यदि पिंडों को उस स्थिति में लाया ही नहीं जाता तो क्या वे गतिशील हए होते?

'पदार्थ की विशिष्ट स्थिति के कारण या स्थान के कारण उसमें जो ऊर्जा समाविष्ट होती है उसे स्थितिज ऊर्जा कहते हैं।'

- 1. एक खडिया को जमीन से लगभग 5 सेमी की ऊँचाई पर पकडिए और छोड दीजिए।
- 2. अब सीधे खडे रहकर उस खडिया को छोड दीजिए।
- 3. दोनों समय के प्रेक्षणों में कौन-सा अंतर दिखाई देता है और क्यों?

स्थितिज ऊर्जा का समीकरण

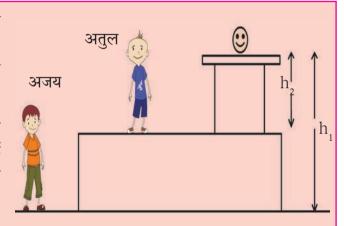
'm' द्रव्यमान का एक पिंड पृथ्वी के पृष्ठभाग से 'h' ऊँचाई पर ले जाने के लिए 'mg' बल का उपयोग गुरुत्वाकर्षण बल की विपरीत दिशा में करना पड़ता है। इस समय किया गया कार्य निम्नानुसार ज्ञात किया जा सकता है।

कार्य = बल × विस्थापन

 $W = mg \times h$

 \therefore W = mgh

∴ विस्थापन के कारण पिंड में समाविष्ट स्थितिज ऊर्जा = P.E. = mgh (W = P.E.) विस्थापन के कारण स्थितिज ऊर्जा mgh पिंड में समाविष्ट होती है।


उदाहरण: 10 मीटर ऊँची इमारत की टंकी में 500 किलोग्राम द्रव्यमान का पानी संग्रहित किया गया है तो पानी में समाविष्ट स्थितिज ऊर्जा ज्ञात कीजिए।

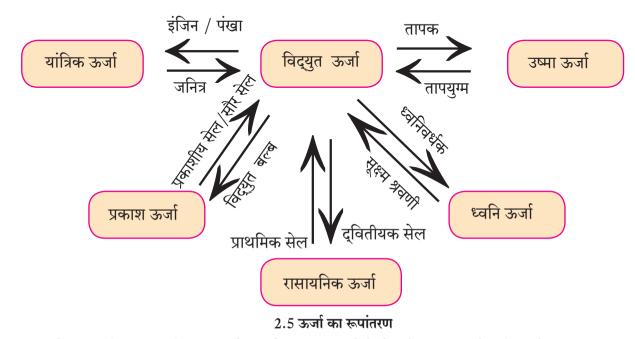
दत्त:

h = 10 m, m = 500 kg g =
$$9.8 \text{ m/s}^2$$

 \therefore P.E. = mgh
= $10 \times 9.8 \times 500$
P.E. = 49000 J

अजय और अतुल को टेबल पर रखी m द्रव्यमान की गेंद की स्थितिज ऊर्जा ज्ञात करने को कहा गया। उनके उत्तर क्या आएँगे? वे अलग होंगे क्या? इस आधार पर आप किस निष्कर्ष पर पहुँचेंगे?

स्थितिज ऊर्जा सापेक्ष होती है। अजय के सापेक्ष गेंद की ऊँचाई और अतुल के सापेक्ष गेंद की ऊँचाई अलग–अलग है इसलिए अजय और अतुल के सापेक्ष गेंद की स्थितिज ऊर्जा अलग–अलग आएगी।


ऊर्जा रूपांतरण (Transformation of Energy)

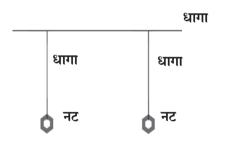
ऊर्जा के विविध प्रकार कौन-से हैं? नीचे दी गई प्रक्रियाओं में कौन-से प्रकार की ऊर्जा का प्रयोग किया गया है?

1. खिंचा हुआ रबड़ का टुकड़ा 2. वेग से जाने वाली मोटर 3. वाष्प के कारण बजने वाली कुकर की सीटी 4. दिवाली में बजने वाले पटाखे 5. विद्युत पर चलने वाला पंखा 6. चुंबक का उपयोग करके कचरे में से लोहे को बाहर निकालना 7. जोर से आवाज होने के कारण खिड़कियों के काँच का फूटना।

ऊर्जा का एक प्रकार से दूसरे प्रकार में रूपांतरण किया जा सकता है। उदाहरणार्थ दिवाली में पटाखे फोड़ने से उनकी रासायनिक ऊर्जा, ध्विन, प्रकाश और उष्मा ऊर्जा में रूपांतरित हो जाती है।

उपर्युक्त आकृति 2.5 का निरीक्षण करके ऊर्जा का रूपांतरण कैसे होता है उसकी चर्चा कीजिए और उदाहरण बताइए।

ऊर्जा की अविनाशिता का नियम (Law of Conservation of Energy)


'ऊर्जा का न तो निर्माण किया जा सकता है और न ही उसे नष्ट किया जा सकता है, उसे एक प्रकार से दूसरे प्रकार में रूपांतरित किया जा सकता है, तथापि विश्व की संपूर्ण ऊर्जा सदैव अक्षय रहती है।'

धागा और नट बोल्ट लेकर समान ऊँचाई के दो लोलक तैयार कीजिए। एक धागा आधारक से क्षैतिज के समांतर बाँधें।

तैयार किए गए दोनों लोलकों को क्षैतिज के समांतर धागे से इस प्रकार बाँधें कि वे पर्याप्त रूप से दोलन करते समय एक-दूसरे से न टकराएँ। दोनों लोलकों की ऊँचाई समान रखें। अब एक लोलक को दोलित कीजिए और थोड़ी देर निरीक्षण कीजिए। क्या होता है देखिए।

उपर्युक्त कृति का निरीक्षण करने पर यह दिखाई देता है कि, पहले लोलक की दोलन गित कम होती जाती है उसी समय स्थिर लोलक धीरे–धीरे गितशील होता है अर्थात एक लोलक की ऊर्जा दूसरे लोलक को प्राप्त होती है।

2.6 संयुक्त लोलक

मुक्त पतन (Free fall)

किसी पिंड को ऊँचाई पर ले जाकर छोड़ने पर उस पिंड पर क्रियाशील गुरुत्वाकर्षण बल के कारण वह पृथ्वी की ओर खिंचा जाता है। ऊँचाई से छोड़े गए किसी पिंड की केवल गुरुत्वाकर्षण बल के कारण नीचे आने की क्रिया को मुक्त पतन कहते हैं। m द्रव्यमान का पदार्थ गुरुत्वाकर्षण बल के कारण h ऊँचाई से नीचे आते समय उसकी अलग-अलग ऊँचाइयों पर गतिज और स्थितिज ऊर्जा देखेंगे।

आकृति में दिखाए अनुसार, माना बिंदु A जमीन से h ऊँचाई पर है। m द्रव्यमान वाला पिंड बिंदु A से बिंदु B तक आया तो वह x दूरी तक जाता है, बिंदु C जमीन पर है। पिंड की बिंदु A, B और C पर ऊर्जा देखेंगे।

1. पिंड बिंदु A के पास रहने पर (स्थिर रहने पर) उसका प्रारंभिक वेग u=0

∴ K.E. =
$$\frac{1}{2}$$
 द्रव्यमान x (वेग)² = $\frac{1}{2}$ mu²

$$K.E. = 0$$

P.E. = mgh

∴ कुल ऊर्जा = K.E. + P.E. = 0 + mgh कुल ऊर्जा (Total Energy) = mgh.--- (1)

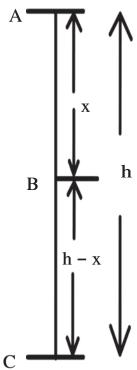
2. पिंड बिंदु $\, {\rm B} \,$ के पास रहने पर पिंड $\, {\rm x} \,$ दूरी तय करके बिंदु $\, {\rm B} \,$ के पास आता है तब माना उसका वेग $\, {\rm v}_{_{\rm B}} \,$ है । $\, {\rm u} = 0, \, {\rm s} = {\rm x}, \, {\rm a} = {\rm g} \,$

$$v^2 = u^2 + 2as$$

$$v_{R}^{2} = 0 + 2gx$$

$$v_{B}^{2} = 2gx$$

∴ K.E. = $\frac{1}{2}$ $\text{mv}_{\text{B}}^{2} = \frac{1}{2}$ m(2gx)K.E. = mgxस्थान B पर पिंड की जमीन से ऊँचाई = h-x


$$\therefore$$
 P.E. = mg (h-x)

$$P.E. = mgh - mgx$$

∴ कुल ऊर्जा T.E. = K.E. + P.E.

$$= mgx + mgh - mgx$$

$$\therefore$$
 T.E. = mgh ----(2)

2.7 मुक्त पतन

3. पिंड बिंदु C के पास रहने पर अर्थात जमीन पर पहुँचने पर उसका वेग V_C है तो

u = 0, s = h, a = g

$$v^2 = u^2 + 2as$$

 $v_c^2 = 0 + 2gh$
∴ K.E. = $\frac{1}{2} mv_c^2 = \frac{1}{2} m(2gh)$

K.E. = mgh

बिंदु C पर पिंड की जमीन से ऊँचाई

$$h = 0$$

$$\therefore$$
 P.E. = mgh = 0

T.E. =
$$mgh -----(3)$$

समीकरण (1), (2) और (3) से A, B और C बिंद के पास कुल ऊर्जा स्थिर है। अर्थात कोई भी पिंड ऊँचाई पर स्थित होने पर उसमें स्थितिज ऊर्जा होती है। पिंड के नीचे गिरते समय उसकी स्थितिज ऊर्जा का गितज ऊर्जा में रूपांतरण हो जाता है। जमीन पर गिरते समय (स्थिति 'C') संपूर्ण स्थितिज ऊर्जा का गितज ऊर्जा में रूपांतरण होता है परंतु किसी भी स्थिति में कुल ऊर्जा ऊँचाई की स्थितिज ऊर्जा के जितनी ही होती है।

बिंदु B पर T.E. =
$$mgx + mg(h-x) = mgh$$

बिंदु C पर
$$T.E. = 0 + mgh = mgh$$

शक्ति (Power)

विचार करें और बताएँ

- 1. आप जिस गति से सीढ़ियों पर चढ़कर जा सकते हैं, क्या उसी गति से आपके पिता जी सीढियाँ चढ सकते हैं?
- 2. छत पर रखी पानी की टंकी आप बाल्टी से भरेंगे या मोटर की सहायता से?
- 3. राजश्री, यश और रणजीत को एक छोटी-सी पहाड़ी पर जाना है। राजश्री मोटर से, यश साइकिल से और रणजीत पैदल गया। जाने के लिए सभी ने एक ही मार्ग चुना तो कौन पहले पहुँचेगा और कौन आखिर में पहुँचेगा?

उपर्युक्त उदाहरणों पर विचार करने पर, प्रत्येक उदाहरण में किया गया कार्य समान है परंतु वह कार्य करने के लिए प्रत्येक को अथवा प्रत्येक पद्धित में लगने वाला समय भिन्न-भिन्न है। कार्य शीघ्र या मंद होने का प्रमाण (माप) शक्ति द्वारा व्यक्त किया जाता है। 'कार्य करने की दर को शिक्त कहते हैं।'

माना, W कार्य t समय में होता है तो

शक्ति =
$$\frac{\text{कार्य}}{\text{समय}}$$
 $P = \frac{W}{t}$

कार्य की SI इकाई J है इसिलए शक्ति की इकाई J/s है । इसे ही वॉट कहते हैं।

1 वॉट = 1 ज्यूल/सेकंड औदयोगिक क्षेत्र में शक्ति को नापने के लिए **अश्वशक्ति**

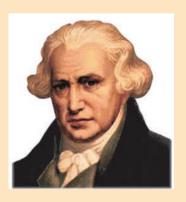
(Horse Power) इकाई का उपयोग प्रचलित है।

1 अश्व शक्ति = 746 वॉट

व्यावहारिक उपयोग के लिए ऊर्जा की इकाई किलो वॉट घंटा

है।

1 किलो वॉट शक्ति अर्थात 1000 J प्रति सेकंड की दर से किया गया कार्य।


$$1 \text{ kW hr} = 1 \text{ kW} \times 1 \text{hr}$$

= 1000 W × 3600 s
= 3600000 J

$$1 \text{ kW hr} = 3.6 \times 10^6 \text{ J}$$

घरेलू कार्यों के लिए उपयोग में आने वाली विद्युत भी kW hr इकाई दवारा मापी जाती है।

1 kW hr = 1 Unit

वैज्ञानिकों का परिचय

स्कॉटलैंड के वैज्ञानिक जेम्स वॉट (1736-1819) ने भाप के इंजिन की खोज की। इस खोज के कारण औद्योगिक क्रांति हुई। जेम्स वॉट के सम्मान में शक्ति की इकाई को वॉट नाम दिया गया। अश्वशक्ति शब्द का उपयोग सर्वप्रथम जेम्स वॉट ने किया था।

हल किए गए उदाहरण

उदाहरण 1: स्वराली को 20 किलो वजन की एक बैग 5 मीटर ऊँचाई पर ले जाने के लिए 40 सेकंड लगते हैं तो उसकी शक्ति कितनी होगी?

 $\frac{1}{3}$ cm = 20 kg, h = 5 m, t = 40 s

∴ स्वराली दवारा लगाया गया बल

$$F = mg = 20 \times 9.8$$

$$F = 196 N$$

स्वराली दवारा 5 m ऊँचाई तक बैग उठाने के लिए किया गया कार्य

$$W = F s = 196 \times 5 = 980 J$$

∴ शक्ति = (P) =
$$\frac{W}{t}$$
 = $\frac{980}{40}$
P = 24.5 W

उदाहरण 2:25 W का एक बल्ब हर दिन 10 घंटे तक उपयोग में लाया जाता है तो एक दिन के लिए कितनी विद्युत का उपयोग किया जाता है?

दत्त :

$$P = 25$$
, $W = 0.025$ kW

$$= 0.025 \times 10$$

जानकारी के लिए संकेतस्थल www.physicscatalyst.com www.tryscience.org

1. नीचे दिए गए प्रश्नों के उत्तर विस्तारपूर्वक लिखिए।

- अ गतिज ऊर्जा और स्थितिज ऊर्जा के बीच अंतर स्पष्ट कीजिए।
- आ. पदार्थ का द्रव्यमान m है तथा वह v वेग से गतिशील है तो गतिज ऊर्जा का सूत्र तैयार कीजिए।
- इ. सिद्ध कीजिए कि, ऊँचाई से जमीन पर मुक्त रूप से गिरने वाले पिंड की अंतिम ऊर्जा उस पिंड की प्रारंभिक स्थितिज ऊर्जा का रूपांतरण है।
- ई. बल की दिशा से 30° कोण पर विस्थापन होने पर किए गए कार्य के लिए समीकरण प्राप्त कीजिए।
- उ. क्या किसी पिंड का संवेग शून्य होने पर पिंड में गतिज ऊर्जा होती है? स्पष्ट कीजिए।
- उ. वृत्ताकार गति में घूमने वाली वस्तु का कार्य श्रन्य क्यों होता है?

नीचे दिए गए पर्यायों में से एक या अनेक अचूक पर्याय चुनो।

- अ. कार्य करने के लिए ऊर्जा को होना पड़ता है।
 - 1. स्थानांतरित 2. अभिसारित
 - 3. रूपांतरित 4. नष्ट

- आ. ज्युल की इकाई है।
 - 1. बल
- 2 कार्य
- 3. शक्ति
- 4. ऊर्जा
- किसी भारी पिंड को क्षैतिज के समांतर दिशा में चिकने पृष्ठभाग पर खींचते समय बल के परिमाण समान होते हैं।
 - 1.क्षैतिज समांतर दिशा में प्रयुक्त किया गया 2. गुरुत्वाकर्षण बल 3. उर्ध्वगामी दिशा में रहने वाला प्रतिक्रिया बल 4. घर्षण
- शक्ति अर्थात है।
 - 1. कार्य जल्दी होने का माप
 - 2. कार्य के लिए लगने वाली ऊर्जा का माप
 - 3. कार्य मंद होने का माप
 - 4. समय का माप
- उ. किसी वस्तु को उठाते समय या खींचते समय ऋण कार्य बल के कारण होता है।
 - 1. प्रयुक्त किया गया बल
 - 2. गुरुत्वाकर्षण बल 3. घर्षण बल
 - 4. प्रतिक्रिया बल

3. वाक्य के नीचे दिए गए योग्य विकल्प चुनकर निम्नलिखित वाक्य स्पष्टीकरण के साथ लिखिए।

- अ. आपके शरीर की स्थितिज ऊर्जा कम से कम होती है, जब आप हैं।
 - 1. कुर्सी पर बैठे 2. जमीन पर बैठे
 - 3. जमीन पर सोए हुए 4. जमीन पर खड़े
- आ. कोई पिंड जमीन पर मुक्त रूप से गिरते समय उसकी कुल ऊर्जा...
 - 1. कम होती है। 2. स्थिर रहती है। 3 बढ़ती है।
 - 4. प्रारंभ में बढ़ती है, फिर कम होती है।
- इ. समतल पृष्ठभाग के रास्ते पर गतिशील मोटरगाड़ी का वेग, उसके मूल वेग से 4 गुना बढ़ाने पर मोटरगाड़ी की स्थितिज ऊर्जा.....
 - 1. मूल ऊर्जा की दोगुनी होगी
 - 2. परिवर्तित नहीं होगी
 - 3. मूल ऊर्जा की चौगुनी होगी
 - 4. मूल ऊर्जा की 16 गुना होगी
- ई. पिंड पर किया गया कार्य पर निर्भर नहीं होता
 - 1. विस्थापन
 - 2. लगाया गया बल
 - 3. पिंड का प्रारंभिक वेग
 - 4. बल और विस्थापन की दिशा का कोण

4. नीचे दी गई कृतियों का अध्ययन कीजिए व पूछे गए प्रश्नों के उत्तर लिखिए।

कृति

- 1. दो विभिन्न लंबाइयों की एल्युमीनियम की पनारी लीजिए।
- 2. दोनों पनारियों के ऊपर के सिरे समान ऊँचाई पर रखें और नीचे के सिरे जमीन पर स्पर्श करें, ऐसी व्यवस्था कीजिए।
- अब समान आकार और वजन की दो गेंदें एक ही समय दोनों पनारियों के ऊपर के सिरे से छोड़िए। वे लुढ़कती हुई जाकर समान दूरी तय करेंगी।

प्रश्न

- गेंद छोड़ने की स्थिति के समय गेंद में कौन-सी ऊर्जा होती है?
- 2. गेंद नीचे लुढ़ककर आते समय कौन-सी ऊर्जा का किस ऊर्जा में रूपांतरण होता है?
- 3. गेंदे लुढ़कते हुए जाकर समान दूरी क्यों तय करती है?
- 4. गेंद में समाविष्ट अंतिम कुल ऊर्जा कौन-सी है?
- 5. उपर्युक्त कृति से आप ऊर्जा संबंधी कौन-सा नियम बता पाएँगे? स्पष्ट कीजिए।

5. उदाहरण हल कीजिए।

- अ. एक विद्युत पंप की शक्ति 2 kW है तो पंप प्रति मिनट कितना पानी 10 m ऊँचाई तक खींच सकता है? (उत्तर: 1224.5 kg)
- आ. यदि 1200 W की एक विद्युत इस्त्री का प्रति दिन 30 मिनिट तक उपयोग किया जाता है तो एप्रिल महीने में इस्त्री द्वारा उपयोग में लाई गई विद्युत ज्ञात कीजिए। (उत्तर: 18 Unit)
- इ. 10 m ऊँचाई से जमीन पर गिरने वाली गेंद की ऊर्जा जमीन पर टकराते ही 40 प्रतिशत कम हो जाती है तो वह कितनी ऊँचाई तक उछलेगी?

(उत्तर: 6m)

ई. एक मोटर का वेग 54 km/hr से 72 km/hr हो गया। यदि मोटर का द्रव्यमान 1500 kg है तो वेग बढ़ाने के लिए कितना कार्य करना पड़ेगा, बताइए।

(उत्तर: 131250 J)

उ. रिव द्वारा एक पुस्तक पर 10 N बल लगाने से उस पुस्तक का बल की दिशा में 30 सेमी विस्थापन हुआ तो रिव द्वारा किया गया कार्य ज्ञात कीजिए।
(उत्तर: 3 J)

उपक्रम:

आपके आसपास घटित होने वाले ऊर्जा रूपांतरण के विविध उदाहरणों का अध्ययन कीजिए और उस बारे में कक्षा में चर्चा कीजिए।

3. धारा विद्युत

- 🍃 विभव और विभवांतर
- > चालक और विद्युत प्रतिरोधी
- > विद्युत प्रतिरोध और ओहुम का नियम 🍃 प्रतिरोधों का संयोजन और परिणामी प्रतिरोध

हमारे आसपास

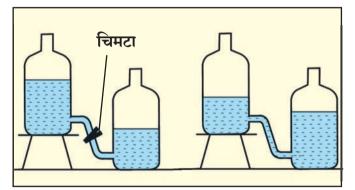
आधुनिक विश्व में विद्युत का असाधारण महत्त्व है। दैनिक जीवन में प्रत्येक बात के लिए हम विद्युत पर निर्भर हैं। विद्युत न होने पर असुविधा को टालने के लिए अस्पताल, बैंक, कार्यालय और निजी संस्थाओं में जनित्र (Generator) का उपयोग करके वैकल्पिक व्यवस्था की जाती है। विद्युत भट्टी (Electric oven), विद्युत मोटर (Motor) को चलाने और कुछ विशेष उपकरणों का उपयोग करने के लिए विद्युत का इस्तेमाल किया जाता है।

फ्रीज, विद्युत ओवन, मिक्सर, पंखा, धुलाई यंत्र, निर्वात स्वच्छता यंत्र (Vacuum cleaner), रोटी मेकर इत्यादि सभी घरेलू साधनों ने हमारे श्रम और समय की बचत की है। इन सभी उपकरणों को चलाने के लिए विद्युत के अलावा कोई विकल्प नहीं है।

केवल मानव को ही नहीं अपितु प्राणियों को भी विद्युत की आवश्यकता होती है। उदा. इल नामक मछली अपने भक्ष्य को पकड़ने और खुद का संरक्षण करने के लिए विद्युत का उपयोग करती है। कड़कड़ाकर गिरने वाली बिजली प्राकृतिक विद्युत प्रवाह का एक उत्तम उदाहरण है। यदि इस विद्युत को हम संग्रहित कर सके तो?

थोड़ा याद करें

आपने एकाध जल प्रपात देखा ही होगा? पानी कहाँ से कहाँ गिरता है?


विद्युत निर्मिति के लिए बाँध का पानी ऊँचे स्तर से छोड़ा जाता है और गुरुत्वाकर्षण के कारण वह नीचे के स्तर पर गिरता है अर्थात हमें पता ही है कि दो बिंदुओं के बीच पानी के प्रवाह की दिशा उन बिंदुओं के स्तरों पर निर्भर करती है।

विभव (Potential) और विभवांतर (Potential difference)

सामग्री: प्लास्टिक दो बोतलें, रबड़ की नली, चिमटा, पानी।

कृति: आकृति 3.1 में दिखाए अनुसार रचना कीजिए और रबड़ की नली का चिमटा निकाल दीजिए। आपके प्रेक्षणों को नोट कीजिए।

3.1 पानी का स्तर और प्रवाह

नीचे दिए गए प्रश्नों के उत्तर दीजिए।

- 1. चिमटा निकालने पर क्या होता है?
- 2. पानी का प्रवाह बंद होता है क्या? क्यों?
- 3. पानी का प्रवाह अधिक समय तक शुरू रहे इसके लिए आप क्या करेंगे?

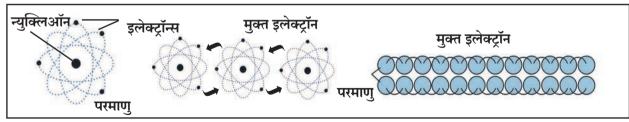
पानी की भाँति विद्युत आवेश का प्रवाह एक प्रकार के विद्युत स्तर पर निर्भर करता है। उस विद्युत स्तर को विद्युत विभव कहते हैं। धनात्मक विद्युत आवेश अधिक विभव वाले बिंदु से कम विभव वाले बिंदु की ओर प्रवाहित होता है। इसके पहले हमने पढ़ा है कि अधिकांश विद्युतप्रवाह इलेक्ट्रॉनों (जिसका विद्युत आवेश ऋणात्मक होता है) के प्रवाहित होने के कारण होता है। इलेक्ट्रॉन कम (निम्न) विद्युत विभव वाले बिंदु से अधिक (उच्च) विभव वाले बिंदु की ओर प्रवाहित होते हैं। आकाश में चमकने वाली बिजली भी कम विभव वाले बादलों से अधिक विभव वाली जमीन तक आने वाला इलेक्ट्रॉनों का प्रवाह होता है। विदयत विभव की परिभाषा आप आगे पढेंगे।

चालक A और B इन दोनों के विद्युत विभवों के अंतर को उन चालकों के दरम्यान का विभवांतर कहते हैं।

आकृति 3.2 दिखाए अनुसार अधिक विभव वाला चालक (Conductor) A तथा तथा कम विभव वाला चालक B है। यदि उन दोनों चालकों को विद्युत चालक तार से जोड़ा जाए तो तार के दोनों सिरों पर विभवांतर का निर्माण होगा और इलेक्ट्रॉनों का प्रवाह चालक B से चालक A की ओर शुरू होगा। चालक A और B दोनों का विद्युत विभव समान होने तक यह प्रवाह शुरू रहेगा। अर्थात इन दोनों चालकों के बीच का विभवांतर जब शून्य होगा तब यह इलेक्ट्रॉनों का प्रवाह बंद हो जाएगा।

3.2 विभवांतर और विद्युत धारा

धनात्मक विद्युत आवेश को लेकिन निम्न विभव से उसकी अपेक्षा उच्च विभव पर स्थानांतरित करने के लिए विद्युत क्षेत्र (Electric field) के विपरीत कार्य करना पड़ता है।


विद्युत सेल का विभवांतर (Potential difference of a Cell)

विद्युत सेल के धनाग्र और ऋणाग्र के विद्युत विभवों के अंतर को विद्युत सेल का विभवांतर कहते हैं। विद्युत सेल में संपन्न होने वाली रासायनिक अभिक्रिया के कारण इस विभवांतर का निर्माण होता है। यह विभवांतर इलेक्ट्रॉनों को गतिशील करता है और दोनों अग्रों को जोड़ने वाले सुचालक में विद्युत प्रवाह का निर्माण करता है।

इकाई धनात्मक आवेश को बिंदु A से बिंदु B तक स्थानांतरित करने के लिए जो कार्य करना पड़ता है उसे बिंदु A और B के बीच का विदयुत विभवांतर कहते हैं।

दो बिंदुओं के दरम्यान का विभवांतर =
$$\frac{}{}$$
 स्थानांतरित हुआ कुल आवेश $V = \frac{W}{Q}$

$$1V = \frac{1J}{1C}$$
 SI प्रणाली में विभवांतर की इकाई वोल्ट है।

वैज्ञानिकों का परिचय

इटली के वैज्ञानिक अलेक्जेन्ड्रो वोल्टा ने सर्वप्रथम विद्युत सेल बनाया। उनके सम्मान में विभवांतर की इकाई का नाम 'वोल्ट' दिया गया।

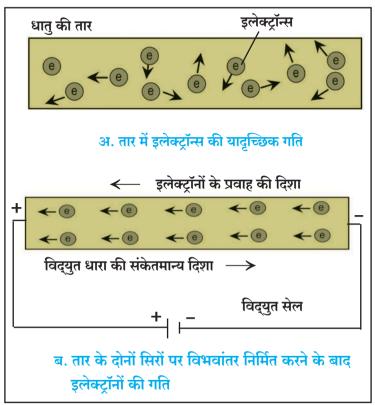
वोल्टा का सरल विद्युत सेल

क्या आप जानते हैं?

विभवांतर का सूक्ष्म मान निम्नलिखित इकाइयों द्वारा व्यक्त किया जाता है।

- 1. 1 mV (मिली बोल्ट) = 10^{-3} V
- 2. $1\mu V$ (माइक्रो वोल्ट) = $10^{-6} V$

विभवांतर का बड़ा मान निम्नलिखित इकाइयों द्वारा व्यक्त किया जाता है।


- 1. 1 kV (किलो वोल्ट) = 10^3 V
- $2.1 MV (मेगा वोल्ट) = 10^6 V$

मुक्त इलेक्ट्रॉन (Free Electron): किसी भी धात्विक विद्युत चालक के प्रत्येक परमाणु के पास एक या एक से अधिक इलेक्ट्रॉन ऐसे होते हैं जो परमाणु के केंद्र से अत्यधिक क्षीण बल से आबद्ध रहते हैं, उन्हें मुक्त इलेक्ट्रॉन कहते हैं। आकृति 3.3 में दिखाए अनुसार चालक में ये इलेक्ट्रॉन एक भाग से दूसरे भाग की ओर सरलतापूर्वक जा सकते हैं। इस कारण इलेक्ट्रॉनों के ऋणात्मक आवेश का वहन होता है अर्थात् चालक के मुक्त इलेक्ट्रॉन आवेश के वाहक होते हैं।

तार से प्रवाहित होने वाली विद्युत धारा

(Electric Current)

आकृति 3.4 अ में दिखाए अनुसार जब विद्युत चालक तार विद्युत सेल से जोड़ी नहीं गई हो तब उसके मुक्त इलेक्ट्रॉन उसके अन्य परमाणुओं के बीच सभी दिशाओं में मुक्त रूप से गति करते रहते हैं। परंतु जब उस तार के सिरे शुष्क विदुयत सेल जैसे विदुयत स्रोत से जोड़े जाते हैं तब तार के इलेक्टॉनों पर विभवांतर के कारण विदयुत बल कार्य करता है और आकृति 3.4 'ब' में दिखाए अनुसार इलेक्ट्रॉन ऋणात्मक आवेशित होने के कारण सुचालक तार के ऋण सिरे (निम्न विभव) से धन सिरे (उच्च विभव) की ओर प्रवाहित होते हैं। इन्हीं इलेक्ट्रॉनों के प्रवाहित होने से तार से विद्युत धारा बहने लगती है। इलेक्ट्रॉनों की यह गतिविधि अनियमित औसत चाल द्वारा शुरू रहती है।

विद्युत धारा (Electric Current)

चालक में इलेक्ट्रॉनों के प्रवाह को विद्युत धारा कहते हैं। उसका मान (I) इकाई समय में चालक से प्रवाहित होने वाले विद्युत आवेश के बराबर होता है।

यदि चालक के अनुप्रस्थ काट से t समय में प्रवाहित होने वाला विद्युत आवेश () है तो

विद्युत धारा =
$$I = \frac{Q}{t}$$
 होती है।

इलेक्ट्रॉनों के प्रवाह की दिशा ऋण सिरे से धन सिरे की ओर होती है तो भी विद्युत धारा दर्शाने की संकेतमान्य दिशा इलेक्ट्रॉनों के प्रवाह के विपरीत दिशा अर्थात् धन सिरे से ऋण सिरे की ओर होती है।

विद्युत आवेश की SI प्रणाली में इकाई कूलॉम (C) तथा विद्युत धारा को एम्पियर (A) में व्यक्त किया जाता है। (एक इलेक्ट्रॉन पर आवेश 1.6×10^{-19} कूलॉम (C) होता है।

एम्पियर: यदि सुचालक में से 1 सेकंड में 1 कूलॉम विद्युत आवेश प्रवाहित होता है तो चालक में से बहने वाली विद्युत धारा 1 एम्पियर होती है. ऐसा कहा जाता है।

$$1A = \frac{1C}{1s}$$

क्या आप जानते हैं?

विद्युत धारा की अतिसूक्ष्म इकाइयाँ निम्नानुसार व्यक्त करते हैं।

- 1. 1mA^0 (मिली एम्पियर) = 10^{-3} A
- 2. $1\mu A^0$ (मायक्रो एम्पियर) = $10^{-6} A$

फ्रेंच गणितज्ञ और वैज्ञानिक एम्पियर ने विद्युत धारा पर आधारित प्रयोग किए, उनके कार्य के कारण आज हम चालक तार में से बहने वाली विद्युत धारा का मापन कर सकते हैं। उनके इस कार्य के सम्मान में विद्युत धारा की इकाई को 'एम्पियर' नाम दिया गया।

उदाहरण: एक विद्युत चालक तार से 0.4 A विद्युत धारा सतत रूप से 5 मिनिट तक प्रवाहित होती होगी तो उस तार में से प्रवाहित होने वाला विद्युत आवेश कितना होगा?

दत्त :
$$I = 0.4 A$$

$$t = 5 \text{ min } = 5 \times 60 \text{ s} = 300 \text{ s}$$

$$Q = I \times t$$

$$Q = 0.4 A \times 300 s$$

$$Q = 120 C$$

∴ तार में से प्रवाहित होने वाला विद्युत आवेश

सूचना और संचार प्रौद्योगिकी के साथ

सिम्युलेशन प्रौद्योगिकी के आधार पर धारा विद्युत और विज्ञान की विविध संकल्पनाओं का अध्ययन कीजिए।

संकेतस्थल:

www.phet.colorado.edu www.edumedia-sciences.com

उपर्युक्त संकेतस्थल के समान विविध जानकारी वाले अन्य संकेतस्थल खोजें तथा उन्हें अन्य लोगों के साथ साझा करें।

विद्युत प्रतिरोध (Resistance) और ओहम का नियम

ओहम का नियम (Ohm's law)

चालक में से प्रवाहित होने वाली विद्युत धारा (I) और उस चालक के दोनों सिरों के बीच के विभवांतर (V) में संबंध जर्मन वैज्ञानिक जॉर्ज ओहम के नियमानुसार ज्ञात किया जा सकता है।

चालक की भौतिक अवस्था अपरिवर्तित रहे तो चालक में से बहने वाली विद्युत धारा उस चालक के दोनों सिरों के बीच के विभवांतर के समानुपाती होती है।

I
$$\alpha$$
 V
$$I = kV \ (k = \text{Revia})$$

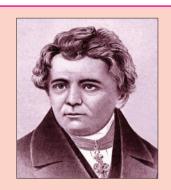
$$I \times \frac{1}{k} = V \ (\frac{1}{k} = R = \text{ चालक का प्रतिरोध })$$

$$I \times R = V \quad \text{अर्थात} \quad V = IR \quad \text{या} \quad R = \frac{V}{I}$$

चालक की भौतिक अवस्था का अर्थ चालक की लंबाई, अनुप्रस्थ काट का क्षेत्रफल, तापमान और उसका द्रव्य होता है।

इस सूत्र को ओह्म का नियम कहते हैं।

उपर्युक्त सूत्र से हम प्रतिरोध की इकाई SI ज्ञात कर सकते हैं। विभवांतर को वोल्ट तथा विद्युत धारा को एम्पियर में मापा जाता है। इसलिए प्रतिरोध की SI इकाई $\frac{V}{A}$ होगी, इसे ही ओह्म कहा जाता है। ओह्म इस इकाई को Ω चिह्न द्वारा दर्शाया जाता है।


$$\therefore \frac{1 \text{ alect}}{1 \text{ एम्पियर}} = 1 \text{ ओह्म } (\Omega)$$

एक ओहम प्रतिरोध : चालक के दोनों सिरों पर एक वोल्ट विभवांतर प्रयुक्त करने पर यदि चालक में से एक एम्पियर विद्युत धारा प्रवाहित हो तो चालक के प्रतिरोध को एक ओहम कहते हैं।

चालक का प्रतिरोध और प्रतिरोधकता (Resistance and Resistivity),

आकृति 3.4 के अनुसार चालक में अत्यधिक संख्या में मुक्त इलेक्ट्रॉन होते हैं। ये मुक्त इलेक्ट्रॉन निरंतर यादृच्छिक गति करते रहते हैं। चालक के दोनों सिरों पर विभवांतर प्रयुक्त करने पर ये इलेक्ट्रॉन निम्न विभववाले सिरे से उच्च विभववाले सिरे की ओर जाने लगते हैं। इस प्रकार के इलेक्ट्रॉनों के प्रवाह के कारण विद्युत धारा निर्मित होती है। गतिशील इलेक्ट्रॉन उनके मार्ग में आने वाले परमाणु या आयनों से टकराते हैं, इस प्रकार के आघात के कारण इलेक्ट्रॉनों की गति में रुकावट उत्पन्न होती है और विद्युत धारा का विरोध होता है। इस विरोध को ही चालक का प्रतिरोध कहते हैं।

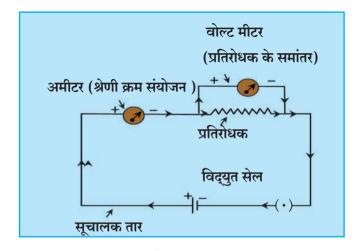
प्रतिरोधकता: विशिष्ट तापमान पर चालक का प्रतिरोध R सुचालक के द्रव्य (Material), चालक की लंबाई (L) और अनुप्रस्थ काट के क्षेत्रफल A पर निर्भर करता है।

जर्मन भौतिक वैज्ञानिक जॉर्ज सायमन ओहम ने विद्युत चालक के प्रतिरोध का मापन करने के लिए नियम प्रतिपादित किया। उनके सम्मान में प्रतिरोध की इकाई को 'ओहम' नाम दिया गया। यदि चालक का प्रतिरोध R है तो $R \alpha L$ $R \alpha \frac{1}{A}$ $\therefore R \alpha \frac{L}{A}$ $R = \rho \frac{L}{A}$

विचार कीजिए

आप कैसे सिद्ध करेंगे कि प्रतिरोधकता की SI इकाई Ω m हैं?

कुछ पदार्थों की प्रतिरोधकता

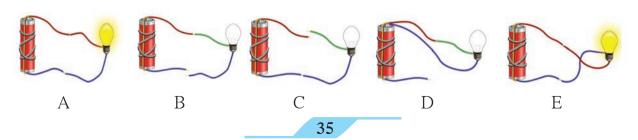

तांबा – $1.7 \times 10^{-8}\,\Omega$ m नायक्राम – $1.1 \times 10^{-6}\,\Omega$ m हीरा – 1.62×10^{13} से $1.62 \times 10^{18}\,\Omega$ m

यहाँ ρ समानुपात का स्थिरांक है। इस स्थिरांक को चालक पदार्थ की 'प्रतिरोधकता' (Resistivity) कहते हैं। SI प्रणाली में प्रतिरोधकता की इकाई ओह्म मीटर (Ω m) है। प्रतिरोधकता पदार्थ का विशेषतापूर्ण गुणधर्म होने के कारण विभिन्न पदार्थों की प्रतिरोधकता भिन्न होती है।

विद्युत परिपथ (Electric Circuit)

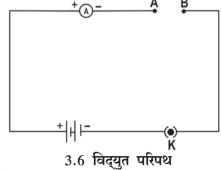
विद्युत सेल के दोनों अग्रों से जोड़ी गई चालक तारें और अन्य प्रतिरोधों में से प्रवाहित होने वाली विद्युत धारा के अखंड मार्ग को विद्युत परिपथ कहते हैं। विद्युत परिपथ को हमेशा आकृति बनाकर दिखाते हैं।

इसमें विविध घटकों को कैसे जोड़ा जाए, उसे विभिन्न चिह्नों का उपयोग करके दिखाई गई रेखाकृति को परिपथाकृति कहते हैं। (आकृति 3.5 देखिए)


3.5 विद्युत परिपथ

इस आकृति में विद्युत धारा का मापन करने के लिए 'अमीटर' और प्रतिरोध के दोनों सिरों के बीच के विभवांतर का मापन करने के लिए 'वोल्टमीटर' इन यंत्रों का उपयोग किया जाता है। वोल्टमीटर का प्रतिरोध अत्यधिक ज्यादा होने के कारण उसमें से प्रवाहित होने वाली विद्युत धारा अतिसूक्ष्म होती है।

- 1. बाजू में दी गई आकृति में क्या गलत है, उसे ढूँढ़ें।
- 2. नीचे दिए गए चित्र B, C, D में बल्ब क्यों नहीं जलता?



विदयत परिपथ के घटकों के चिहन और उनके उपयोग

	विद्युति यारपय के बटका के विहम और उनके उपयोग						
घटक	चित्र	चिह्न	उपयोग				
विद्युत सेल		+1 -	चालक के सिरों के बीच विभवांतर				
	- + 9		प्रयुक्त करना।				
बैटरी		+ . .	चालक के सिरों के बीच अधिक				
(अनेक सेलों का समूह)		<u> </u>	क्षमता का विभवांतर प्रयुक्त करना।				
खुली टेपन कुँजी/ प्लग			चालक के दोनों सिरों के बीच संपर्क				
कुँजी		<u> </u>	तोड़कर विद्युत प्रवाह बंद करना।				
बंद टेपन कुँजी/ प्लग			चालक के दोनों सिरों के बीच संपर्क				
कुँजी	-1-10	—(*)—	स्थापित करके विद्युत प्रवाह शुरू				
			करना।				
जोड़ तार (चालक तार)			विभिन्न घटकों को परिपथ में संयोजित				
			करना।				
एक-दूसरे के ऊपर से जाने	\ /		चालक तारों को एक-दूसरे के ऊपर				
वाली चालक तार		\leftarrow	से जाते हुए दर्शाना।				
C		•	C				
विद्युत बल्ब		8	विद्युत धारा के प्रवाहित होने की जाँच				
		Samuel	करना।				
			अप्रकाशित: प्रवाहित नहीं होती				
C C > -			है। प्रकाशित : प्रवाहित होती है।				
विद्युत प्रतिरोध		—\\\\\	परिपथ में जाने वाली विद्युत धारा को				
		- K	नियंत्रित करना।				
परिवर्ती (चल) प्रतिरोध	DESCRIPTION OF THE PROPERTY OF	$\neg \land \land \land \land \land$	जितना प्रतिरोध चाहिए उतना बदलकर				
(Rheostat)		v v/v v	परिपथ में आवश्यकतानुसार विद्युत				
0	7		धारा बदलना।				
अमीटर	A A	+(A)-	परिपथ की विद्युत धारा का मापन				
			करना। (श्रेणी क्रम में जोड़ना चाहिए।)				
वोल्ट मीटर		+ (\(\sigma\)=	विभवांतर का मापन करना। (समांतर				
10	NO GLIB	•	क्रम में जोड़ना चाहिए।)				

सामग्री: ताँबे और एल्युमीनियम की तारें, काँच की छड़, रबड़ करें और देखें

कृति: आकृति 3.6 में दिखाए अनुसार उपकरणों को संयोजित कीजिए। पहले बिंदु A और B के बीच ताँबे की तार संयोजित कीजिए, परिपथ की विद्युत धारा का मापन कीजिए। एल्युमीनियम की तार, काँच की छड़, रबड़, एक समय एक संयोजित कीजिए और प्रत्येक बार विद्युत धारा का मापन कीजिए। तुम्हारे प्रेक्षणों को नोट कीजिए। ताँबे, एल्युमीनियम की तार, काँच की छड़ और रबड़ के प्रेक्षणों की तुलना कीजिए।

36

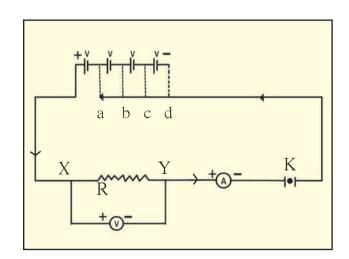
चालक और विदयुत रोधी (Conductors and Insulators)

विद्युत प्रतिरोध की संकल्पना का हमने अध्ययन किया है। हम सभी पदार्थों का विद्युत चालक (सुचालक) और विद्युत रोधी (कुचालक) में वर्गीकरण कर सकते हैं।

चालक: जिन पदार्थों की प्रतिरोधकता बहुत कम होती है उन्हें चालक कहते हैं। इनमें से सरलतापूर्वक विद्युतधारा प्रवाहित हो सकती है।

विद्युत रोधी: जिन पदार्थों की प्रतिरोधकता बहुत ज्यादा होती है अर्थात जिनमें से विद्युत धारा प्रवाहित ही नहीं हो सकती, ऐसे पदार्थों को विद्युत रोधी कहते हैं।

- 1. पदार्थ चालक या विदयतरोधी क्यों होते हैं?
- हमारा शरीर विद्युत चालक क्यों होता है?
 अपने आसपास उपस्थित चालक और विद्युतरोधी पदार्थों की सूची बनाइए।


ओहम के नियम का प्रायोगिक सत्यापन करना

सामग्री: 1.5 V के चार विद्युत सेल, अमीटर, वोल्ट मीटर, चालक तार, नाइक्रोम की तार, प्लग कँजी।

कृति:

- आकृति 3.7 में दिखाए अनुसार परिपथ संयोजित करें।
- 2. नाइक्रोम की तार XY का उपयोग प्रतिरोध के तौर पर करें।
- दिए गए चार विद्युत सेलों में से एक विद्युत सेल को जोड़ें। (संयोजक 'a' की भाँति) अमीटर और वोल्टमीटर से पाठ्यांक लें और उन्हें नोट कीजिए।
- 4. इसके पश्चात क्रमश: एक-एक विद्युत सेल बढ़ाते हुए संयोजित कीजिए। (संयोजन 'b', 'c', 'd' की भाँति) और पाठ्यांक लें और निरीक्षण तालिका में नोट करें।
- 5. $\frac{V}{I}$ का मान ज्ञात करें।
- 6. विभवांतर और विद्युत धारा के बीच आलेख बनाएँ और उसका अवलोकन कीजिए।

3.7 ओह्म के नियम का सत्यापन

प्रेक्षण तालिका

क्रमांक	उपयोग में लाए गए विद्युत सेलों की संख्या	विद्युत धारा (I) (mA)	विद्युत धारा I (A)	विभवांतर (V)	$\frac{V}{I} = R (\Omega)$
1.					
2.					
3.					
4.					

हल किए गए उदाहरण : ओहम का नियम और प्रतिरोधकता

उदाहरण 1: बल्ब के तार के प्रतिरोध 1000Ω है। यदि 230 V विभवांतर के स्रोत से इस बल्ब को विद्युत धारा की आपूर्ति की जाती है तो तार की कुंडली में से प्रवाहित होने वाली विद्युत धारा कितनी होगी?

दल:
$$R = 1000 \Omega$$

 $V = 230 V$

सूत्र
$$I = \frac{V}{R}$$
$$\therefore I = \frac{230 \text{ V}}{1000 \Omega} = 0.23 \text{ A}.$$

∴ बल्ब के तार की कुंडली में से प्रवाहित होने वाली विद्युत धारा = 0.23 A.

उदाहरण 2: एक चालक तार की लंबाई 50 सेमी तथा त्रिज्या 0.5 मिमी. है। इस तार का प्रतिरोध $30~\Omega$ है तो उसकी प्रतिरोधकता ज्ञात कीजिए।

दल्त :
$$L = 50 \text{ cm} = 50 \times 10^{-2} \text{ m}$$
 $r = 0.5 \text{ mm} = 0.5 \times 10^{-3} \text{m}$ $= 5 \times 10^{-4} \text{ m}$ और $R = 30 \Omega$ प्रतिरोधकता, $\rho = \frac{RA}{L}$

परंतु
$$A = \pi r^2$$

$$\therefore \rho = R \frac{\pi r^2}{L}$$

$$= \frac{30 \times 3.14 \times (5 \times 10^{-4})^2}{50 \times 10^{-2}}$$

$$=\frac{30 \times 3.14 \times 25 \times 10^{-8}}{50 \times 10^{-2}}$$

=
$$47.1 \times 10^{-6} \Omega$$
 m

=
$$4.71 \times 10^{-5} \Omega$$
 m

 \therefore तार की प्रतिरोधकता $4.71 imes 10^{-5} \Omega \; \mathrm{m}$

उदाहरण 3: यदि चालक में से प्रवाहित होने वाली विद्युत धारा 0.24 A तथा उसके दोनों सिरों के बीच 24V विभवांतर प्रयुक्त किया गया हो तो उस चालक का प्रतिरोध ज्ञात कीजिए।

$$\frac{1}{3}$$
 Cross V = 24 V, I = 0.24 A

$$R = \frac{V}{I}$$
∴
$$I = \frac{24 \text{ V}}{0.24 \text{ A}}$$

$$R = 100 \text{ O}$$

 \therefore चालक का प्रतिरोध $100~\Omega$ होगा।

उदाहरण $4:110\,\Omega$ प्रतिरोध वाले एक उपकरण के दोनों सिरों के बीच $33\,V$ विभवांतर प्रयुक्त करने पर उपकरण में से प्रवाहित होने वाली विद्युत धारा ज्ञात कीजिए। $500\,\Omega$ प्रतिरोध वाले उपकरण से उतनी ही विद्युत धारा प्रवाहित होने के लिए उनके दोनों सिरों के मध्य कितना विभवांतर प्रयुक्त करना पडेगा?

दत्त : V = 33 V और $R = 110 \Omega$ प्रथम शर्तानुसार

$$I = \frac{V}{R} = \frac{33}{110}$$

$$\therefore I = 0.3 \text{ A}$$

∴ उपकरण में से प्रवाहित होने वाली विद्युत धारा = 0.3 A

द्वितीय शर्तानुसार

$$I = 0.3 A$$
, $R = 500 Ω$

$$V = IR = 0.3 \times 500 V = 150 V.$$

उपकरण के दोनों सिरों के मध्य में प्रयुक्त किए जानेवाले विभवांतर = 150 V

सूचना और संचार प्रौद्योगिकी के साथ

इंटरनेट के आधार पर गणितीय उदाहरण हल करने के लिए संगणक-सॉफ्टवेअर कौन-कौन-से हैं, उनकी जानकारी प्राप्त करके उनका उपयोग इस और अन्य प्रकरणों के उदाहरणों को हल करने के लिए करें। उदाहरण 5: 1 km लंबाई और 0.5 mm व्यास वाले ताँबे के तार का प्रतिरोध ज्ञात कीजिए।

द्त्त : ताँबे की प्रतिरोधकता = $1.7 \times 10^{-8} \, \Omega \; \mathrm{m}$

सभी इकाइयों को मीटर में करने पर-

 $L = 1 \text{ km} = 1000 \text{ m} = 10^3 \text{ m}$

 $d = 0.5 \text{ mm} = 0.5 \times 10^{-3} \text{ m}$

माना कि, r तार की त्रिज्या है तो उसके अनुप्रस्थ काट का क्षेत्रफल

A =
$$\pi r^2$$

$$\therefore A = \pi \times \left(\frac{d}{2}\right)^2$$

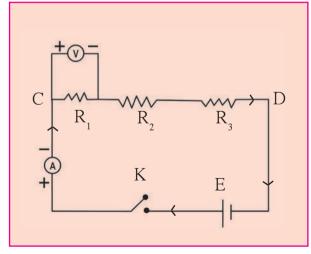
$$= \frac{\pi}{4} (0.5 \times 10^{-3})^2 m^2 = 0.2 \times 10^{-6} m^2$$

$$R = \rho \frac{L}{A} = \frac{1.7 \times 10^{-8} \Omega \text{ m} \times (10^{3} \text{m})}{0.2 \times 10^{-6} \text{m}^{2}} = 85 \Omega$$

प्रतिरोधकों का संयोजन और परिणामी प्रतिरोध (System of Resistors and their effective Resistance)

अनेक विद्युत उपकरणों में हम असंख्य प्रतिरोधकों को विभिन्न प्रकार से संयोजित करते हैं। इस प्रकार किए गए प्रतिरोधकों के संयोजनों में भी ओहम का नियम लागू होता है।

प्रतिरोधकों का श्रेणीक्रम संयोजन (Resistors in Series)


आकृति 3.8 का निरीक्षण करें।

परिपथ में R_1 , R_2 और R_3 तीन प्रतिरोधकों के सिरों के एक से एक क्रमश: संयोजित किया गया है। प्रतिरोधकों के ऐसे संयोजन को श्रेणीक्रम संयोजन कहते हैं। प्रतिरोधकों के श्रेणीक्रम संयोजन में प्रत्येक प्रतिरोधक में से समान विद्युत धारा प्रवाहित होती है।

आकृति में दर्शाए अनुसार विद्युत धारा I है तथा बिंदु C और D के बीच का विभवांतर है I प्रतिरोधकों R_1 , R_2 और R_3 तीन प्रतिरोधकों को परिपथ में श्रेणीक्रम में संयोजित किया गया है I V_1 , V_2 और V_3 क्रमशः R_1 , R_2 और R_3 के प्रत्येक प्रतिरोध का सिरों के दरम्यान का विभवांतर हो तो

 $V = V_1 + V_2 + V_3 - - - - - - (1)$ यदि R_s (श्रेणी को अंग्रेजी में series कहते हैं इसलिए R_s का उपयोग किया गया है।) बिंदु C और D के मध्य के तीनों प्रतिरोधकों का परिणामी प्रतिरोध हो तो, ओह्म के नियमानुसार कुल विभवांतर

$$V = I R_{_{\rm S}}$$

$$V_{_1} = I R_{_1}, \ V_{_2} = I R_{_2} \ \ \text{और} \ V_{_3} = I R_{_3} \ \text{इन मानों को}$$

3.8 प्रतिरोध का श्रेणीक्रम संयोजन

समीकरण (1) में रखने पर
$$I\,R_{_{\rm S}} = \,I\,R_{_{\rm 1}} + \,I\,R_{_{\rm 2}} + \,I\,R_{_{\rm 3}}$$

$$R_{_{\rm S}} = \,R_{_{\rm 1}} + \,R_{_{\rm 2}} + \,R_{_{\rm 3}}$$
 यिद n प्रतिरोधक श्रेणीक्रम में संयोजित किए गए हों तो,
$$R_{_{\rm S}} = \,R_{_{\rm 1}} + \,R_{_{\rm 2}} + \,R_{_{\rm 3}} + -----+ \,R_{_{\rm n}}$$

यदि दिए गए प्रतिरोधक श्रेणीक्रम में संयोजित किए गए हों तो,

- प्रत्येक प्रतिरोधक में से समान विद्युत धारा प्रवा-हित होती है।
- प्रतिरोधकों के श्रेणीक्रम संयोजन का परिणामी प्र-तिरोध, संयोजन के सभी प्रतिरोधों के योगफल के बराबर होता है।
- 3. संयोजन के दोनों सिरों के मध्य प्रयुक्त विभवांतर प्रत्येक प्रतिरोधक के सिरों के मध्य प्रयुक्त विभवां तर के योगफल के बराबर होता है।
- प्रतिरोधकों के श्रेणीक्रम संयोजन का परिणामी प्र-तिरोध, उस संयोजन के प्रत्येक प्रतिरोधक के प्रति-रोध से अधिक होता है।
- 5. परिपथ का प्रतिरोध बढ़ाने के लिए इस संयोजन का उपयोग किया जाता है।

क्या आप जानते हैं?

श्रेणीक्रम संयोजन में प्रतिरोधों का एक के बाद एक क्रमश: संयोजन होता है। यदि उसका एक भी घटक काम नहीं करता तो परिपथ बंद हो जाता है और विद्युत धारा प्रवाहित नहीं होती है। यदि दो बल्बों को श्रेणीक्रम में जोड़ा जाए तो उनके अकेले के प्रकाश की अपेक्षा भी वे कम प्रकाश देते हैं। यदि तीन बल्बों को श्रेणी क्रम में संयोजित किया जाए तो वे और कम प्रकाशित होंगे।

विचार कीजिए: इसका कारण क्या होगा?

श्रेणीक्रम संयोजित उदाहरण

उदाहरण 1: यदि $15~\Omega$, $3~\Omega$, और $4~\Omega$ के तीन प्रतिरोधक श्रेणीक्रम में संयोजित किए गए हैं तो उस परिपथ का परिणामी प्रतिरोध ज्ञात कीजिए।


दत्त :
$$R_1 = 15 \Omega$$
, $R_2 = 3 \Omega$, $R_3 = 4 \Omega$
परिणामी प्रतिरोध $R_s = R_1 + R_2 + R_3 = 15 + 3 + 4 = 22 \Omega$
∴ परिपथ का परिणामी प्रतिरोध = 22 Ω

उदाहरण $2:16\ \Omega$ और $14\ \Omega$ के दो प्रतिरोधक श्रेणीक्रम में संयोजित किए गए हैं, यदि उनके मध्य $18\ V$ का विभवांतर प्रयुक्त किया जाए तो परिपथ में से प्रवाहित होने वाली विद्युत धारा ज्ञात कीजिए और प्रत्येक प्रतिरोधकों के सिरों के मध्य का विभवांतर ज्ञात कीजिए।

दल्त :
$$R_1$$
 = 16 Ω और R_2 = 14 Ω
 R_2 = 14 Ω + 16 Ω = 30 Ω

माना कि परिपथ में से प्रवाहित होने वाली विद्युतधारा I है तथा प्रतिरोधकों 16 और $14~\Omega$ के सिरों के प्रतिरोधकों के मध्य के विभवांतर क्रमश: V_1 और V_2 है

.. परिपथ में से प्रवाहित विद्युत धारा = $0.6~\mathrm{A}$ और $16~\Omega$ और $14~\Omega~\mathrm{ds}$ प्रतिरोधकों के सिरों के मध्य विभवांतर क्रमशः $9.6~\mathrm{V}$ और $8.4~\mathrm{V}$ है ।

तापमान कम करते शून्य केल्विन (K) के पास ले जाने पर कुछ चालकों का प्रतिरोध शून्य के पास पहुँचता है। ऐसे चालक को **अतिचालक (Super Conductor)** कहते हैं। कुछ चालक ओह्म के नियम का पालन नहीं करते, ऐसे चालकों को 'अ' ओहमी चालक कहते हैं।

प्रतिरोधकों का समांतर क्रम संयोजन (Resistors in Parallel)

 R_1, R_2, R_3 तीन प्रतिरोधकों में से प्रत्येक का एक-एक सिरा एकत्र रूप में एक बाजू में तथा उनके दूसरे तीनों सिरों को एकत्र रूप में दूसरी बाजू में संयोजित करके बनाए गए संयोजन को समांतर क्रम संयोजन कहते हैं।

आकृति 3.9 में R_1 , R_2 और R_3 तीन प्रतिरोधों को दो बिंदुओं C और D के बीच समांतर क्रम में संयोजित किया गया है। माना कि, प्रतिरोधकों R_1 , R_2 और R_3 में से प्रवाहित होने वाली विद्युत धारा क्रमश: I_1 , I_2 और I_3 है। C और D के मध्य प्रयुक्त किया गया विभवांतर V है। परिपथ की कल विदयत धारा

$$I = I_1 + I_2 + I_3 - - - - - (1)$$

3.9 प्रतिरोधों का समांतर क्रम संयोजन

माना परिपथ का परिणामी प्रतिरोध R_p है । (समांतर को अंग्रेजी में Parallel कहते हैं इसलिए R_p का उपयोग किया गया है।) परंतु ओह्म के नियमानुसार

$$I = \frac{V}{R_p}$$
 तथा $I_1 = \frac{V}{R_1}$, $I_2 = \frac{V}{R_2}$, $I_3 = \frac{V}{R_3}$

इन मानों को समीकरण (1) में रखने पर

$$\begin{split} \frac{V}{R_{p}} &= \frac{V}{R_{_{1}}} + \frac{V}{R_{_{2}}} + \frac{V}{R_{_{3}}} \\ \therefore \frac{1}{R_{_{p}}} &= \frac{1}{R_{_{1}}} + \frac{1}{R_{_{2}}} + \frac{1}{R_{_{3}}} \text{ यदि n y (तो, white)} \\ \frac{1}{R_{_{p}}} &= \frac{1}{R_{_{1}}} + \frac{1}{R_{_{2}}} + \frac{1}{R_{_{3}}} + \dots + \frac{1}{R_{_{p}}} \end{split}$$

अनेक बल्ब समांतर श्रेणी में संयोजित किए गए हों और यदि कोई बल्ब तार के टूटने के कारण प्रकाशित नहीं होता तो भी विद्युत परिपथ खंडित नहीं होता है। दूसरे मार्ग पर विद्युत धारा बहती है और अन्य बल्ब प्रकाशित होते हैं। अनेक बल्बों को श्रेणीक्रम में जोड़ने पर वे अपने मूल प्रकाश की अपेक्षा कम प्रकाश से प्रकाशित होते हैं परंतु उन्हीं बल्बों को समांतर क्रम में जोड़ा जाए तो प्रत्येक बल्ब अपने मूल प्रकाश से प्रकाशित होता है।

यदि दिए गए प्रतिरोधक समांतर क्रम में संयोजित किए गए तो.

- 1. संयोजित किए गए सभी प्रतिरोधकों के प्रतिरोधों के प्रतिलोमों का योगफल, उनके परिणामी प्रतिरोध के प्रतिलोम के बराबर होता है।
- 2. प्रत्येक प्रतिरोधक में से प्रवाहित होने वाली विद्युत धारा प्रतिरोध प्रतिलोमानुपाती होती है और परिपथ में से प्रवाहित होने वाली कुल विद्युत धारा प्रत्येक प्रतिरोधक में से स्वतंत्र रूप से प्रवाहित होने वाली विद्युत धारा के योगफल के बराबर होती है।
- 3. प्रत्येक प्रतिरोधों के सिरों के मध्य विभवांतर समान होता है।
- 4. प्रतिरोधकों के समांतर क्रम संयोजन का परिणामी प्रतिरोध, उस संयोजन के प्रत्येक प्रतिरोध के मान से कम होता है।
- 5. इस संयोजन का उपयोग परिपथ के प्रतिरोध को कम करने के लिए किया जाता है।

समांतर क्रम संयोजन संबंधी उदाहरण

उदाहरण $1:15~\Omega$, $20~\Omega$ और $10~\Omega$ के तीन प्रतिरोधक समांतर क्रम में संयोजन किए गए हों तो परिपथ का परिणामी प्रतिरोध ज्ञात कीजिए।

दिला:
$$R_1 = 15 \Omega$$
, $R_2 = 20 \Omega$ और $R_3 = 10 \Omega$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{1}{R_p} = \frac{1}{15} + \frac{1}{20} + \frac{1}{10} = \frac{4+3+6}{60} = \frac{13}{60}$$

$$R_p = \frac{60}{13} = 4.615 \Omega$$

 \therefore परिपथ का परिणामी प्रतिरोध = $4.615~\Omega$

उदाहरण $2:5~\Omega,~10~\Omega$ और $30~\Omega$ के तीन प्रतिरोधकों को समांतर क्रम में संयोजित किया गया है तथा उनके दोनों सिरों पर 12~V का विभवांतर प्रयुक्त किया है। प्रत्येक प्रतिरोधक में से प्रवाहित होने वाली विद्युत धारा और परिपथ में से प्रवाहित होने वाली कुल विद्युत धारा ज्ञात कीजिए तथा परिपथ का परिणामी प्रतिरोध ज्ञात कीजिए।

द्रत्त :
$$R_1 = 5 \Omega$$
, $R_2 = 10 \Omega$ और $R_3 = 30 \Omega$, $V = 12 V$

$$I_1 = \frac{V}{R_1}$$
 = $\frac{12}{5}$ = 2.4 A
 $I_2 = \frac{V}{R_2}$ = $\frac{12}{10}$ = 1.2 A
 $I_3 = \frac{V}{R_3}$ = $\frac{12}{30}$ = 0.4 A

$$I = I_{1} + I_{2} + I_{3} = 2.4 + 1.2 + 0.4 = 4.0 \text{ A}$$

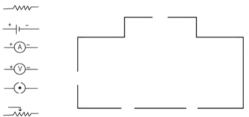
$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} = \frac{1}{5} + \frac{1}{10} + \frac{1}{30} = \frac{6 + 3 + 1}{30} = \frac{10}{30} = \frac{1}{3}$$

 $R_{_{P}}$ = 3 Ω , परिपथ का परिणामी प्रतिरोध = 3 Ω और 5 Ω , 10 Ω और 30 Ω के प्रतिरोधकों में से प्रवाहित होने वाली विद्युत धारा क्रमशः 2.4 A, 1.2 A और 0.4 A है और कुल विद्युत धारा = 4 A

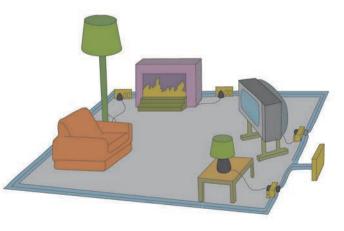
घरेलू विदुयुत संयोजन

हमारे घरों में विद्युतधारा मुख्य विद्युत चालक तार से जमीन के नीचे तारों द्वारा या विद्युत के खंभों से तारों द्वारा लाई जाती है उसमें से एक तार विद्युत्मय (live) तो दूसरी तार उदासीन (Neutral) होती है। सामान्यतः विद्युत्मय तार लाल रंग के विद्युतरोधी आवरण की होती है तो उदासीन तार काले रंग के विद्युतरोधी आवरण की होती है। भारत में इन दोनों तारों के मध्य विद्युत विभवांतर सामान्यतः 220 V होता है। दोनों तार घर के विद्युत मीटर से मुख्य संगलक तार (Main fuse) द्वारा संयोजित किए जाते हैं। मुख्य कुँजी (Main Switch) द्वारा ये तार, घर के सभी चालक तारों को जोड़ी जाती हैं। हमारे घरों में विद्युत चालक तारों का संयोजन इस प्रकार किया जाता है कि प्रत्येक कमरे में विद्युत उपलब्ध हो सके। प्रत्येक स्वतंत्र परिपथ में विद्युत्मय और उदासीन तारों के मध्य विभिन्न उपकरणों को जोड़ा जाता है। प्रत्येक उपकरण को समान विभवांतर की आपूर्ति की जाती है और उपकरणों को सदैव समांतर क्रम में जोड़ा जाता है। इसके अतिरिक्त तीसरी तार भूसंपर्क तार होती है वह पीले रंग के विद्युतरोधी आवरण की होती है। वह घर के पास जमीन में एक धातु की पट्टी से जुड़ी हुई होती है। यह तार सुरक्षा के लिए उपयोग में लाई जाती है।

संगलक तार: विद्युतीय उपकरणों को नुकसान न होने देने के लिए संगलक तार का उपयोग किया जाता है। यह तार विशिष्ट गलनांक वाली मिश्रधातु की बनी होती है और विद्युतीय उपकरणों से श्रेणीक्रम में जोड़ी जाती है। यदि परिपथ में से किसी कारणवश निश्चित सीमा के बाहर विद्युत धारा प्रवाहित होती है तो इस तार का तापमान बढ़कर वह पिघल जाता है। इस कारण परिपथ खंडित होकर विद्युतप्रवाह रुक जाता है और उपकरणों का संरक्षण होता है। यह तार पोर्सिलिन जैसे विद्युतरोधी पदार्थ से बने कोटर में लगाई जाती है। घरेलू उपयोग के लिए सीमा के संगलक तारों का इस्तेमाल किया जाता है। 1A, 2A, 3A, 4A, 5A और 10A के संगलक तारों का इस्तेमाल किया जाता है।



विद्युतधारा के उपयोग संबंधी सावधानियाँ


- 1. घरों की दीवारों पर लगाए जाने वाले विद्युत स्विच और सॉकेट इतनी ऊँचाई पर होने चाहिए कि छोटे बच्चों के हाथ वहाँ तक न पहुँचे अर्थात पिन या कील जैसी कोई वस्तु प्लग में नही डाल सकेंगे। प्लग निकालते समय प्लग पकड़कर खींचे वायर न खींचें।
- 2. विद्युत उपकरणों की सफाई करने के पहले उनके बटन बंद करके विद्युतधारा खंडित करें और उसका प्लग सॉकेट से बाहर निकालें।
- 3. विद्युत उपकरणों का उपयोग करते समय हाथ सूखे होने चाहिए। इसी प्रकार ऐसे समय रबर के तल वाली चप्पलों का उपयोग करके विद्युत उपकरणों का उपयोग करें। रबर विद्युतरोधी होने के कारण ऐसी चप्पलों का उपयोग करके विद्युत उपकरणों का इस्तेमाल करने वाले व्यक्ति के शरीर में से विद्युत धारा प्रवाहित होने का खतरा टाला जा सकता है।
- 4. यदि विद्युत का धक्का लगने वाला व्यक्ति वैसा ही तार के संपर्क में रहे तो तुरंत मुख्य बटन बंद करें। यदि मुख्य बटन दूर हो तो उसकी जगह आपको पता न हो तो सॉकेट में से प्लग बाहर निकालने की कोशिश करें। यह संभव न हो तो लकड़ी की वस्तु की सहायता से उस व्यक्ति को तार के पास से दूर धकेलें।

स्वाध्याय 🔩

- संलग्न चित्र में घर में विद्युत उपकरण परिपथ में संयोजित किए गए दिखाई दे रहे हैं, इस आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए।
 - अ. घर के विद्युत उपकरण कौन-से क्रम में संयोजित किए गए हैं?
 - आ. सभी उपकरणों पर विभवांतर कैसा है?
 - इ. क्या उपकरणों में से प्रवाहित होने वाली विद्युत धारा समान होगी? उत्तर का समर्थन कीजिए।
 - ई. घर में विद्युत परिपथ का संयोजन इस पद्धति द्वारा क्यों किया जाता है?
 - उ. क्या इन उपकरणों में से टी.वी. बंद पड़ने पर संपूर्ण परिपथ खंडित होगा? उत्तर का समर्थन कीजिए।
- 2. विद्युत परिपथ में संयोजित किए जाने वाले घटकों के चिहन नीचे दिए गए हैं। उन्हें आकृति में उचित स्थान पर संयोजित करके परिपथ पूर्ण कीजिए।

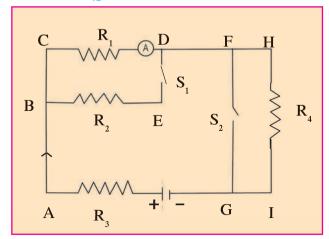
- 3. उमेश के पास 15 W और 30 W प्रतिरोध वाले दो बल्ब हैं। उसे उन बल्बों को परिपथ में संयोजित करना है परंतु उसने वे बल्ब एक से एक क्रमश: जोडें तो बल्ब खराब हो जाते हैं, तो
 - अ. उसे बल्ब जोड़ते समय कौन-सी पद्धित के अनुसार जोड़ने पड़ेंगे?
 - आ. उपर्युक्त प्रश्न के उत्तर के अनुसार बल्ब संयोजित करने की पद्धति के गुणधर्म बताइए।
 - इ. उपर्युक्त पद्धित से बल्ब संयोजित करने पर परिपथ का परिणामी प्रतिरोध कितना होगा?

- 4. नीचे दी गई तालिका में विद्युतधारा (A में) और विभवांतर (V में) दिया गया है।
 - अ. तालिका के आधार पर औसत प्रतिरोध ज्ञात कीजिए।
 - आ. विद्युत धारा और विभवांतर के बीच के आलेख का स्वरूप कैसा होगा? (आलेख मत बनाइए)
 - ई. कौन-सा नियम सत्य होता है? स्पष्ट कीजिए।

V	Ι
4	9
5	11.25
6	13.5

5. जोडियाँ मिलाइए।

'अ' गट


'ब'गट

- 1. मुक्त इलेक्ट्रॉन
- a.V/R
- 2. विद्युत धारा
- b.परिपथ का प्रतिरोध

बढ़ाना।

- 3. प्रतिरोधकता
- c. क्षीण बलों से आबद्ध
- 4. श्रेणीक्रम संयोजन
- d.VA/LI
- 6. 'x' लंबाई के चालक का प्रतिरोध 'r' व उसके अनुप्रस्थ काट का क्षेत्रफल 'a' है तो चालक की प्रतिरोधकता कितनी होगी? उसे कौन–सी इकाई में मापा जाता है?

7. प्रतिरोध R_1 , R_2 , R_3 और R_4 आकृति में दिखाए अनुसार संयोजित किए गए हैं। S_1 और S_2 द्वारा दो कुँजियाँ दर्शाई गई हैं तो नीचे दिए गए बिंदुओं (मुद्दों) के आधार पर प्रतिरोधकों में से प्रवाहित होने वाली विद्युत धारा के बारे में चर्चा कीजिए।

- अ. कुँजी S_1 और S_2 दोनों को बंद किया। आ. दोनों कुँजियों को खुला रखा। S_2 बुंदी रखी।
- 8. x_1 , x_2 , x_3 परिमाण के तीन प्रतिरोधकों को विद्युत परिपथ में विभिन्न पद्धतियों से संयोजित करने पर प्राप्त होने वाले गुणधर्मों की सूची नीचे दी गई है। उन्हें कौन-कौन-से संयोजन में जोड़ा गया है, लिखिए | (I विद्युत धारा, V- विभवांतर, x परिणामी प्रतिरोध)

अ. x_1, x_2, x_3 में से I विद्युत धारा प्रवाहित होती है।

आ. x से x₁, x₂, x₃ बड़ा है।

इ. x से x₁, x₂, x₃ छोटा है।

ई. $\mathbf{x_{_{1}}},\,\mathbf{x_{_{2}}},\,\mathbf{x_{_{3}}}$ के मध्य का विभवांतर \mathbf{V} समान है ।

 $3. x = x_1 + x_2 + x_3$

$$35. X = \frac{1}{\frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_2}}$$

9. उदाहरण हल कीजिए।

अ. $1 \mathrm{m}$ नायक्रोम की तार का प्रतिरोध 6Ω है। तार की लंबाई $70 \mathrm{cm}$ करने पर तार का प्रतिरोध कितना होगा? (उत्तर: 4.2Ω)

आ. यदि दो प्रतिरोधकों को श्रेणीक्रम में जोड़ा जाए तो उनका परिणामी प्रतिरोध $80~\Omega$ होता है। यदि उन्हीं प्रतिरोधकों को समांतर क्रम में जोड़ा जाए तो उनका परिणामी प्रतिरोध $20~\Omega$ होता है तो उन प्रतिरोधकों का मान जात कीजिए।

(उत्तर: 40Ω , 40Ω)

इ. एक चालक तार से 420 C विद्युत आवेश 5 मिनिट तक प्रवाहित होता है तो इस तार में प्रवाहित होने वाली विद्युत धारा कितनी होगी?

(उत्तर: 1.4 A)

उपक्रम:

घर के विद्युत संयोजन और अन्य महत्त्वपूर्ण बातों को तार मिस्त्री (wireman) से सावधानीपूर्वक जानिए और अन्य लोगों को बताइए।

4. द्रव्य का मापन

- 🕨 रासायनिक संयोग का नियम
- 🕨 परमाणु आकार, द्रव्यमान , संयोजकता
- > अणुद्रव्यमान और मोल की संकल्पना 🕒 मूलक

- 1. डाल्टन का परमाणु सिद्धांत क्या है ?
- 2. यौगिक कैसे बनते हैं?
- 3. नमक, कली का चूना, पानी, चूना, चूने का पत्थर इनके अणुसूत्र क्या हैं?

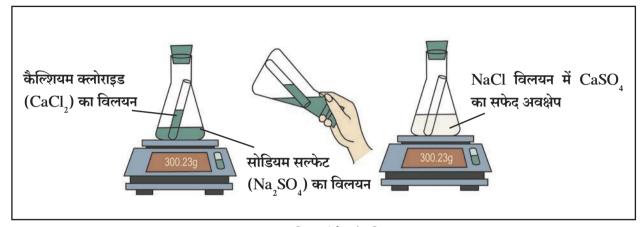
तत्त्वों के रासायनिक संयोग से यौगिकों का निर्माण होता है, यह हमनें पिछली कक्षा में पढ़ा है। हमने यह भी सीखा है कि डाल्टन के परमाणु सिद्धांत का एक महत्त्वपूर्ण सार यह है कि अलग–अलग तत्त्वों के परमाणु एक–दूसरे से जुड़ने से यौगिक के अणु का निर्माण होता है।

रासायनिक संयोग का नियम (Laws of Chemical Combination)

रासायनिक परिवर्तन होते समय पदार्थों का संगठन बदलता है। इस संदर्भ में मूलभूत प्रयोग 18 वीं और 19 वीं शताब्दी के वैज्ञानिकों ने किए। यह करते समय उन्होंने इस्तेमाल किए पदार्थों और तैयार हुए पदार्थों का अचूक मापन किया। डाल्टन, थॉमसन और रुदरफोर्ड इन वैज्ञानिकों ने पदार्थों और परमाणुओं की संरचना का अध्ययन करके रासायनिक संयोग के नियम की खोज की। डाल्टन के परमाणु सिद्धांत और रासायनिक संयोग के नियम के आधार पर वैज्ञानिकों ने विविध यौगिकों के अणुसूत्र लिखे। हम यहाँ ज्ञात अणुसूत्रों के आधार पर रासायनिक संयोग के नियम का सत्यापन करके देखेंगे।

सामग्री: शंक्वाकार पात्र, परखनलियाँ, तराजू इत्यादि।

रसायन : कैल्शियम क्लोराइड $(CaCl_2)$, सोडियम सल्फेट (Na_2SO_4) , कैल्शियम ऑक्साइड (CaO), पानी (H_2O) (आकृति 4.1 देखिए)


कृति 1

- एक बड़े शंक्वाकार पात्र में 56 ग्राम कैल्शियम ऑक्साइड लें और उसमें 18 ग्राम पानी डालें।
- क्या होता है, देखें।
- तैयार हुए पदार्थ के द्रव्यमान का मापन करें।
- 🔍 क्या समानता दिखी? अनुमान लिखें।

 	 	 _

कृति 2

- कैल्शियम क्लोराइड का विलयन शंक्वाकार पात्र में लें
 और सोडियम सल्फेट का विलयन परखनली में लें।
- परखनली को धागा बाँधकर उसे सावधानीपूर्वक शंक्वाकार पात्र में छोड़ें।
- रबड़ का कॉर्क लगाकर शंक्वाकार पात्र वाय्रुद्ध करें।
- शंक्वाकार पात्र का तराजू की सहायता से द्रव्यमान ज्ञात करें।
- अब शंक्वाकार पात्र को तिरछा करके परखनली का विलयन शंक्वाकार पात्र के विलयन में डालें।
- अब पुन: शंक्वाकार पात्र का द्रव्यमान करें।
 आपको कौन-से परिवर्तन दिखाई दिए? क्या द्रव्यमान में कुछ परिवर्तन हुआ?

4.1 रासायनिक संयोग के नियम का सत्यपालन

द्रव्य की अविनाशिता का नियम (Law of Conservation of Matter)

उपर्युक्त कृति में मूल द्रव्य का द्रव्यमान और रासायनिक परिवर्तन से निर्मित हुए द्रव्य का द्रव्यमान समान है। 1785 में एंटोनी लवाइझिए (Antoine Lavoisier) नामक फ्रेंच वैज्ञानिक ने संशोधन से यह निष्कर्ष प्राप्त किया कि, 'रासायनिक अभिक्रिया' होते समय द्रव्य के द्रव्यमान में वृद्धि या कमी नहीं होती है।' रासायनिक अभिक्रिया के अभिकारकों (Reactants) का कुल द्रव्यमान और रासायनिक अभिक्रिया से निर्मित होने वाले उत्पादों (Products) का कुल द्रव्यमान समान होता है। इसे ही द्रव्य की अविनाशिता का नियम कहते हैं।

स्थिर अनुपात का नियम (Law of Constant Proportion)

फ्रेंच वैज्ञानिक प्रूस्ट (J. L. Proust) ने सन 1794 में स्थिर अनुपात का नियम प्रतिपादित किया, ''यौगिकों के विभिन्न नमूनों के घटक तत्त्वों के द्रव्यमानों का अनुपात सदैव स्थिर होता है।'' उदा. किसी भी स्रोत से प्राप्त पानी में हाइड्रोजन और ऑक्सीजन का द्रव्यमानों का अनुपात 1: 8 होता है, 1 ग्राम हाइड्रोजन और 8 ग्राम ऑक्सीजन के रासायनिक संयोग से 9 ग्राम पानी बनता है। इसी प्रकार कार्बन डाइऑक्साइड में कार्बन और ऑक्सीजन के द्रव्यमानों का अनुपात 3: 8 होता है अर्थात् 44 ग्राम कार्बन डाइऑक्साइड में 12 ग्राम कार्बन और 32 ग्राम ऑक्सीजन होती है।

वैज्ञानिकों का परिचय

एंटोनी लवाइझिए (1743 से 1794)

ये फ्रेंच वैज्ञानिक थे। उन्हें आधुनिक रसायनशास्त्र का जनक कहा जाता है। रसायन शास्त्र की तरह जीवशास्त्र, अर्थशास्त्र व वित्तशास्त्र के क्षेत्रों में भी उनका बड़ा योगदान है।

- 1. ऑक्सीजन की खोज की और उसका नामकरण किया।
- 2. सिद्ध किया कि ज्वलन में पदार्थ का ऑक्सीजन के साथ संयोग होता है।(1772)
- 3. रासायनिक प्रयोग में अभिकारकों और उत्पादों के द्रव्यमान अचूक ज्ञात करने की पद्धति का सर्वप्रथम उपयोग किया।
- पानी हाइड्रोजन और ऑक्सीजन से बना होता है, उन्होंने इसकी खोज की।
- 5. रासायनिक अभिक्रिया में द्रव्यमान स्थिर रहता है, इस नियम का सर्वप्रथम लेखन किया।
- 6. यौगिकों को उचित नाम दिए उदा. सल्फ्युरिक अम्ल, कॉपर सल्फेट इत्यादि।
- 7. 1789 में Elementary Treatise on Chemistry नामक आधुनिक रसायन शास्त्र का पहला ग्रंथ लिखा।

स्थिर अनुपात के नियम का सत्यपान

अनेक यौगिक विभिन्न प्रकार से बनाए जा सकते हैं, उदा. कॉपर कार्बोनेट $CuCO_3$ के विघटन से और कॉपर नाइट्रेट $Cu\left(NO_3\right)_2$ के विघटन से कॉपर ऑक्साइड CuO, इस यौगिक के दो नमूने प्राप्त हुए। इन दोनों नमूनों में से प्रत्येक से 8 ग्राम कॉपर ऑक्साइड लिया और उसकी स्वतंत्र रूप से हाइड्रोजन गैस के साथ अभिक्रिया करने पर दोनों में से प्रत्येक द्वारा 6.4 ग्राम ताँबा और 1.8 ग्राम पानी प्राप्त हुआ । हम देखेंगे कि इस आधार पर स्थिर अनुपात का नियम कैसे सिद्ध होता है ।

कॉपर ऑक्साइड की हाइड्रोजन के साथ अभिक्रिया होने से पानी (यौगिक) और कॉपर (तत्त्व) ऐसे दो ज्ञात पदार्थ निर्मित हुए । उसमें से यौगिक पानी H_2O में तत्त्व हाइड्रोजन और ऑक्सीजन के द्रव्यमान का अनुपात 1:8 है, यह हमें पहले ही ज्ञात है अर्थात 9 ग्राम पानी में 8 ग्राम ऑक्सीजन होती है। इसिलए 1:8 ग्राम पानी में 8 9 х 1.8 = 1.6 ग्राम ऑक्सीजन है। यह ऑक्सीजन 8 ग्राम कॉपर ऑक्साइड से प्राप्त हुई। इसका अर्थ है कि कॉपर ऑक्साइड के दोनों नमूनों में से प्रत्येक के 8 ग्राम राशि में 6.4 ग्राम कॉपर और 1.6 ग्राम ऑक्सीजन है और उसमें Cu और O के द्रव्यमान का अनुपात 6.4:1 है। अतः प्रयोग द्वारा दिखाई दिया कि पदार्थ के दो विभिन्न नमूनों के घटक तत्त्वों के द्रव्यमान का अनुपात स्थिर रहता है।

अब हम देखेंगे कि कॉपर ऑक्साइड CuO के अणुसूत्र के आधार पर घटक तत्त्वों के द्रव्यमानों का अनुपात क्या है? इसके लिए तत्त्वों के ज्ञात परमाणु द्रव्यमानों का उपयोग करना होगा। Cu और O का परमाणु द्रव्यमान क्रमशः 63.5 और 16 है अर्थात CuO के अणु में घटक तत्त्वों Cu और O का भारात्मक अनुपात 63.5:16 अर्थात 3.968:1 अर्थात लगभग 4:1 है।

प्रयोग द्वारा प्राप्त हुए घटक तत्त्वों के द्रव्यमान का अणुसूत्र द्वारा ज्ञात किए गए अपेक्षित अनुपात के समान होता है, अत: स्थिर अनुपात के नियम का सत्यापन होता है।

परमाण् (Atom): आकार, द्रव्यमान, संयोजकता (Size, Mass and Valency)

- 1. परमाणु की आंतरिक संरचना होती है। यह कौन-से प्रयोग द्वारा पता चला? कब?
- 2. परमाणु के दो भाग कौन-से हैं? वे किससे बने होते हैं?

हमने पिछली कक्षा में देखा है कि परमाणु के बीचोंबीच नाभिक होता है और नाभिक के बाहर के भाग में घूमने वाले इलेक्ट्रॉन ऋणावेशित मूल कण होते हैं। नाभिक में धनावेशित प्रोटॉन और अनावेशित न्यूट्रॉन ये मूल कण होते हैं।

परमाणु का आयतन उसकी त्रिज्या द्वारा निश्चित किया जाता है। स्वतंत्र परमाणु में परमाणु के नाभिक और बाह्यतम कक्षा के बीच की दूरी को परमाणु त्रिज्या कहते हैं। परमाणु की त्रिज्या नेनोमीटर में व्यक्त की जाती है।

परमाणु का अंदाजन आयतन

 $\frac{1}{10^9}$ m = 1nm 1m = 10⁹ nm.

परमाणु की त्रिज्या (मीटर में)	उदाहरण
10 ⁻¹⁰	हाइड्रोजन का परमाणु
10 ⁻⁹	पानी का अणु
10 ⁻⁸	हिमोग्लोबिन का अणु

4.2 इरिडियम के परमाणु का प्रतिबिंब

परमाणु अत्यंत सूक्ष्म होते हैं। इलेक्ट्रॉन सूक्ष्मदर्शी, फील्ड आयन सूक्ष्मदर्शी, स्कॅनिंग टनेलिंग सूक्ष्मदर्शी जैसे अत्याधुनिक साधनों में परमाणु का आवर्धित प्रतिबिंब दिखाने की क्षमता होती है। परमाणु का आयतन उसमें उपस्थित इलेक्ट्रॉनों की कक्षा संख्या पर निर्भर होता है। कक्षाओं की संख्या जितनी अधिक होगी परमाणु का आकार उतना बड़ा होगा। उदा. Na का परमाणु K के परमाणु से बड़ा है। यदि दो परमाणुओं में बाह्यतम कक्षा समान है तो जिस परमाणु के बाह्यतम कक्षा में अधिक इलेक्ट्रॉन होंगे उसका आकार जिस परमाणु की बाह्यतम कक्षा में कम इलेक्ट्रॉन है, उसकी तुलना में छोटा होगा। उदा. Na के परमाणु की अपेक्षा Mg हा परमाणु छोटा है।

परमाण् का द्रव्यमान (Mass of Atom)

परमाणु का द्रव्यमान उसके नाभिक में समाविष्ट होता है तथा वह प्रोटॉन (p) और न्यूट्रॉन (n) के कारण होता है। परमाणु के नाभिक में उपस्थित प्रोटॉन और न्यूट्रॉन की कुल संख्या को **परमाणु द्रव्यमानांक (Atomic Mass Number)** कहते हैं। प्रोट्रॉन और न्यूट्रॉन को एकत्रित रूप से **नाभिक के मूल कण (Nucleons)** कहते हैं।

परमाणु अत्यंत सूक्ष्म होता है। उसका द्रव्यमान कैसे निश्चित करें, यह समस्या वैज्ञानिकों के सामने भी उपस्थित हुई। 19 वीं शताब्दी में वैज्ञानिकों को परमाणु द्रव्यमान का मापन अचूक करना संभव न होने के कारण 'परमाणु के सापेक्ष द्रव्यमान' के मापन के लिए एक संदर्भ परमाणु की आवश्यकता हुई। हाइड्रोजन का परमाणु सबसे हल्का होने के कारण प्रारंभ के काल में हाइड्रोजन का संदर्भ परमाणु के रूप में चयन किया गया। जिसके नाभिक में केवल एक प्रोटॉन है ऐसे हाइड्रोजन के परमाणु का सापेक्ष द्रव्यमान एक (1) स्वीकार किया गया। इस कारण सापेक्ष परमाणु द्रव्यमान का मान परमाणु द्रव्यमानांक (A) के जितना (बराबर) हुआ।

हाइड्रोजन का सापेक्ष परमाणु द्रव्यमान (1) मानने पर नाइट्रोजन परमाणु का द्रव्यमान कितना होगा, यह कैसे निश्चित करें ?

नाइट्रोजन के एक परमाणु का द्रव्यमान हाइड्रोजन के एक परमाणु के द्रव्यमान का चौदह (14) गुना होता है इसिलए नाइट्रोजन का सापेक्ष द्रव्यमान 14 है । इस अनुसार विविध तत्त्वों के सापेक्ष परमाणु द्रव्यमान निश्चित किए गए हैं। इस मापन श्रेणी में अनेक तत्त्वों के सापेक्ष परमाणु द्रव्यमान अपूर्णांक आए। इस कारण समयानुसार कुछ अन्य परमाणुओं का संदर्भ परमाणु के रूप में चयन किया गया। अंत में 1961 में कार्बन परमाणु का संदर्भ परमाणु के रूप में चयन किया गया। इस पद्धित में कार्बन के एक परमाणु के सापेक्ष द्रव्यमान को 12 स्वीकार किया । कार्बन परमाणु की तुलना में हाइड्रोजन के एक परमाणु का सापेक्ष द्रव्यमान $12 \times \frac{1}{12}$ अर्थात 1 होता है। परमाणुओं के सापेक्ष द्रव्यमानों के आधार पर एक प्रोटॉन और एक न्यूट्रॉन का द्रव्यमान लगभग एक होता है।

कुछ तत्त्व और उनके सापेक्ष परमाणु द्रव्यमान नीचे तालिका में दिए गए हैं, तो कुछ तत्त्वों के परमाणु द्रव्यमान आप खोजें।

तत्त्व	परमाणु द्रव्यमान	तत्त्व	परमाणु द्रव्यमान	तत्त्व	परमाणु द्रव्यमान
हाइड्रोजन	1	ऑक्सीजन		फॉस्फोरस	
हीलियम	4	फ्लोरीन	19	सल्फर	32
लीथियम	7	नियॉन	20	क्लोरीन	35.5
बेरिलियम	9	सोडियम		ऑरगन	
बोरॉन	11	मैग्नीशियम	24	पोटैशियम	
कार्बन	12	एल्युमीनियम		कैल्शियम	40
नाइट्रोजन	14	सिलिकॉन	28		

वर्तमान काल में परमाणु के द्रव्यमान का प्रत्यक्ष रूप से मापन करने की अधिक अचूक पद्धितयाँ विकसित हुई हैं, इस कारण परमाणु द्रव्यमान के लिए सापेक्ष द्रव्यमान के स्थान पर **एकीकृत द्रव्यमान** (Unified Mass) इस इकाई को स्वीकार किया गया है। इस इकाई को 'डाल्टन' कहा जाता है। इसके लिए u प्रतीक का उपयोग किया जाता है।

 $1u = 1.66053904 \times 10^{-27} \text{ kg}$

तत्त्वों के रासायनिक प्रतीक (संकेत) (Chemical symbols of Elements)

- 1. रसायनशास्त्र में किसी तत्त्व को कैसे दर्शाया जाता है?
- 2. आपको ज्ञात कुछ तत्त्वों के प्रतीक लिखिए।
- 3. एन्टीमनी, लोहा, सोना, चाँदी, पारा, सीसा, सोडियम के प्रतीक लिखिए।

डाल्टन ने तत्त्वों को प्रतीक देने के लिए विशेष चिह्नों का उपयोग किया था। जैसे हाइड्रोजन के लिए \odot तो ताँबे के लिए \odot । आज हम IUPAC (International Union of Pure and Applied Chemistry) द्वारा निश्चित किए गए प्रतीकों का उपयोग करते हैं। ये अधिकृत नाम और प्रतीक होने के कारण संपूर्ण विश्व में उपयोग में लाए जाते हैं। वर्तमान की रासायनिक प्रतीक पद्धति बर्जिलियस द्वारा खोजी गई पद्धति पर आधारित है। इस के अनुसार तत्त्वों के प्रतीक उनके नामों के पहले अक्षर या पहले और दूसरे/अन्य विशेष अक्षर होते हैं। दो अक्षरों में से पहले अक्षर को बड़ी लिपि में और दसरे अक्षर को छोटी लिपि में लिखते हैं।

तत्त्व और यौगिकों के अणु (Molecules of Elements and Compounds)

कुछ तत्त्वों के परमाणुओं का स्वतंत्र अस्तित्व होता है, उदाहरण के लिए हीलियम, नियॉन अर्थात ये तत्त्व एक-परमाणु-अणु अवस्था में होते है। कई बार तत्त्व के दो या अधिक परमाणुओं के संयोग से उस तत्त्व का अणु निर्मित होता है। ऐसे तत्त्व बहु – परमाणु – अणु अवस्था में रहते हैं, उदाहरण के लिए ऑक्सीजन, नाइट्रोजन ये तत्त्व द्वि–परमाणु – अणु अवस्था में O_2 , N_2 इस प्रकार के होते हैं। जब भिन्न–भिन्न तत्त्वों के परमाणु एक–दूसरे से संयोग करते हैं, तब यौगिक के अणु निर्मित होते हैं अर्थात तत्त्वों के रासायनिक आकर्षण के कारण यौगिक निर्मित होते हैं।

सूची बनाइए और चर्चा कीजिए

एक-परमाणु-अणु और द्वि-परमाणु-अणु अवस्था के तत्त्वों की सूची बनाइए।

अणु द्रव्यमान और मोल की संकल्पना (Molecular Mass and Mole Concept)

अणु द्रव्यमान

किसी पदार्थ के अणु द्रव्यमान का अर्थ उसके एक अणु में उपस्थित सभी परमाणुओं के द्रव्यमानों का योगफल होता है। परमाणु द्रव्यमान की भाँति अणुद्रव्यमान को भी डाल्टन (u) इकाई में ही व्यक्त किया जाता है। H₂O का अणु द्रव्यमान कैसे ज्ञात किया जा सकता है?

अणु	घटक तत्त्व	परमाणु द्रव्यमान	अणु में	परमाणु द्रव्यमान ×	घटकों का		
		u	परमाणुओं की	परमाणुओं की संख्या	द्रव्यमान		
			संख्या		u		
H ₂ O	हाइड्रोजन	1	2	1×2	2		
	ऑक्सीजन	16	1	16×1	16		
	अणु द्रव्यमान = घटक परमाणु द्रव्यमानों का योगफल						
(H ₂ O क	अणु द्रव्यमान 18						

नीचे कुछ तत्त्वों के परमाणु द्रव्यमान डाल्टन में दिए गए हैं और कुछ यौगिकों के अणुसूत्र दिए गए हैं, उन यौगिकों के अणु द्रव्यमान ज्ञात कीजिए।

परमाणु द्रव्यमान → H(1), O(16), N(14), C(12),K (39), S (32) Ca(40), Na(23), Cl(35.5), Mg(24), Al(27)

अणु सूत्र → NaCl, MgCl₂, KNO₃, H₂O₂, AlCl₃, Ca(OH)₂, MgO, H₂SO₄, HNO₃, NaOH मोल (Mole)

- 1. वजन काँटे से अरहर की दाल, मसूर की दाल, चने की दाल इनमें से प्रत्येक के एक दाने का द्रव्यमान ज्ञात करें। क्या अनुभव मिला?
- 2. अरहर की दाल, मसूर की दाल, चने की दाल इनका प्रत्येक का १० ग्राम वजन करें और उनके दानों की संख्या गिने। वह संख्या सबकी समान आई या भिन्न-भिन्न?
- 3. कागज पर रेखाचित्र बनाकर उसे रँगने के लिए प्रत्येक रेखा पर क्रमश: अरहर, मसूर और चने की दाल चिपकाएँ। तीनों प्रकार की दालों के दाने समान संख्या में लें। संपूर्ण चित्र पूर्ण करके अरहर दाल, मसूर दाल और चना दाल प्रत्येक कितने ग्राम लगी उसे ज्ञात करें और प्रत्येक दाल के दानों की संख्या दर्जन में ज्ञात करें।
- 4. समान संख्या के दालों के दानों का द्रव्यमान और समान द्रव्यमान में दालों के दानों की संख्या के बारे में आप कौन-सा निष्कर्ष प्राप्त करेंगे?

एक एकड़ जमीन में बोआई करने के लिए गेहूँ, ज्वारी और बाजरी के कितने बीज लगते हैं। क्या इस वजन का उन अनाज के दानों की संख्या के साथ कुछ संबंध स्थापित किया जा सकता है?

बताइए तो

- 1. क्या वजन काँटे का उपयोग करके किसी भी पदार्थ के एक परमाणु का द्रव्यमान करना संभव है?
- 2. क्या भिन्न-भिन्न पदार्थों के समान द्रव्यमान वाली राशियों में उस पदार्थ के परमाणुओं की संख्या समान होगी?
- 3. क्या भिन्न-भिन्न पदार्थों के परमाणु समान संख्या में लेने के लिए उन पदार्थों के समान द्रव्यमान की राशि लेकर काम होगा?

तत्त्व या यौगिक जब रासायनिक अभिक्रियाओं में भाग लेते हैं तब उनके परमाणुओं और अणुओं में अभिक्रिया होती है अत: उनके परमाणु-अणुओं की संख्या ज्ञात होनी चाहिए। लेकिन रासायनिक अभिक्रिया करते समय परमाणु-अणु को गिनने की अपेक्षा राशियों का मापन करके उपयोग करना सुविधाजनक होता है। इसके लिए 'मोल' संकल्पना का उपयोग होता है।

मोल किसी पदार्थ की वह राशि होती है जिसका ग्राम में द्रव्यमान उस पदार्थ के अणु द्रव्यमान के डाल्टन में मान के बराबर होता है। जैसे ऑक्सीजन का अणु द्रव्यमान 32 है। 32 ग्राम ऑक्सीजन का अर्थ 1 मोल ऑक्सीजन होता है। पानी का अणुद्रव्यमान 18 है। इस कारण 18 ग्राम पानी का अर्थ 1 मोल पानी होता है।

यौगिक के 1 मोल का अर्थ यौगिक के अणुद्रव्यमान के मान के बराबर ग्राम में यौगिक का द्रव्यमान होता है | मोल (mol) यह SI इकाई है |

पदार्थ के मोलों की संख्या (n) = पदार्थ का ग्राम में द्रव्यमान पदार्थ का अणु द्रव्यमान

एवोगैड़ो संख्या (Avogadro's number)

किसी भी पदार्थ के एक मोल राशि में अणुओं की संख्या निश्चित होती है। इटालियन वैज्ञानिक एवोगैड्रो ने इस संदर्भ में मूलभूत अनुसंधान किए इसलिए इस संख्या को ऐवोगैड्रो संख्या कहते हैं और इसे N_A अक्षर द्वारा प्रदर्शित करते हैं। आगे वैज्ञानिकों ने प्रयोगों द्वारा सिद्ध किया कि ऐवोगैड्रो संख्या का मान 6.022×10^{23} होता है। किसी भी पदार्थ के एक मोल में उसके 6.022×10^{23} अणु होते हैं। जैसे 1 दर्जन का अर्थ 12, एक शतक का अर्थ 100, एक ग्रोस का अर्थ 144 उसी प्रकार 1 मोल का अर्थ 6.022×10^{23} । उदाहरण के लिए 1 मोल पानी अर्थात 18 ग्राम पानी लिया तो उसमें पानी के 6.022×10^{23} अणु होंगे।

66 ग्राम CO में कितने अणु होंगे?

हलः CO्र का अणु द्रव्यमान 44 है।

CO ₂ के मोलों की संख्या (n) =	CO ₂ का ग्राम में द्रव्यमान	66
2 के नाला का संख्या (II) =	 CO ₂ का अणु द्रव्यमान	44

- ं. n= 1.5 मोल (mol)
- $\dot{.}$. 1 मोल ${
 m CO}_2$ में 6.022×10^{23} अणु होते हैं ।
- $\dot{.}$. 1.5 मोल $\mathrm{CO_2}$ में 1.5 x $6.022\mathrm{x}10^{23}$ अणु = $9.033~\mathrm{x}~10^{23}$ अणु होते हैं ।

4.3 एक मोल (ऐवोगैड्रो संख्या)

थोड़ा सोचिए

- 36 ग्राम पानी में पानी के कितने अणु होंगे?
- 2. 49 ग्राम H_2SO_4 में H_2SO_4 के कितने अणु होते हैं?

इसे सदैव ध्यान में रखिए

- किसी पदार्थ की दी गई राशि में अणुओं की संख्या उसके अणुद्रव्यमान दवारा निश्चित होती है।
- 2. विभिन्न पदार्थों के समान द्रव्यमानों की राशियों में अणुओं की संख्या भिन्न-भिन्न होती है।
- 3. विभिन्न पदार्थों के 1 मोल राशि का ग्राम में द्रव्यमान भिन्न-भिन्न होता है।

संयोजकता (Valency)

- 1. H_2 , HCl, H_2 O और NaCl इन अणुसूत्रों से H, Cl, O तथा Na तत्त्वों की संयोजकता ज्ञात कीजिए।
- 2. NaCl, MgCl इन यौगिकों में कौन-से प्रकार का रासायनिक बंध है?

तत्त्वों की संयोग करने की क्षमता को संयोजकता कहते हैं। तत्त्वों की संयोजकता को विशेष अंकों द्वारा प्रदर्शित किया जाता है। यह अंक उस तत्त्व के परमाणु द्वारा अन्य परमाणुओं के साथ स्थापित किए रासायनिक बंधों की संख्या होता है। 18वीं और 19वीं शताब्दी में तत्त्वों की संयोजकता समझने के लिए रासायनिक संयोग के नियमों का उपयोग किया जाता था। 20वीं शताब्दी में तत्त्वों की संयोजकता का उसके इलेक्ट्रॉनिक संरूपण के साथ का संबंध पता चला।

सोडियम परमाणु (Na) इलेक्ट्रॉनिक संरूपण
$$(2,8,1)$$
 $\xrightarrow{-1e^-}$ सोडियम आयन Na⁺ $(2,8)$ क्लोरीन परमाणु (Cl) इलेक्ट्रॉनिक संरूपण $(2,8,7)$ $\xrightarrow{+1e^-}$ क्लोराइड आयन Cl⁻ $(2,8,8)$ Na⁺ + Cl⁻ \longrightarrow NaCl (सोडियम क्लोराइड)

सोडियम का परमाणु एक इलेक्ट्रॉन क्लोरीन के परमाणु को देता है और सोडियम का धनायन निर्मित होता है इसिलए सोडियम की संयोजकता 1 है। क्लोरीन का परमाणु एक इलेक्ट्रॉन लेता है और क्लोरीन का ऋणायन (क्लोराइड) निर्मित होता है इसिलए क्लोरीन की संयोजकता 1 है। प्रत्येक आयन पर विपरीत आवेश होने से आकर्षण के कारण Na^+ और Cl^- के मध्य रासायनिक बंध का निर्माण होने से $NaCl^-$ तैयार होता है।

इस प्रकार सोडियम परमाणु की क्षमता एक इलेक्ट्रॉन देने की और क्लोरीन के परमाणु की क्षमता एक इलेक्ट्रॉन लेने की है अत: सोडियम और क्लोरीन दोनों तत्त्वों की संयोजकता 1 है।

आयनिक बंध का निर्माण होते समय परमाणु जितने इलेक्ट्रॉन देता या लेता है उस संख्या को उस तत्त्व की संयोजकता कहते हैं।

विज्ञान कृपी

धनावेशित आयनों को केटायन (धनायन) कहते हैं तो ऋणावेशित आयनों को एनायन (ऋणायन) कहते हैं। उदाहरण MgCl_2 में Mg^{++} , Cl^- क्रमश: धनायन और ऋणायन होते हैं।

तत्त्वों के बाह्यतम कक्षा में उपस्थित इलेक्ट्रॉनों को संयोजकता इलेक्ट्रॉन कहते हैं।

थोड़ा सोचिए

MgCl और CaO किस प्रकार निर्मित होंगे?

दिए जाने और लिए जाने वाले इलेक्ट्रॉन की संख्या हमेशा पूर्णांक संख्या होती है इसलिए संयोजकता हमेशा पूर्णांक संख्या ही होती है। संस्थाओं के कार्य: राष्ट्रीय रासायनिक प्रयोगशाला, पुणे (National Chemical Laboratory) रसायनशास्त्र की विभिन्न शाखाओं में अनुसंधान करना, उद्योगों को मदद करना और प्राकृतिक संपदा का लाभदायक उपयोग होने की दृष्टि से नई प्रौद्योगिकी का विकास करने के उद्देश्य से इस प्रयोगशाला की स्थापना 1950 में हुई जो कि CSIR का एक घटक है। जैव प्रौद्योगिकी, नैनो प्रौद्योगिकी, कैटोलिसिस, दवाइयाँ, उपकरण, कृषि रसायन, वनस्पति ऊतकों का संवर्धन और बहुलक विज्ञान (Polymer Science) जैसी विविध उपशाखाओं में अनुसंधन तथा उपक्रम इस प्रयोगशाला द्वारा किया जाता है।

नीचे दी गई तालिका पर्ण कीजिए।

नाच दा गई तालिका पूर्ण कार्जिए।							
तत्त्व	परमाणु	इलेक्ट्रॉन	संयोजकता	संयोजकता			
	क्रमांक	संरूपण	इलेक्ट्रॉन				
हाइड्रोजन	1	1	1	1			
हीलियम	2	2	2	0			
लीथियम		2,1					
बेरिलियम	4			2			
बोरॉन	5	2,3					
कार्बन		2,4	4				
नाइट्रोजन	7			3			
ऑक्सीजन		2,6	6				
फ्लोरीन	9		7				
नियॉन	10						
सोडियम		2,8,1	1	1			
मैग्नीशियम	12		2				
एल्युमीनियम	13	2,8,3					
सिलिकॉन	14		4				

परिवर्ती संयोजकता प्रदर्शित करने वाले कुछ तत्त्व

तत्त्व	संज्ञा	संयोजकता	आयन	नामकरण	
तांबा	Cu	1 और 2	Cu+	क्यूप्रस	
			Cu^{2+}	क्यूप्रिक	
पारा	Hg	1 और 2	Hg+	मर्क्यूरस	
			Hg ²⁺	मर्क्यूरिक	
लोहा	Fe	2 और 3	Fe ²⁺	फेरस	
			Fe³+	फेरिक	

परिवर्ती संयोजकता

विभिन्न परिस्थितियों में कुछ तत्त्वों के परमाणु भिन्न-भिन्न संख्या में इलेक्ट्रॉन देते या लेते हैं। ऐसे समय वे तत्त्व एक से अधिक संयोजकता प्रदर्शित करते हैं।

इसे सदैव ध्यान में रखिए

लोहा (आयरन) 2 और 3 परिवर्ती संयोजकता प्रदर्शित करता है। इस कारण क्लोरीन के साथ FeCl_2 और FeCl_3 दो यौगिक निर्मित होते हैं।

खोजिए

- परिवर्ती संयोजकता प्रदर्शित करने वाले कुछ तत्त्व खोजें।
- 2. ऊपर बताए अनुसार परिवर्ती संयोजकता प्रदर्शित करने वाले तत्त्वों के यौगिक खोजें।

मूलक (Radicals)

तालिका पूर्ण कीजिए

नीचे दी गई तालिका के यौगिकों से मिलने वाले केटायन और एनायन लिखिए।

भस्म	केटायन	एनायन	अम्ल	केटायन	एनायन
NaOH			HC1		
KOH			HBr		
Ca(OH) ₂			HNO ₃		

आयनिक बंध वाले यौगिकों में दो घटक केटायन (धनायन) और एनायन (ऋणायन) होते हैं। ये घटक स्वतंत्र रूप से रासायनिक अभिक्रियाओं में भाग लेते हैं, इसलिए उन्हें मूलक कहते हैं। केटायन रूपी मूलक की जोड़ी हायड़ाक्साइड एनायन रूपी मूलक के साथ होने पर विविध भस्म तैयार होते हैं, जैसे NaOH, KOH। इस कारण केटायन को लवणीय मूलक भी कहते हैं। विविध भस्मों में अंतर इसी मूलक के कारण स्पष्ट होता है। इसके विपरीत एनायन रूपी मूलकों की जोड़ी हाइड्रोजन केटायन रूपी मूलक के साथ होने पर विविध अम्ल तैयार होते हैं, जैसे HCl, HBr। इस कारण एनायन को अम्लीय मूलक कहते हैं। विविध अम्लों में अंतर उनमें उपस्थित अम्लीय मूलक के कारण स्पष्ट होता है।

आगे दिए गए मूलकों में से लवणीय मूलक और अम्लीय मूलक कौन–से हैं? $Ag^+, Cu^{2+}, Cl^-, I^-, SO_4^{2-}, Fe^{3+}, Ca^{2+}, NO_3^{-}, S^{2-}, NH_4^{+}, K^+, MnO_4^{-}, Na^+$

सामान्यतः लवणीय मूलक धातुओं के परमाणुओं से इलेक्ट्रॉन निकालने पर बनते हैं। जैसे Na^+ , Cu^{2+} परंतु इसके भी कुछ अपवाद हैं जैसे NH_4^+ । इसी प्रकार अम्लीय मूलक सामान्यतः अधातुओं के परमाणुओं द्वारा इलेक्ट्रॉन ग्रहण करके बनते हैं, जैसे Cl^- , S^{2-} परंतु इसके भी कुछ अपवाद हैं जैसे MnO_4^-

आगे दिए गए मूलकों का दो समूहों में वर्गीकरण कीजिए। यहाँ मूलकों के विद्युत आवेश चिह्नों से भिन्न शर्त का उपयोग करें। $Ag^+, Mg^{2+}, Cl^-, SO_4^{\ 2^-}, Fe^{2+}, ClO_3^{\ -}, NH_4^{\ +}, Br^-, NO_3^{\ -}$

एक ही परमाणु वाले मूलक को सरल मूलक कहते हैं। जैसे Na⁺, Cu⁺, Cl⁻

जब कोई मूलक आवेशित परमाणुओं का समूह होता है तब उसे संयुक्त मूलक कहते हैं। जैसे SO_4^{2-} , NH_4^+ मूलक पर आवेश का जो मान होता है वही उसकी संयोजकता होती है।

यौगिकों के रासायनिक सूत्र - एक पुनरावलोकन

आयनिक बंध द्वारा तैयार हुए यौगिकों का गुणधर्म है कि उनके अणु के दो भाग होते हैं, वे दो भाग केटायन और एनायन होते हैं अर्थात लवणीय मूलक और अम्लीय मूलक। इन दोनों भागों पर विपरीत आवेश होता है, उनके बीच का आकर्षण बल ही आयनिक बंध होता है। आयनिक यौगिकों के नाम में दो शब्द होते हैं। पहला शब्द केटायन का नाम होता है तो दूसरा शब्द एनायन का नाम होता है। जैसे यौगिक सोडियम क्लोराइड का रासायनिक सूत्र लिखते समय केटायन का प्रतीक बाईं ओर तथा उसके पास दाहिनीं ओर एनायन का प्रतीक लिखते हैं।

अणुसूत्र लिखते समय आयनों का आवेश दिखाते नहीं हैं लेकिन उन आयनों की संख्या दाहिनी ओर नीचे की ओर लिखी जाती है। संयुक्त मूलकों की संख्या 2 या अधिक होने पर मूलकों के प्रतीक कोष्ठक में लिखकर संख्या को कोष्ठक के बाहर नीचे की ओर लिखा जाता है। संयोजकताओं के तिर्यक गुणा पद्धति से यह संख्या प्राप्त करना सरल होता है। उदा. यौगिक सोडियम सल्फेट का रासायनिक सूत्र लिखने के चरण आगामी पृष्ठ पर है।

सूचना और संचार प्रौद्योगिकी के साथ

द्रव्य का मापन और अन्य जानकारी का अध्ययन करने के लिए दिए गए संकेतस्थल की मदद लें।

तत्त्वों के परमाणु द्रव्यमान, अणु द्रव्यमान, इलेक्ट्रॉनिक संरूपण और संयोजकता के संदर्भ में स्प्रेडशीट तैयार करें।

संकेतस्थल

www.organic.chemistry.org www.masterorganicchemistry.com www.rsc.org.learnchemistry चरण 1: मूलकों के प्रतीक लिखें। (लवणीय मूलक बाईं ओर)

Na SO

चरण 2: उन मूलकों के नीचे उनकी संयोजकता लिखें।

Na SO₄

चरण 3: मूलकों की संख्या प्राप्त करने के लिए तीर द्वारा दर्शाए अनुसार तिर्यक गुणा करें।

Na SO₄

चरण 4: यौगिक का रासायनिक सूत्र लिखें।

Na₂SO₄

विविध यौगिकों के रासायनिक सूत्र लिखने के लिए उनके मूलकों की संयोजकता की जानकारी होना आवश्यक है। नीचे दी गई तालिका में हमेशा उपयोग में आने वाले मूलकों के नाम तथा उनके आवेश के साथ प्रतीक दिए गए हैं।

आयन/मूलक लवणीय मूलक अम्लीय मूलक हाइड्रोजन Al³⁺ एल्युमीनियम H⁻ हायड्राइड MnO_4^- परमेंगनेट H + Na^+ सोडियम Cr^{3+} ClO₃- क्लोरेट क्रोमियम F⁻ प्लोराइड BrO₃ - ब्रोमेट K^+ पोटैशियम Fe^{3+} फेरिक Cl⁻ क्लोराइड Ag⁺ सिल्व्हर Au³⁺ गोल्ड IO, - आयोडेट Br⁻ ब्रोमाइड Cu^+ क्यूप्रस Sn^{4+} स्टॅनिक CO₃2- कार्बोनेट I⁻ आयोडाइड Hg+ मर्क्युरस NH,+ अमोनियम SO₄ 2- सल्फेट O²⁻ ऑक्साइड Cu²⁺ क्युप्रिक/कॉपर SO₂ - सल्फाइट S²⁻ सल्फाइड Mg²⁺ मैग्नीशियम N^{3-} CrO, 2- क्रोमेट नायट्राइड Ca²⁺ कैल्शियम Cr,O,2- डायक्रोमेट Ni²⁺ निकेल PO 3- फॉस्फेट OH⁻ हायड्रॉक्साइड Co²⁺ कोबाल्ट NO, नायट्रेट Hg²⁺ मरक्युरिक NO नायट्राइट Mn²⁺ मैंगनीज HCO, बायकार्बोनेट Fe²⁺ फेरस (आयर्न II) HSO, वायसल्फेट Sn²⁺ स्टेनस HSO, बायसल्फाइट Pt²⁺ प्लेटिनम

पुस्तक मेरे दोस्त

Essentials of Chemistry, The Encylopedia of Chemistry, विज्ञान और प्रौद्योगिकी कोश।

'आयन मूलक' इस तालिका से और तिर्यक गुणा पद्धति का उपयोग करके नीचे दिए गए यौगिकों के रासायनिक सूत्र तैयार करें।

कैल्शियम कार्बोनेट, सोडियम बाइकार्बोनेट, सिल्वर क्लोराइड, मैग्नीशियम ऑक्साइड, कैल्शियम हायड्रॉक्साइड, अमोनियम फॉस्फेट, क्युप्रस ब्रोमाइड, कॉपर सल्फेट, पोटैशियम नाइट्रेट, सोडियम डायक्रोमेट।

स्वाध्याय 💐

1. नाम लिखिए।

- अ. धनायन
- आ. लवणीय मूलक
- इ. संयुक्त मूलक
- इ. परिवर्ती संयोजकता वाली धातु
- उ. द्वि-संयोजी अम्लीय मूलक
- ऊ. त्रि-संयोजी लवणीय मूलक
- 2. नीचे दिए गए तत्त्व और उनसे प्राप्त होने वाले मूलकों के प्रतीक लिखकर मूलकों का आवेश प्रदर्शित कीजिए।

पारा, पोटैशियम, नाइट्रोजन, ताँबा, कार्बन, सल्फर, क्लोरीन, ऑक्सीजन

 नीचे दिए गए यौगिकों के रासायनिक सूत्र तैयार करने के चरण लिखिए ।
 सोडियम सल्फेट, पोटैशियम नाइट्रेट, फेरिक फॉस्फेट, कैल्शियम ऑक्साइड, एल्युमीनियम

नीचे दिए गए प्रश्नों को स्पष्ट करके लिखिए।

अ. सोडियम तत्त्व एक संयोजी है।

हायडॉक्साइड

- आ. M एक द्विसंयोजी धातु है। सल्फेट और फॉस्फेट मूलकों के साथ उसके द्वारा तैयार किए यौगिकों के रासायनिक सूत्र ढूँढ़ने के लिए चरण लिखिए।
- इ. परमाणु द्रव्यमान के लिए संदर्भ परमाणु की आवश्यकता स्पष्ट कीजिए । दो संदर्भ परमाणुओं की जानकारी दीजिए ।
- ई. 'परमाणु के एकीकृत द्रव्यमान' का क्या अर्थ है?
- पदार्थ के मोल का क्या अर्थ है? उदाहरणसहित स्पष्ट कीजिए।

5. नीचे दिए गए यौगिकों के नाम लिखिए और अणुद्रव्यमान ज्ञात कीजिए।

> Na₂SO₄, K₂CO₃, CO₂, MgCl₂, NaOH, AlPO₄, NaHCO₃

6. दो विभिन्न मार्गों से कली के चूने के 'म' और 'न' दो नमूने प्राप्त हुए । उनके बारे में जानकारी निम्नानुसार है:

'नमूना म': मान 7 ग्राम

घटक ऑक्सीजन का द्रव्यमान : 2 ग्राम

घटक कैल्शियम का द्रव्यमान : 5 ग्राम

'नमूना न': मान 1.4 ग्राम

घटक ऑक्सीजन का द्रव्यमान : 0.4 ग्राम

घटक कैल्शियम का द्रव्यमान : 1 ग्राम

इस आधार पर रासायनिक संयोग का कौन-सा नियम सिद्ध होता है उसे स्पष्ट कीजिए।

- 7. नीचे दी गई राशियों में उन पदार्थों के अणुओं की संख्या ज्ञात कीजिए।
 - 32 ग्राम ऑक्सीजन, 90 ग्राम पानी , 8.8 ग्राम कार्बन डाइऑक्साइड, 7.1 ग्राम क्लोरीन
- 8. नीचे दिए गए पदार्थों के 0.2 मोल प्राप्त करने के लिए उनकी कितने ग्राम राशि लेना पड़ेगी ? सोडियम क्लोराइड, मैग्नीशियम ऑक्साइड, कैल्शियम कार्बोनेट

उपक्रम:

गत्ते, छोटे चुंबक, चकती और एरल्डाइट का उपयोग करके विविध मूलकों की प्रतिकृति बनाइए और उनसे विविध यौगिकों के अणु बनाइए।

5. अम्ल, क्षारक तथा लवण

> अर्हिनियस का अम्ल तथा क्षारक सिद्धांत

🕟 अम्ल तथा क्षारक की सांद्रता

> विलयन का pH → अम्ल तथा क्षारक का pH > क्षार

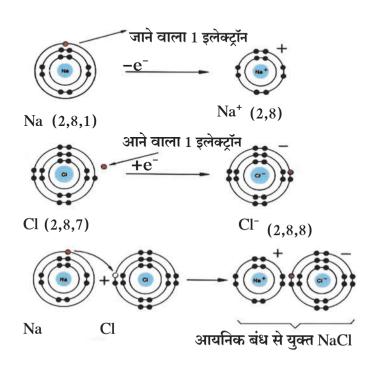
नीबू, इमली, खाने का सोडा, छाछ, सिरका, संतरा, दूध, टमाटर, मिल्क ऑफ मैग्नेशिया, पानी, फिटकरी, इन पदार्थों का लिटमस की सहायता से तीन समूहों में वर्गीकरण कैसे किया जाता है?

पिछली कक्षा में हमने देखा कि खाद्यपदार्थों में कुछ खट्टे तो अन्य कुछ कसैले स्वादवाले तथा चिकने स्पर्शवाले होते हैं। इन पदार्थों का वैज्ञानिक अध्ययन करने पर यह ज्ञात होता है कि इनमें क्रमश: अम्लीय और क्षारीय घटक होते है। पिछली कक्षा में हमने लिटमस कागज जैसे सूचक की सहायता से अम्ल और क्षारक पहचानने की सरल और सुरक्षित विधि के बारे में अध्ययन किया है।

लिटमस कागज की सहायता से अम्ल तथा भस्म कैसे पहचाने जाते हैं?

हम अम्ल तथा क्षारक के बारे में अधिक जानकारी प्राप्त करने वाले हैं इसलिए आइए यौगिकों के अणु किससे बनते हैं इसका हम पुनरावलोकन करेंगे।

नीचे दी गई तालिका में 'अ' भाग के स्तंभ पूर्ण कीजिए।


नाच दा गई तालिका में अन्माग के स्तम पूर्ण कार्जिए।						
		<u>अ</u>		आ		
यौगिक का नाम	अणु सूत्र	क्षारीय मूलक	अम्लीय मूलक	यौगिक का प्रकार		
हाइड्रोक्लोरिक अम्ल	HC1	H ⁺	Cl ⁻	अम्ल		
	HNO ₃					
	HBr					
	H ₂ SO ₄					
	H ₃ BO ₃					
	NaOH					
	КОН					
	Ca(OH) ₂					
	NH ₄ OH					
	NaCl					
	Ca(NO ₃) ₂					
	K ₂ SO ₄					
	CaCl ₂					
	(NH ₄) ₂ SO ₄					

अम्लधर्मी मूलक है, यह ज्ञात होता है। ये सभी यौगिक भस्म है। कुछ अणु में OH^- लवणीय दिखाई देते है। ये सभी यौगिक लवणीय हैं। जिनका लवणीय मूलक H^+ से भिन्न है तथा अम्लधर्मी मूलक OH^- से भिन्न है ऐसे आयिनक यौगिक लवण (Salts) होते हैं।

अब तालिका का भाग 'आ' पूर्ण करें। इससे यह स्पष्ट होता है कि, आयनिक यौगिकों के तीन प्रकार होते हैं, अम्ल, क्षारक तथा लवण।

आयनिक यौगिक : एक पुनरावलोकन

आयनिक यौगिकों के अणु के दो घटक होते हैं, केटायन, (धनात्मक आयन / क्षारीय मूलक) तथा एनायन (ऋणात्मक आयन / अम्लीय मूलक) इन आयनों पर विपरीत विद्युत आवेश होने के कारण उनमें आकर्षण बल कार्यरत होता है, इसे आयनिक बंध कहते हैं। यह हमने पिछली कक्षा में पढ़ा है। केटायन का एक धनावेश और एनायन का एक ऋणावेश इनके बीच का आकर्षण बल एकल आयनिक बंध कहलाता है।

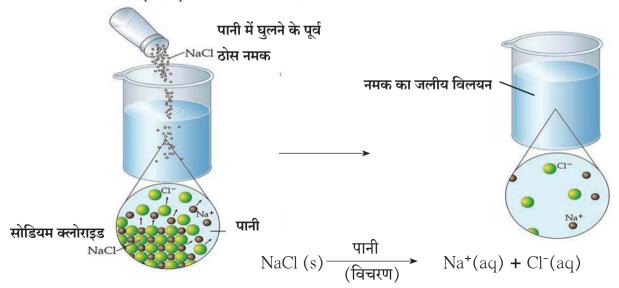
स्थितिक विद्युत का अध्ययन करते समय हमने देखा है कि प्राकृतिक रूप से किसी भी पिंड की प्रवृत्ति विद्युत आवेशित स्थिति से उदासीन स्थिति की ओर जाने की होती है । ऐसा होते हुए भी विद्युतीय दृष्टि से संतुलित अर्थात उदासीन परमाणु से आवेशित आयन कैसे निर्मित होते हैं? परमाणुओं के इलेक्ट्रॉनिक संरूपण से इसका स्पष्टीकरण ज्ञात होता है। उदा. स्वरूप आकृति 5.1 में सोडियम तथा क्लोरीन के परमाणुओं से Na+ और Cl- इन आयनों तथा इनसे NaCl की निर्मिति दर्शाई है।

सोडियम तथा क्लोरीन इन परमाणुओं में बाह्यतम कक्षा में अष्टक पूर्ण नहीं है परंतु, Na^+ और Cl^- इन दोनों आयनों में बाह्यतम कक्षा में अष्टक पूर्ण है।

5.1 यौगिक NaCl की निर्मिति : इलेक्ट्रॉनिक संरूपण

पूर्ण अष्टक होने वाला इलेक्ट्रॉनिक संरूपण स्थिर स्थिति दर्शाता है। Na⁺ और Cl⁻ इन विपरीत आवेशित आयनों में आयनिक बंध निर्माण होने के कारण स्थिर आयनिक यौगिक NaCl बनता है।

आयनिक यौगिकों का वियोजन



निम्नानुसार पदार्थों को मिलाने पर बनने वाले मिश्रणों को क्या कहते हैं?

- 1. पानी और नमक
- 2. पानी और चीनी
- 3. पानी और तेल
- 4. पानी और लकड़ी का भूसा

जब आयनिक यौगिक पानी में घुल जाता है तब उसका जलीय विलयन बनता है। ठोस आयनिक यौगिकों में विपरीत आवेशोंवाले आयन एक-दूसरे से आबद्ध होते हैं। जब कोई आयनिक यौगिक पानी में घुलने लगता है तब पानी के अणु यौगिक के आयनों के बीच जाकर उन्हें एक-दूसरे से अलग करते हैं अर्थात जलीय विलयन बनते समय यौगिकों का वियोजन होता है। (देखिए आकृति 5.2)

विलयन में अलग हुए प्रत्येक आयन को चारों ओर से पानी के अणु घेर लेते हैं। यह स्थिति दर्शाने के लिए प्रत्येक आयन के संकेत के दाईं ओर (aq) (aqueous अर्थात जलीय) लिखा जाता है।

5.2 नमक का जलीय विलयन में वियोजन

अर्हिनियस का अम्ल तथा क्षारक सिद्धांत (Arrhenius Theory of Acids and Bases)

ई.स. 1887 में स्वीडिश वैज्ञानिक अर्हिनियस ने अम्ल तथा क्षारक सिद्धांत प्रतिपादित किया। इस सिद्धांत में अम्ल तथा क्षारक की परिभाषाएँ दी गई हैं। वे निम्नानुसार हैं।

अम्ल : अम्ल का अर्थ है, ऐसा पदार्थ जिसके पानी में घुलने पर उसके विलयन में H^+ (हाइड्रोजन आयन) एकमात्र केटायन बनते हैं। उदाहरणार्थ : HCl, H_2SO_4 , H_2CO_3 .

HCl (g)
$$\xrightarrow{\text{urfl}}$$
 H⁺(aq) + Cl⁻(aq)

H₂SO₄(l) $\xrightarrow{\text{urfl}}$ H⁺(aq) + HSO₄⁻(aq)

HSO₄⁻(aq) $\xrightarrow{\text{(aal)}\overline{urfl}}$ H⁺(aq) + SO₄²⁻(aq)

थोड़ा सोचिए

- 1. NH, Na,O, CaO इन यौगिकों के नाम क्या हैं?
- 2. उपर्युक्त यौगिक पानी में मिलाए जाएँ तो उनका पानी के साथ संयोग हो जाता है। इस अभिक्रिया के कारण जो आयन तैयार होंगे। वे दर्शाने वाली तालिका पूर्ण कीजिए।

$$NH_{3}(g) + H_{2}O(1)$$
 \longrightarrow $NH_{4}^{+}(aq) + OH^{-}(aq)$
 $Na_{2}O(s) +$ \longrightarrow $2 Na^{+}(aq) +$
 $CaO(s) + H_{2}O(1)$ \longrightarrow $.....$

3. ऊपर दिए गए यौगिकों का वर्गीकरण अम्ल, क्षारक, लवण इनमें से कौन-से प्रकार में करेंगे?

क्षारक : क्षारक का अर्थ है ऐसा पदार्थ जो पानी में घुलने पर उसके विलयन में केवल OH^- (हाइड्रॉक्साइड आयन) एकमात्र एनायन बनते है। उदाहरणार्थ : NaOH, Ca(OH) ।

NaOH (s)
$$\frac{\text{vifl}}{\text{(fazissing)}} \rightarrow \text{Na+(aq)} + \text{OH-(aq)}$$

$$\text{Ca(OH)}_{2}(\text{s})) \xrightarrow{\text{vifl}} \text{Ca}^{2+}(\text{aq}) + 2\text{OH-(aq)}$$

अम्ल तथा क्षारकों का वर्गीकरण(Classification of Acids and Bases)

1. तीव्र और सौम्य अम्ल; और क्षारक (Strong and Weak Acids, Bases and Alkali)

अम्ल तथा क्षारकों के जलीय विलयन में उनका वियोजन किस अनुपात में होता है, उसके अनुसार उनका वर्गीकरण तीव्र तथा सौम्य इन दो प्रकारों में किया जाता है।

तीव्र अम्ल (Strong Acid): तीव्र अम्ल पानी में घुलने पर उसका लगभग संपूर्ण वियोजन होता है। उसके जलीय विलयन में H^+ तथा संबंधित अम्ल के अम्लीय मूलक, ये आयन प्रमुख रूप से पाए जाते हैं। उदाहरणार्थ HCl, HBr, $HNO_{_2}$, $H_{_3}SO_{_4}$.

सौम्य अम्ल: (Weak Acid): सौम्य अम्ल पानी में घुलने पर उसका पूर्ण वियोजन नहीं होता। उसके जलीय विलयन में थोड़ी मात्रा में H⁺ तथा संबंधित अम्ल के अम्लीय मूलक, इन आयनों के साथ ही वियोजन न हुए अम्ल के अणु बड़ी मात्रा में पाए जाते हैं। उदाहरणार्थ, CH,COOH, CO

तीव्र भस्म (Strong Base): तीव्र क्षारक पानी में घुलने के बाद उनका लगभग संपूर्ण वियोजन होता है। उसके जलीय विलयन में OH^- तथा संबंधित क्षारक के मूलक यही आयन प्रमुख रूप से पाए जाते हैं। उदाहरणार्थ NaOH, KOH, Ca(OH), Na,O.

सौम्य क्षारक (Weak Base): सौम्य क्षारक पानी में घुलने के बाद उनका संपूर्ण वियोजन नहीं होता। उनके जलीय विलयन में कम मात्रा में OH^- तथा संबंधित क्षारीय मूलकों के साथ वियोजन न हुए क्षारक के अणु बड़ी मात्रा में पाए जाते हैं। उदाहरणार्थ NH_1 .

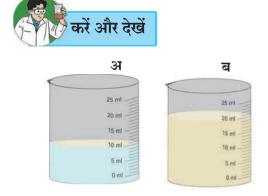
क्षार (Alkali) : जो क्षारक पानी में बड़ी मात्रा में विलेय है, उन्हें लवण कहते हैं। उदाहरणार्थ NaOH, KOH, NH $_3$ इन में से NaOH और KOH तीव्र भस्म है तथा NH $_4$ सौम्य भस्म हैं।

2. क्षारकता और अम्लता (Basicity and Acidity)

तालिका पूर्ण करें।

अम्ल : एक अणु से प्राप्त होने वाले H ⁺ की संख्या							
HC1	HNO ₃	H ₂ SO ₄	H ₂ CO ₃	H_3BO_3	H ₃ PO ₄	CH ₃ COOH	
क्षारक : एक अणु से प्राप्त होने वाले OH ⁻ की संख्या							
NaOH	КОН	Ca(OH) ₂	Ba(OH) ₂	Al (OH) ₃	Fe(OH) ₃	NH ₄ OH	

अम्ल तथा भस्मों का वर्गीकरण उनके क्रमशः क्षारकता तथा अम्लता के आधार पर भी किया जाता है।


अम्ल की क्षारकता: अम्ल के एक अणु के वियोजन से जितने H⁺ आयन पाए जा सकते हैं, वह संख्या उस अम्ल की क्षारकता है।

क्षारकों की अम्लता : क्षारक के एक अणु के वियोजन से जितने OH⁻ आयन पाए जा सकते हैं, वह संख्या उस भस्म की अम्लता है।

- 1. पृष्ठ क्र.61 की तालिका से एक क्षारक, द्विक्षारक तथा त्रिक्षारक अम्लों के उदाहरण लिखिए।
- 2. पृष्ठ क्र. 61 की तालिका से क्षारकों के तीन प्रकार बताकर उनके उदाहरण लिखिए।

अम्लों तथा क्षारकों की सांद्रता (Concentration of Acid and Base)

5.3 नीबू के रस का विलयन

एक नीबू के दो समान भाग करें। प्रत्येक भाग का रस एक-एक बीकर में लें। एक बीकर में 10 मिली. पीने का पानी तो दूसरे में 20 मिली. पीने का पानी डालें। दोनों बीकर के विलयन हिलाकर उनका स्वाद चखें।

क्या दोनों बीकर के विलयन के स्वाद में अंतर है? किस तरह का अंतर है?

उपर्युक्त कृति में विलयनों का खट्टापन उनमें होने वाले विलेय, नीबू के रस के कारण है। दोनों विलयनों में नीबू के रस की कुल राशि समान है फिर भी स्वाद में अंतर है। पहले बीकर का विलयन दूसरे बीकर

के विलयन की तुलना में अधिक खट्टा है। ऐसा क्यों होता है?

दोनों विलयनों में विलेय की राशि समान होने पर भी विलायक की राशि कम-अधिक है। विलेय की राशि का तैयार हुए विलयनों की राशियों से अनुपात अलग-अलग है। पहले बीकर में यह अनुपात अधिक है, इसलिए इस विलयन का स्वाद अधिक खट्टा है। इसके विपरीत, दूसरे बीकर में नीबू के रस का कुल विलयन से अनुपात कम होने के कारण स्वाद कम खट्टा है।

खाद्यपदार्थों का स्वाद उन में स्वाद निर्माण करने वाला घटक पदार्थ कौन-सा है तथा उसका अनुपात कितना है, इस पर निर्भर करता है। उसी प्रकार विलयन के सभी गुणधर्म उसके विलेय व विलायक के स्वरूप तथा विलयन में विलेय की मात्रा कितनी है, इसपर निर्भर करता है। विलेय की राशि का विलायक की राशि से अनुपात का अर्थ है, विलेय की विलयन में होने वाली सांद्रता। विलयन में विलेय की सांद्रता अधिक होने पर वह विलयन सांद्र होता है तथा विलय की सांद्रता कम होने पर वह तन विलयन होता है।

विलयन की सांद्रता व्यक्त करते समय विभिन्न इकाइयों का उपयोग किया जाता है। इनमें से दो इकाइयों का उपयोग अधिकतर किया जाता है। पहली इकाई है ग्राम प्रति लीटर अर्थात विलायक के एक लीटर आयतन में घुली हुई स्थिति के विलय का ग्राम इकाई में द्रव्यमान। दूसरी इकाई है विलायक के एक लीटर आयतन में घुले हुए विलेय की इकाई 'मोल' में व्यक्त की गई राशि। इसे विलयन की अणुता (Molarity, M) कहते हैं। किसी द्रव्य की अणुता दर्शाने के लिए इसका अणुसूत्र बड़े कोष्ठक में लिखा जाता है। उदाहरणार्थ [NaCl]= 1 मोल/लीटर का अर्थ, नमक के इस विलयन की अणुता 1M (1 मोलार) है।

विभिन्न जलीय विलयनों की सांद्रता की दी गई तालिका पूर्ण कीजिए।

विलेय			विलेय की राशि		विलयन का आयतन	विलयन की सांद्रता	
А	В	С	D	$E = \frac{D}{C}$	F	$G = \frac{D}{F}$	$H = \frac{E}{F}$
नाम	अणुसूत्र	अणु द्रव्यमान (u)	ग्राम (g)	मोल (mol)	लीटर (L)	ग्राम/लीटर (g/L)	अणु ता M mol/L
नमक	NaCl	58.5 u	117 g	2 mol	2 L	58.5 g/L	1 M
	HCl		3.65 g		1 L		
	NaOH			1.5 mol	2 L		

विलयन का pH (pH of Solution)

हमने देखा कि पानी में घुलने पर अम्लों तथा क्षारकों का कम–अधिक मात्रा में वियोजन होता है तथा H^+ और OH^- आयन तैयार होते हैं। सभी प्राकृतिक जलीय विलयनों में H^+ और OH^- आयन भिन्न–भिन्न अनुपात में पाए जाते हैं। इसके अनुसार उन विलयनों के गुणधर्म निश्चित होते हैं।

उदाहरणार्थ, H+ तथा OH- आयनों की मात्रा के अनुसार मृदा के अम्लीय, उदासीन और लवणीय ये प्रकार हैं। रक्त, कोशिका-द्रव्य इनके नियोजित कार्य सुचारू रूप से होने के लिए उनमें H+ और OH- आयनों का विशिष्ट अनुपात होना आवश्यक होता है। सूक्ष्मजीवों के उपयोग से की जाने वाली किण्वन या अन्य जैव रासायनिक प्रक्रियाओं में H+ और OH- आयनों का अनुपात विशिष्ट मर्यादाओं में बनाए रखना आवश्यक होता है। शुद्ध पानी का भी अत्यल्प मात्रा में वियोजन होकर H+ और OH- आयन समान अनुपात में बनते हैं।

$$H_{,}O \xrightarrow{\text{ aatu}} H^{+} + OH^{-}$$

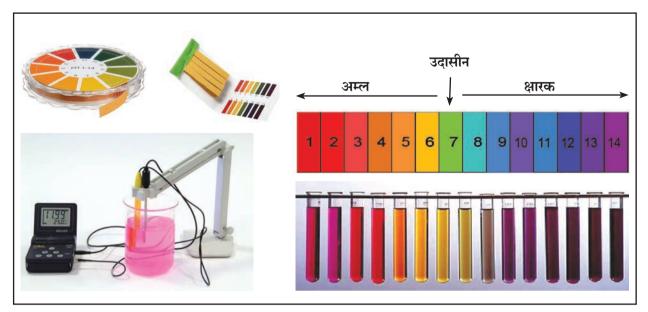
पानी के इस वियोजन होने के गुणधर्म के कारण किसी भी पदार्थ के जलीय विलयन में H^+ और OH^- ऐसे दोनों आयन होते हैं परंतु उनकी सांद्रता अलग–अलग होती है।

सामान्य जलीय pH

	विलयन	प्रबल भस्म
तीव्र अम्ल	1M HCl	0.0
↑	जठर रस	1.0
	नीबू का रस	2.5
	सिरका (विनीगर)	3.0
	टमाटर का रस	4.1
	काली कॉफी	5.0
	अम्लीय वर्षा	5.6
	मूत्र	6.0
। सौम्य अम्ल	बारिश	6.5
<u>उदासीन</u>	दूध	7.0
् सौम्य क्षारक	शुद्ध पानी, चीनी का विलयन	7.4
1	रक्त	8.5
	खाने का सोडे का विलयन	9.5
	टूथ पेस्ट	10.5
	मिल्क ऑफ मैग्नेशिअ	11.0
	चूने का पानी	14.0
सात्र सार	1 M NaOH	14.0

पानी के वियोजन से निर्मित होने वाले H^+ आयनों की सांद्रता 25° C तापमान पर 1×10^{-7} मोल/लीटर जितनी होती है। इसी तापमान पर 1M HCl के विलयन में H^+ आयनों की सांद्रता $1\times10^{\circ}$ मोल/लीटर होती है तथा1mNaOH इस विलयन H^+ आयनों की सांद्रता 1×10^{-14} मोल/लीटर इतनी बड़ी होती है। इससे यह ध्यान आता है कि सामान्य जलीय विलयनों में H^+ आयनों की सांद्रता व्याप्ति होती है। रासायनिक तथा जैवरासायनिक प्रक्रियाओं में अत्यंत उपयुक्त, 10° – 10^{-14} मोल/लीटर इतनी बड़ी होती है। रासायनिक तथा जैवरासायनिक प्रक्रियाओं में अत्यंत उपयुक्त, H^+ आयनों की सांद्रता का एक सुविधाजनक नए माप की डैनिश वैज्ञानिक सोरेनसन ने ई.स.1909 में शुरुआत की। यह माप है, pH मापनश्रेणी (pH Scale : Power of Hydrogen) यह मापनश्रेणी 0 से 14 ph होती है। इस मापनश्रेणी के अनुसार पानी का pH होता है अर्थात शुद्ध पानी में ' $[H^+]=1\times10^{-7}$ मोल/लीटर' होता है। pH7 उदासीन विलयन दर्शाता है। यह मापक का मध्यिबंदु है। अम्लीय जलीय विलयन का pH7 से कम जबिक क्षारीय जलीय विलयन का pH7 से अधिक होता है।

पिछले पृष्ठ पर दी गई तालिका में कुछ साधारण विलयनों के pH दर्शाए गए हैं। विलयनों का pH अन्य कौन-से तरीकों से पता किया जा सकता है?

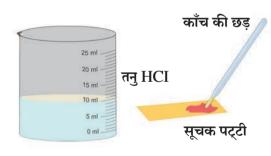


वैश्विक सूचक (Universal Indicators)

नीचे दिए गए प्राकृतिक तथा संश्लेषित सूचकों के अम्लीय और लवणीय विलयनों में कौन-से रंग होते हैं?

लिटमस. हल्दी. जामन. मेथिल ऑरंज. फेनॉल्फ्थलीन

पिछली कक्षा में हमने देखा कि कुछ प्राकृतिक और संश्लेषित रंजकद्रव्य अम्लीय और लवणीय विलयनों में दो अलग–अलग रंग दर्शाते हैं। ऐसे रंजकद्रव्यों का सूचक के रूप में उपयोग किया जाता है। ph मापन प्रणाली में अम्ल ph क्षारकों की तीव्रता के अनुसार उनके विलयनों का pH 0 से 14 तक बदलता है। ph के यह बदलाव दर्शाने के लिए वैश्विक



5.4 वैश्विक सूचक में रंगों में बदलाव और ph मापक

सूचक का उपयोग किया जाता है। विभिन्न pH के लिए वैश्विक सूचक अलग-अलग रंग दर्शाता है।

कई संश्लेषित सूचकों को विशिष्ट अनुपात में मिश्रित कर वैश्विक सूचक बनाया जाता है। वैश्विक सूचक का विलयन अथवा उसके उपयोग से बनाई गई कागज की ph पट्टी का उपयोग कर दिए गए विलयन का ph निश्चित किया जा सकता है। ph ज्ञात करने की सबसे सटीक पद्धति है, ph मापक (pH meter), इस विद्युत उपकरण का उपयोग करना। इस

5.5 उदासीनीकरण

पद्धित में विलयन में विद्युत अग्र डुबाकर pH meter का मापन किया जाता है।

अम्लों तथा भस्मों की अभिक्रियाएँ

1. उदासीनीकरण (Neutralization)

कृति: एक बीकर में 10 ml तनु HCL लें। इस विलयन की एक बूँद कागज की ph पट्टी पर काँच की छड़ से डालें। प्राप्त हुए रंग की सहायता से pH नोट करें। ड्रॉपर की सहायता से तनु NaOH विलयन की कुछ बूँदे बीकर में डालकर काँच की छड़ से हिलाएँ। ph सूचक पट्टी के दूसरे टुकड़े पर इस विलयन की बूँद डालकर pH नोट करें। इस विधि से बूँद-बूँद तनु NaOH डालते जाएँ और pH नोट करते जाएँ। क्या ज्ञात हुआ? जब सूचक पट्टी पर हरा रंग दिखेगा, उसका अर्थ है विलयन का pH 7 हो गया। अब NaOH मिलाना बंद करें।

उदासीनीकरण अभिक्रिया : HCl के विलयन में NaOH का विलयन बूँद-बूँद मिलाने पर PH क्यों बढ़ता जाता है? इसका कारण वियोजन क्रिया है। HCl तथा NaOH दोनों का उनके जलीय विलयन में वियोजन होता है। HCl के विलयन में NaOH का विलयन मिलाने का अर्थ है, बड़ी सांद्रता के OH^- आयन अधिक सांद्रता के H^+ आयनों में मिलाना । पानी का H^+ और OH^- आयनों में वियोजन बहुत कम मात्रा में होता है। इसलिए मिलाए हुए अतिरिक्त H^+ आयन का अतिरिक्त H^+ आयनों से संयोग हो जाता है और पानी के अण् तैयार होते हैं। वे अण् विलायक पानी में मिल जाते हैं। यह परिवर्तन

$$H^+ + Cl^- + Na^+ + OH^- \longrightarrow Na^+ + Cl^- + H_2O$$

नीचे दिए गए आयनिक समीकरण से दर्शाया जाता है।

ऊपर दिए गए समीकरण से यह ज्ञात होता है कि, Na^+ और Cl^- दोनों ओर है। इसलिए वास्तविक आयिनक अभिक्रिया निम्नानुसार है। $H^++OH^-\longrightarrow H_2O$

विलयन NaOH के विलयन में बूँद-बूँद से मिलाए जाने पर HCl आयनों से संयोग होने के कारण OH आयनों की सांद्रता कम होती जाती है जिस के कारण pH बढ़ता जाता है।

जब HCl में पर्याप्त NaOH मिश्रित हो जाता है, तब बनने वाले जलीय विलयन में केवल Na $^+$ और Cl $^-$ ये आयन अर्थात लवण NaCl तथा विलयन के रूप में पानी होते हैं। तब, H $^+$ और OH $^-$ आयनों का स्रोत होता है, पानी का विचरण। इसलिए इस अभिक्रिया को उदासीनीकरण अभिक्रिया कहते हैं। उदासीनीकरण अभिक्रिया सरल समीकरण के रूप में निम्नानुसार दर्शाते हैं।

$$HCl + NaOH \longrightarrow NaCl + H_2C$$

эне чен еач पानी

उदासीनीकरण अभिक्रियाओं की नीचे दी हुई तालिका पूर्ण करें तथा उसमें दिए गए अम्ल, क्षारक तथा लवणों के नाम लिखें।

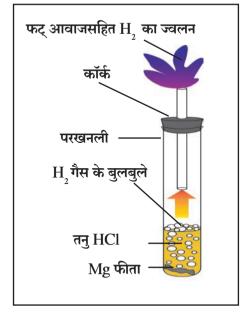
अम्ल + भस्म	→	लवण + पानी
HNO ₃ +		$KNO_3 + H_2O$
+ 2 NH ₄ OH		$(NH_4)_2 SO_4 + \dots$
+ КОН	→	KBr +

ैइसे सदैव ध्यान में रखिए

उदासीनीकरण अभिक्रियाओं में अम्ल व क्षारक के बीच अभिक्रिया होकर लवण तथा पानी बनता है।

थोडा सोचिए

उदासीनीकरण अभिक्रिया के संदर्भ में अम्ल तथा क्षारक की परिभाषा क्या होगी?


2. धातुओं के साथ अम्लों की अभिक्रिया

धातुओं के साथ होने वाली अम्लों की अभिक्रिया, अम्ल की तीव्रता, सांद्रता, तथा तापमान और धातु की अभिक्रियाशीलता इनपर निर्भर करती है। तीव्र अम्ल के विरल विलयनों की मध्यम अभिक्रियाशील धातुओं के साथ सामान्य तापमान में अभिक्रिया करना आसान है।

कृति: एक बड़ी परखनली लें। वायुवाहक नली बैठाई जा सकें ऐसा रबड़ का कॉर्क चुनें। मैग्नेशियम के फीते के कुछ टुकड़े परखनली में लेकर उसमें तनु HCLडालें। जलती हुई मोमबत्ती वायुवाहक नलिका के सिरे तक ले जाकर प्रेक्षण करें।

आपने क्या देखा?

5.6 धातु के साथ तीव्र अम्ल के विरल विलयन की अभिक्रिया

मैग्नेशियम धातु के साथ तीव्र अम्ल के तनु विलयन की अभिक्रिया : उपर्युक्त कृति से यह ध्यान में आता है कि मैग्नेशियम धातु की तनु हाइड्रोक्लोरिक अम्ल के साथ अभिक्रिया होकर हाइड्रोजन यह ज्वलनशील गैस तैयार होती है। यह होते समय अम्ल के हाइड्रोजन को मैग्नेशियम यह अभिक्रियाशील धातु विस्थापित करता है तथा हाइड्रोजन गैस मुक्त होती है। इसी समय धातु का रूपांतरण क्षारीय मूलक में होकर अम्ल के अम्लधर्मी मूलक से उसका संयोग होता है और लवण बन जाता है।

निम्नलिखित अपूर्ण अभिक्रियाएँ पूर्ण करें।

धातु + तनु अम्ल
$$\longrightarrow$$
 लवण + हाइड्रोजन $Mg(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$ $Zn(s) +(aq) \longrightarrow ZnSO_4(aq) + Cu(NO_2)_2(aq) + H_2(g)$

3. धातुओं के ऑक्साइडों के साथ अम्लों की अभिक्रिया करें।

एक परखनली में थोड़ा पानी लेकर उसमें रेड ऑक्साइड (लोहे की वस्तुओं का रंग लगाने के पहले लगाया जाने वाला प्राइमर) डालें। अब उसमें थोड़ा तनु HCl डालकर हिलाएँ और देखें।

- 1. क्या रेड ऑक्साइड पानी में घुलनशील है?
- 2. तन् HCl डालने पर रेड ऑक्साइड के कणों में क्या बदलाव आता है?

रेड ऑक्साइड का रासायनिक सूत्र ${
m Fe}_{_2}{
m O}_{_3}$ है। पानी में अविलेय रेड ऑक्साइड ${
m HCl}$ के साथ अभिक्रिया करता है और पानी में विलय FeCl, यह लवण बनने के कारण पानी पीला हो जाता है। इस रासायनिक बदल के लिए नीचे दिए अनुसार समीकरण लिखा जा सकता है।

$$Fe_2O_3(s) + 6HCl(aq) \longrightarrow 2FeCl_3(aq) + 3H_2O(l)$$

निम्नलिखित अभिक्रियाएँ पर्ण करें

धातुओं का ऑक्साइड + तन् अम्ल---- लवण + पानी **→** + CaO(s) + 2 HCl(aq) $MgO(s) + \dots \longrightarrow MgCl_a(aq) + H_aO(l)$ $ZnO(s) + 2 HCl(aq) \longrightarrow \dots + \dots$ $Al_{2}O_{2}(s) + 6 HF(1)$ _____++.....+......

- 1. उदासीनीकरण अभिक्रिया के संदर्भ में धात् का ऑक्साइड किस प्रकार का यौगिक सिद्ध होता है?
- 2. धातु की ऑक्साइड अम्लीय होती है, स्पष्ट कीजिए।

4. अधातुओं के ऑक्साइड के साथ क्षारकों की अभिक्रिया

अधातुओं के ऑक्साइड के साथ क्षारकों की अभिक्रिया होकर लवण तथा पानी यह यौगिक करें और देखें बनते है। इससे अधातुओं के ऑक्साइड अम्लधर्मी हैं, ऐसा कह सकते हैं। कभी-कभार अधात्ओं के ऑक्साइड अम्लों के उदाहरण हैं, ऐसा भी कह सकते हैं।

निम्नलिखित अभिक्रियाएँ पूर्ण करें। अधातुओं के ऑक्साइड + क्षार
$$\longrightarrow$$
 लवण + पानी $CO_{2}(g) + 2 NaOH (aq) \longrightarrow $Na_{2}CO_{3}(aq) + H_{2}O(l)$ + $2 KOH (aq) \longrightarrow$ $K_{2}CO_{3}(aq) + H_{2}O(l)$ $SO_{3}(g) + \dots$ $Na_{3}SO_{4}(aq) + H_{2}O(l)$$

जिंक ऑक्साइड की सोडियम हायड्रॉक्साइड के साथ अभिक्रिया होकर सोडियम जिंकेट (Na,ZnO,) तथा पानी तैयार होता है। उसी तरह एल्युमीनियम ऑक्साइड की सोडियम हाइड्रॉक्साइड के साथ अभिक्रिया होकर सोडियम एल्युमिनेट(NaAlO्) और पानी बनता है।

- 1. इन दोनों अभिक्रियाओं के रासायनिक समीकरण लिखें।
- 2. इन अभिक्रियाओं से $\mathrm{Al_2O_3}$ और ZnO ये अम्लधर्मी ऑक्साइड है, क्या ऐसा कहा जा सकता है?
- 3. उभयधर्मी ऑक्साइड की परिभाषा तैयार करें तथा दो उदाहरण लिखें।

5. धातुओं के कार्बोनेट तथा बाइकार्बोनेट क्षारों के साथ अम्लों की अभिक्रिया

कृति: एक परखनली में खाने का सोडा लें। उसमें नीबू का रस डालकर तुरंत रबड़ के कॉर्क में बिठाई हुई वक्र नलिका लगाएँ और उसका दूसरा सिरा दूसरी परखनली में चूने का ताजा पानी लेकर उसमें डुबाएँ। दोनों परखनलियों के प्रेक्षणों को नोट करें। यही कृति धोवन सोडा, सिरका (विनीगर), तन् HCl का योग्य उपयोग कर फिर से करें। क्या दिखता है?

इस कृति में बुदबुदाहट के रूप में निर्माण होने वाली गैस चूने के पानी के संपर्क में आने पर चूने का पानी दूधिया रंग का दिखाई देता है। यह कार्बन डाइऑक्साइड गैस की रासायनिक परीक्षा है अर्थात चूने का पानी दूधिया हुआ इससे हमें ज्ञात होता है कि बुदबुदाहट के रूप में दिखी हुई गैस कार्बन डाइऑक्साइड है। धातुओं के कार्बोनेट और बाइकार्बोनेट क्षारों के साथ अम्लों की अभिक्रिया के कारण यह गैस बनती है तथा चूने के पानी $\operatorname{Ca}(\operatorname{OH})_2$ के साथ उसकी अभिक्रिया होकर CaCO_3 की तलछटी तैयार होती है। इससे यह गैस CO_2 है, यह ध्यान में आता है।

$$Ca(OH)_{2}(aq) + CO_{2}(g) \longrightarrow CaCO_{3}(s) + H_{2}O(l)$$

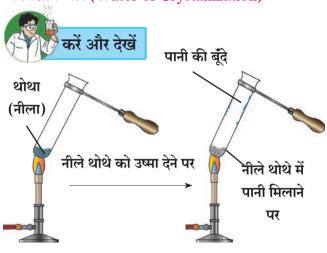
तालिका में दी गई अभिक्रियाएँ पूर्ण करें।

धातु का कार्बोनेट लवण/क्षार + तनु अम्ल		धातु का अन्य लवण + कार्बन डाइऑक्साइड
Na_2CO_3 (s) + 2 HCl (aq)	→	2 NaCl (aq) + CO_{2} (g) + $H_{2}O$ (l)
Na ₂ CO ₃ (s) +		$Na_{2}SO_{4}(aq) + CO_{2}(g) + \dots$
$CaCO_3$ (s) + 2 HNO_3 (aq)	→ .	++
$K_2CO_3(s) + H_2SO_4(aq)$		++

धातु का कार्बोनेट लवण/क्षार + तनु अम्ल धातु का अन्य लवण + कार्बन डाइऑक्साइड
1. $NaHCO_3$ (s) + HCl (aq) \longrightarrow $NaCl$ (aq) + CO_2 (g) + H_2O (l)
$2. \text{ KHCO}_{3} (s) + \text{HNO}_{3} (aq) \longrightarrow + \dots + \dots + \dots$
3. NaHCO ₃ (s) + + +

लवण (Salts)

लवणों के प्रकार : अम्लीय, क्षारीय और उदासीन लवण


कृति : सोडियम क्लोराइड, अमोनियम क्लोराइड और सोडियम बाइकार्बोनेट इन क्षारों की राशियों से उनके 10 मिली जलीय विलयन बनाएँ। सूचक पट्टिका की सहायता से तीनों विलयनों का pH ज्ञात करें। क्या तीनों का pH समान है? pH के मूल्य से इन लवणों का वर्गीकरण करें।

अम्ल तथा क्षारक के बीच अभिक्रिया होने पर लवण तैयार होते हैं, यह हमने देखा है। इस अभिक्रिया को उदासीनीकरण अभिक्रिया कहते हैं फिर भी तैयार होने वाले लवण सदैव उदासीन नहीं होते। तीव्र अम्ल और तीव्र क्षारक के उदासीनीकरण से उदासीन लवण बनता है। इस लवण के जलीय विलयन का pH 7 होता है। तीव्र अम्ल और सौम्य क्षारक के उदासीनीकरण से अम्लधर्मी लवण बनता है। अम्ल लवण के जलीय विलयन का pH 7 से कम होता है। इसके विपरित सौम्य अम्ल और तीव्र क्षारक के उदासीनीकरण से क्षारीय लवण बनता है। ऐसे लवण के जलीय विलयन का pH 7 से अधिक होता है।

दिए गए लवणों का वर्गीकरण अम्लीय, क्षारीय और उदासीन लवण इन तीन प्रकारों में करें। सोडियम सल्फेट, पोटैशियम क्लोराइड, अमोनियम नाइट्रेट, सोडियम कार्बोनेट, सोडियम एसिटेट, सोडियम क्लोराइड।

केलासीय जल (Water of Crystallization)

5.7 केलासीय जल के गुणधर्म

$$CuSO_4$$
. $5H_2O$ $\xrightarrow{3$ ष्णता \longrightarrow $CuSO_4 + 5H_2O$ (सफेद)

उपर्युक्त कृति फेरस सल्फेट, सोडियम कार्बोनेट के केलासों के बारे में करके देखिए उनकी रासायनिक समीकरण लिखें । समीकरणों में ${\rm H_2O}$ के लिए ${\bf 'x'}$ यह गुणक लें ।

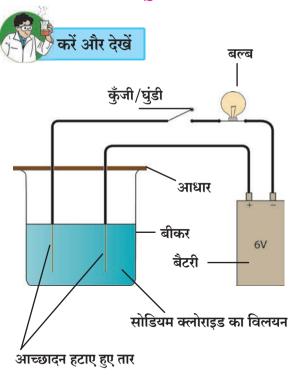
कृति : दो परखनलियों में नीले थोथे (CuSO₄. 5H₂O) के कुछ टुकड़ें लें। एक परखनली में पानी डालकर उसे हिलाएँ। तैयार हुए विलयन का रंग कौन-सा है? दूसरी परखनली बर्नर पर धीमी आँच पर गरम करें। क्या दिखाई दिया? नीले थोथे के रंग में क्या बदलाव आया? परखनली के ऊपरी भाग में क्या दिखाई दिया? अब यह दूसरी परखनली ठंडी होने पर उसमें रंग कौन-सा है? प्रेक्षणों से क्या अनुमान लगाया जा सकता है?

उष्मा देने के कारण नीले थोथे की केलासीय संरचना टूटकर रंगहीन चूर्ण बन गया। यह होते समय पानी बाहर निकला। यह पानी नीले थोथे की केलासीय रचना का भाग है। इसे ही केलासीय जल कहते हैं। सफेद चूर्ण में पानी डालने पर पहली परखनली के विलयन के रंग का विलयन बनता है। इससे यह ज्ञात होता है कि गरम करने के कारण नीले थोथे के केलासों में कोई भी रासायनिक बदलाव नहीं आया।

नीला थोथा गरम करने पर पानी बाहर निकलना, केलासीय संरचना टूट जाना, नीला रंग चला जाना ये सभी भौतिक परिवर्तन है।

सामग्री: वाष्पन पात्र, बनसेन बर्नर, तिपाई, तार की जाली आदि।

रसायन: फिटकरी


कृति: वाष्पन पात्र में फिटकरी छोटा टुकड़ा लें। वाष्पनपात्र तिपाई की उपर्युक्त तार की जाली पर रखें। वाष्पन पात्र को बनसेन बर्नर की सहायता से उष्मा दे। प्रेक्षण कीजिए।

वाष्पन पात्र में क्या दिखाई देता है? फिटकरी की खील से क्या तात्पर्य है?

आयनिक यौगिक केलासीय होते हैं। इनकी केलासीय संरचना आयनों की विशिष्ट रचना के कारण बनती है। कुछ यौगिकों के केलासों में पानी के अणु भी इस संरचना में समाविष्ट होते हैं। यही केलासीय जल है। केलासीय जल यौगिक के रासायनिक सूत्र के विशिष्ट अनुपात में होता है। रासायनिक सूत्र में वह निम्नानुसार दर्शाया जाता है।

- 1. केलासीय नीला थोथा- CuSO₄.5H₂O
- 2. केलासीय फेरस सल्फेट (ग्रीन विट्रिऑल)– ${\rm FeSO}_4.7{\rm H}_2{\rm O}$
- 3. केलासीय सोडा Na, CO3.10H, O
- 4. फिटकरी K₂SO₄.Al₂(SO₄)₃.24 H₂O
- 1. केलासीय पदार्थों में केलासीय जल होता है।
- 2. केलासीय जल के अणु केलास की अंतर्गत रचना का भाग होते हैं।
- 3. गरम करने पर या कुछ समय तक खुला रखने पर भी केलासीय जल बाहर निकलता है और उस भाग का केलासीय रूप नष्ट होता है।

आयनिक यौगिक और विद्युत चालकता

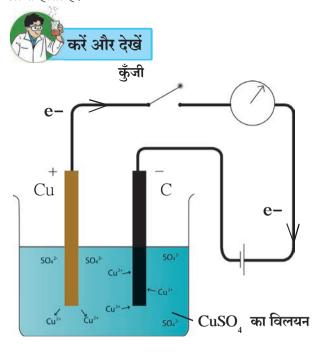
5.8 विलयन की विद्युत वाहकता का परीक्षण

कृति : 50 मिली पानी में 1 ग्राम सोडियम क्लोराइड मिलाकर विलयन बनाएँ। दो विद्युत तार लेकर एक 6 V वोल्ट बैटरी के धन सिरे पर जोड़ें) दूसरी तार बैटरी के ऋण सिरे पर जोड़ने से पहले उसमें एक कुँजी और एक बल्ब लगाएँ। दोनों तारों के खुले सिरों के 3 cm धारकता वाले बीकर में लेकर, दोनों तारों के खुले सिरे आधार की सहायता से इस विलयन में खड़ी स्थिति में डुबाएँ। कुँजी खोलें। क्या बल्ब जलता है? नोट करें। यही कृति 1 ग्राम कॉपर सल्फेट 1 ग्राम ग्लूकोज, 1 ग्राम यूरिया, 5 मिली तनु H_2SO_4 और 5 मिली तनु NaOH प्रत्येक को 50 ग्राम पानी में मिलाकर प्राप्त किए गए विलयन का उपयोग कर फिर से करें। सभी प्रेक्षण एक तालिका में नोट करें।

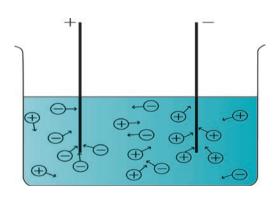
(हर बार विलयन बदलते समय बीकर तथा तारों के खुले सिरे पानी से स्वच्छ करना न भूलें।)

- 1. बीकर में कौन-कौन-से विलयन होने पर बल्ब जला?
- 2. कौन-कौन-से विलयन विद्युत चालक हैं?

जब बल्ब से विद्युत प्रवाह जाता है, तभी वह जलता है। जब विद्युत परिपथ पूर्ण होता है, तभी यह संभव है। ऊपर दी गई कृति में NaCl, $CuSO_4$, H_2SO_4 और NaOH इनके जलीय विलयन का उपयोग करने पर विद्युत परिपथ पूर्ण होता है, यह ध्यान में आता है। इसका अर्थ है, कि ये विलयन विद्युत चालक हैं।


बिजली की तार से बिजली प्रवाहित करने का कार्य इलेक्ट्रॉन करते हैं। विलयन या द्रव से बिजली प्रवाहित करने का कार्य आयन करते हैं। विद्युत परिपथ पूर्ण कर वे बैटरी के धन अग्र से निकलते हैं। परिपथ में जब विलयन या द्रव होता है, तब उसमें दो छड़ें/तार/पट्टियाँ डुबोते हैं। इन्हें विद्युत अग्र (Electrode) कहते हैं। विद्युत अग्र सामान्य रूप से चालक स्थायी से बनाएँ जाते हैं। बैटरी के ऋण अग्र से वाहक तार की सहायता से जुड़े विद्युत अग्र को ऋण अग्र (Cathode) तथा बैटरी के धन अग्र से जुड़ा विद्युत अग्र धनाग्र (Anode) होता है।

कुछ द्रवों / विलयनों में विद्युत अग्र डुबोने पर विद्युत परिपथ क्यों पूर्ण होता है? इसे जानने के लिए उपरोक्त कृति में जो विलयन विद्युत चालक पाए गए, उन्हें अधिक गहन दृष्टि से देखें।


आयनों का विचरण और विद्युत चालकत्व (Dissociation of Ions and Electrical Conductivity)

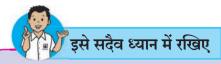
ऊपर दी गई कृति में यह ज्ञात हुआ कि NaCl, $CuSO_4$, H_2SO_4 और NaOH इन यौगिकों के जलीय विलयन विद्युत चालक हैं। इनमें से NaCl और $CuSO_4$ लवण है, H_2SO_4 तीव्र अम्ल तथा NaOH तीव्र क्षारक है। हमने देखा है कि लवण, तीव्र अम्ल और तीव्र क्षारक का जलीय विलयन में लगभग संपूर्ण विचरण होता है। इसी कारण इन तीनों के जलीय विलयन में बड़ी मात्रा में धनात्मक और ऋणात्मक आयन होते हैं।

कणों को मिलने वाली गतिशीलता द्रव अवस्था (Mobility) की विशेषता है। इस गतिशीलता के कारण विलयन के धन आवेशित आयन ऋण अग्र की ओर आकर्षित होते हैं। अर ऋण अग्र की दिशा में प्रवाहित होते हैं। इसके विपरीत ऋण आवेशित आयन धन अग्र की ओर प्रवाहित होते हैं। विलयन के आयनों का संबंधित विद्युत अग्र की दिशा में प्रवाहित होने का अर्थ है, विलयन से विद्युत प्रवाहित होना। इससे आपके ध्यान में आता है। जिस द्रव/विलयन में आयनों का बड़े अनुपात में विचरण हुआ है, उन्हें विद्युत चालकता प्राप्त होती है।

5.10 विद्युत अपघटन

5.9 आयन का विचरण

विद्युत अपघटन (Electrolysis)


कृति : 1 नीला थोथा ($CuSO_4$) का 50~ml पानी में बना विलयन एक 100~ul पास्कतावाले बीकर में लें। ताँबे की एक छड़ धन अग्र के रूप में लें। कार्बन की छड़ ऋण अग्र के रूप में लिए लें। आकृति में दर्शाए अनुसार रचना करें और परिपथ में से कुछ समय तक विद्युत प्रवाहित होने दें। कुछ बदलाव दिखाई देता है?

ऊपर दी गई कृति में कुछ समय तक बिजली प्रवाहित होने पर ऋण अग्र के विलयन में डूबे हुए भाग पर ताँबे की परत दिखाई देती है। ऐसा क्यों हुआ? परिपथ से बिजली प्रवाहित होने पर विलयन के Cu^{2+} धनावेशित आयन ऋण अग्र की ओर आकर्षित हुए। ऋण अग्र से बाहर निकलने वाले इलेक्ट्रॉन के साथ Cu^{2+} आयनों का संयोग होकर Cu धातु के परमाणु बन गए और उनकी परत ऋण अग्र पर दिखने लगी।

विलयन के Cu^{2+} आयन का इस प्रकार उपयोग होने पर भी विलयन का रंग वैसा ही रहा जैसा था। इसका कारण बिजली प्रवाहित होने पर धन अग्र के ताँबे के परमाणुओं से इलेक्ट्रॉन निकलकर बिजली की तार की सहायता से भेजे प्रवाहित किए गए। इस कारण बने Cu^{2+} आयन विलयन में आ गए। इस प्रकार प्रवाहित होने वाले बिजली के प्रवाह के कारण विलयन के विलेय का अपघटन होता है। इसे विद्युत अपघटन (Electrolysis) कहते हैं। विद्युत अपघटन के दो भाग होते हैं, ऋण अग्र अभिक्रिया तथा धन अग्र अभिक्रिया।

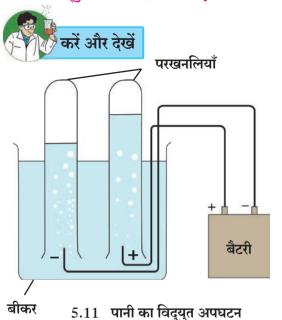
ऊपर दी गई कृति में हुए विद्युत अपघटन के दो भाग निम्नानुसार दर्शाए जाते हैं।

ऋण अग्र अभिक्रिया
$$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$$

धन अग्र अभिक्रिया $Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$

- 1. विद्युत अपघटन के लिए द्रव/विलयन में बड़े अनुपात में विचरण हुए आयनों का होना आवश्यक होता है। इसलिए जिन पदार्थों का विलयन में द्रव रूप अवस्था में बड़ी मात्रा में विचरण होता है, उन्हें तीव्र विद्युत अपघटनी पदार्थ (Electrolyte) कहते हैं। लवण, तीव्र अम्ल और तीव्र क्षारक विद्युत अपघटनी पदार्थ हैं। इनके विलयनों में उच्च विद्युत चालकता होती है अर्थात तीव्र विद्युत अपघटनी पदार्थ द्रवरूप में तथा विलयन अवस्था में विद्युत के सुचालक होते हैं। सौम्य अम्ल और सौम्य क्षारक सौम्य विद्युत अपघटनी पदार्थ है।
- 2. विद्युत अपघटन करने के लिए पात्र में विद्युत अपघटनी पदार्थ लेकर (द्रवरूप / विलयन) उस में विद्युत अग्र डुबोने पर जो रचना तैयार होती है, उसे विद्युत अपघटनी घट कहते हैं।

थोड़ा सोचिए


- 1. पिछले पृष्ठ 71 पर दी गई कृति में विद्युत अपघटनी घट में लंबे समय तक बिजली प्रवाहित करने पर कौन-से बदलाव दिखाई देंगे?
- क्या पानी विद्युत का सुचालक होगा?

संकेतस्थल

www.chemicalformula.org

शुद्ध पानी में विद्युत अग्र डुबाकर कुँजी दबाने से विद्युत प्रवाहित नहीं होती अर्थात शुद्ध पानी विद्युत का कुचालक है, यह ध्यान में आता है। इसका कारण हम पहले देख चुके हैं। पानी का विचरण बहुत ही कम मात्रा में होता है। विचरण के कारण बनने वाले H^+ और OH^- आयनों की सांद्रता $1 \times 10^{-7} \mod / L$ जितनी होती है। किंतु पानी में थोड़ी मात्रा में लवण या तीव्र अम्ल / क्षारक मिलाए जाने पर उनके विचरण से पानी की विद्युत वाहकता बढ़ती है तथा इस कारण पानी का विद्युत अपघटन होता है।

पानी का विद्युत अपघटन (Electrolysis of water)

कृति: 500 ml शुद्ध पानी में 2 ग्राम नमक घुलने दें। 500 ml धारकतावाले बीकर में इसमें से 250 ml विलयन लें। ऊर्जा स्रोत के धन तथा ऋण अग्रों से बिजली के दो तार जोड़े। तारों के दूसरे सिरे की ओर के 2 सेमी भाग से रोधक आच्छादन निकाल दें। ये दो विद्युत अग्र हो गए। दो परखनलियाँ तैयार किए हुए नमक के विलयन से लबालब भरें। यह परखनलियाँ बिना हवा अंदर गए विद्युत अग्रों पर डालें। पावर सप्लाई से 6Volt दबाव से बिजली का प्रवाह शुरू करें। थोड़े समय बाद दोनों परखनलियों में क्या दिखाई दिया इसका निरीक्षण करें।

- परखनिलयों के विद्युत अग्रों के पास गैस के बुलबुले दिखाई दिए?
- 2. यह गैस पानी से भारी है या हलका?
- 3. दोनों परखनलियों के विलयन में बने बुलबुलों का आयतन समान है या भिन्न?

ऊपर दी गई कृति में यह ध्यान आता है कि ऋण अग्र पर बनने वाले बुलबुलों का आयतन धन अग्र पर तैयार होने वाली गैस की तुलना में दोहरा है। वैज्ञानिकों ने ये दिखाया है इससे यह स्पष्ट होता है कि पानी का विद्युत अपघटन होकर उस के घटक तत्त्व मुक्त हो जाते हैं। संबंधित विद्युत अग्र अभिक्रियाएँ निम्नानुसार है।

ऋण अग्र अभिक्रिया
$$2 \text{ H}_2\text{O} + 2\text{e}^- \longrightarrow \text{H}_2(g) + 2\text{OH}^-(aq)$$
 धन अग्र अभिक्रिया $2\text{H}_2\text{O} \longrightarrow \text{O}_2(g) + 4\text{H}(aq) + 4\text{e}^-$

- 1. दोनों परखनलियों के विलयन की लिटमस कागज से परीक्षा / जाँच करें। क्या दिखाई देगा?
- 2. विद्युत अपघटनी पदार्थ के रूप में तनु H₂SO₄ और तनु NaOH का उपयोग कर उपर्युक्त कृति फिर से करें।

विद्युत अपघटनी पदार्थों के विद्युत अपघटन के विविध उपयोग कौन-से हैं?

समूह में न जुड़ने वाला शब्द पहचानकर कारण लिखिए।

- अ. क्लोराइड, नायट्रेट, हायड्राइड, अमोनियम।
- आ. हाइड्रोजन क्लोराइड, सोडियम हाइड्रॉक्साइड, कैल्शियम ऑक्साइड, अमोनिया।
- इ. एसेटिक अम्ल, कार्बोनिक अम्ल, हाइड्रोक्लोरिक अम्ल, नाइट्रिक अम्ल
- ई. अमोनियम क्लोराइड, सोडियम क्लोराइड, पोटैशियम नाइट्रेट, सोडियम सल्फेट
- सोडियम नाइट्रेट, सोडियम कार्बोनेट, सोडियम सल्फेट. सोडियम क्लोराइड
- ऊ. कैल्शियम ऑक्साइड, मैग्नेशियम ऑक्साइड, जिंक ऑक्साइड, सोडियम ऑक्साइड
- ए. केलासीय नीला थोथा, केलासीय नमक, केलासीय फेरस सल्फेट, केलासीय सोडियम कार्बोनेट
- ऐ. सोडियम क्लोराइड, पोटैशियम हाइड्रॉक्साइड, एसेटिक अम्ल, सोडियम एसिटेट
- 2. नीचे दी गई प्रत्येक कृति करने पर कौन-से बदलाव दिखाई देंगे यह लिखकर उनका कारण स्पष्ट कीजिए।
 - अ. नीले थोथे के 50 मिली विलयन में 50 मिली पानी मिलाया।
 - आ. सोडियम हाइड्रॉक्साइड के 10 विलयन में फेनॉल्फ्थेलीन सूचक की दो बूँदें मिलाई।
 - इ. 10ml तनु नाइट्रिक अम्ल में ताँबे के बुरादे के

- 2/3 कण/टुकड़े मिलाकर हिलाया।
- ई. 2 मिली तनु HCL में लिटमस कागज का टुकड़ा डाला। बाद में उसमें 2 मिली सांद्र NaOH मिलाकर हिलाया।
- उ. तनु HCL में मैग्निशियम ऑक्साइड मिलाया,और तनु NaOH में मैग्निशियम ऑक्साइड मिलाया।
- ऊ. तनु HCL में जिंक ऑक्साइड मिलाया और उसी प्रकार तनु NaOH में जिंक ऑक्साइड मिलाया।
- ए. चूना पत्थर पर तन् HCL डाला।
- ऐ. परखनली में नीले थोथे के टुकड़े गरम किए और ठंडे होने पर उन में पानी मिलाया।
- ओ. विद्युत अपघटनी घट में तनु ${
 m H_2SO_4}$ लेकर उसमें से विद्युत प्रवाह प्रवाहित होने दिया।
- दिए गए ऑक्साइडों का तीन समूहों में वर्गीकरण करें तथा उनके नाम लिखिए।
 - CaO, MgO, CO₂, SO₃, Na₂O, ZnO, Al₂O₃, Fe₂O₃
- 4. इलेक्ट्रॉन संरूपण की आकृति बनाकर स्पष्ट कीजिए।
 - अ. सोडियम व क्लोरीन से सोडियम क्लोराइड की निर्मिति
 - आ. मैग्निशियम व क्लोरीन से मैग्निशियम क्लोराइड की निर्मिति

5. नीचे दिए गए यौगिक के पानी में घुलने पर उनका विचरण कैसे होता है, यह रासायनिक समीकरण की सहायता से दर्शाएँ तथा विचरण का अनुपात कम होगा या अधिक लिखिए।

हाइड्रोक्लोरिक अम्ल, सोडियम क्लोराइड, पोटैशियम हाइड्रॉक्साइड, अमोनिया, एसेटिक अम्ल, मैग्निशियम क्लोराइड, कॉपर सल्फेट (नीला थोथा)

- 6. निम्नलिखित विलयनों की सांद्रता ग्राम/लीटर और मोल/लिटर इन इकाइयों में व्यक्त कीजिए।
 - अ. 100 मिली विलायक में 7.3 ग्राम HCl
 - आ. 50 मिली विलायक में 2 ग्राम NaOH
 - इ. 100 मिली विलायक में 3 ग्राम CH₃COOH
 - ई. 200 मिली विलायक में 4.9 ग्राम H₂SO₄
- 7. वर्षा के पानी का नमूना प्राप्त करें। उसमें वैश्विक सूचक की कुछ बूँदें मिलाएँ। उसका pH ज्ञात करें। वर्षा के पानी का स्वरूप बताएँ तथा उसका जीवसृष्टि पर क्या असर हो सकता है, बताएँ।
- 8. निम्नलिखित प्रश्नों के उत्तर लिखिए:
 - अ. क्षारकता गुणधर्म के आधार पर अम्लों का वर्गीकरण करें। एक उदाहरण लिखें।
 - आ. उदासीनीकरण क्या है? दैनिक जीवन से उदासीनीकरण के दो उदाहरण लिखें।
 - इ. विलयन का pH ज्ञात करने के लिए कौन-सी पद्धतियों का उपयोग किया जाता है, लिखें।
 - ई. पानी का विद्युत अपघटन क्या है, इसे विद्युत अग्र अभिक्रिया लिखकर स्पष्ट कीजिए।
- 9. कारण लिखिए।
 - अ. हाइड्रोनियम आयन सदैव $H_3\mathrm{O}^+$ स्वरूप में होते हैं।
 - ई. ताँबा या पीतल के बरतन में छाछ रखने से वह कसैली हो जाती है।

- 10. निम्नलिखित कृति के लिए रासायनिक समीकरण लिखिए।
 - अ. HCl के विलयन में NaOH का विलयन मिलाया।
 - आ. तनु H¸SO₄ में जस्ते का बुरादा मिलाया।
 - इ. कैल्शियम ऑक्साइड में तनु नाइट्रिक अम्ल मिलाया।
 - ई. KOH के विलयन में से कार्बन डाइऑक्साइड गैस छोडी।
 - उ. खाने के सोडे पर तनु HCl डाला।
- 11. अंतर स्पष्ट कीजिए।
 - अ. अम्ल और क्षारक
 - आ. केटायन और एनायन
 - इ. ऋण अग्र और धन अग्र
- 12. नीचे दिए गए पदार्थों के जलीय विलयन का वर्गीकरण pH के अनुसार 7, 7 से अधिक और 7 से कम, इन समूहों में करें।

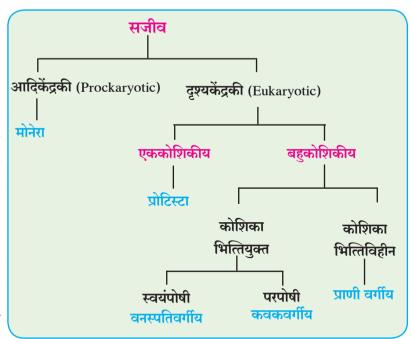
नमक, सोडियम एसिटेट, हाइड्रोजन क्लोराइड, कार्बन डाइऑक्साइड, पोटैशियम ब्रोमाइड, कैल्शियम हाइड्रॉक्साइड, अमोनियम क्लोराइड, सिरका (विनीगर), सोडियम कार्बोनेट, अमोनिया, सल्फर डाइऑक्साइड

उपक्रम:

विद्युत विलेपन (Electroplating) का उपयोग दैनिक जीवन में किया जाता है। इस विषय में अधिक जानकारी प्राप्त कीजिए।

6. वनस्पतियों का वर्गीकरण

जगत : वनस्पति


🕨 उपजगत : अबीजपत्री 🐤 उपजगत : बीजपत्री

सजीवों का वर्गीकरण कैसे किया गया है?

सजीवों का अध्ययन करने हेतु रॉबर्ट व्हिटाकर (1969) द्वारा प्रतिपादित पंचजगत वर्गीकरण पद्धति और उसके अंतर्गत जगत मोनेरा, प्रोटिस्टा और कवक; इनका अध्ययन आपने किया है।

हमारे आसपास के परिसर को हराभरा रखने वाले वनस्पति जगत में कौन-कौन-से रहस्य छिपे हैं? उनमें कौन-सी विविधता पाई जाती है? आइए देखें।

बताइए तो

जगत: वनस्पति (Kingdom Plantae)

वनस्पति कोशिका में पाए जाने वाले कौन-से विशेष अंगक उसे प्राणी कोशिका से भिन्न ठहराते हैं?

कोशिका भित्तियुक्त दृश्यकेंद्रकी कोशिकाएँ होने वाले स्वयंपोती सजीवों के समूह को 'वनस्पति' के नाम से पहचाना जाता है। वनस्पतियाँ पर्णहरित की सहायता से प्रकाशसंश्लेषण करती हैं; इसलिए वे स्वयंपोषी बनी हैं। वनस्पति जगत में पाए जाने वाले सजीव अन्य सजीवों के लिए भोजन के प्रमुख स्रोत हैं।

वर्गीकरण का आधार

वनस्पतियों का वर्गीकरण करते समय सर्वप्रथम वनस्पतियों के अंग है या नहीं इसपर विचार किया जाता है। तत्पश्चात पानी तथा भोजन का वहन करने हेतु स्वतंत्र ऊतक संस्थानों का होना या न होना इसका विचार किया जाता है। वनस्पतियों में बीजधारण करने की क्षमता है या नहीं? अगर है, तो बीज फल से ढका है या नहीं इसपर भी विचार किया जाता है। अंतत: बीजपत्रों की संख्या के आधार पर वनस्पतियों के अलग-अलग समूह किए जाते हैं।

वनस्पतियों के उच्चस्तरीय वर्गीकरण में फूल, फल और बीज का आना या न आना इसके आधार पर बीजपत्री तथा अबीजपत्री, बीज फल से ढके होने या न होने के आधार पर आवृत्तबीजी और अनावृत्तबीजी तथा बीजों में पाए जाने वाले बीजपत्रों की संख्या के आधार पर एकबीजपत्री और द्विबीजपत्री इन लक्षणों को ध्यान में लिया जाता है।

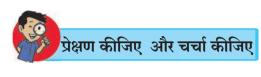
वैज्ञानिकों का परिचय

वनस्पतिज्ञ एचट ने 1883 में वनस्पति जगत का दो उपसृष्टियों में वर्गीकरण किया। इसके अनुसार अबीजपत्री तथा बीजपत्री, इन दो उपसृष्टियों का विचार वनस्पतियों के वर्गीकरण के लिए किया गया।

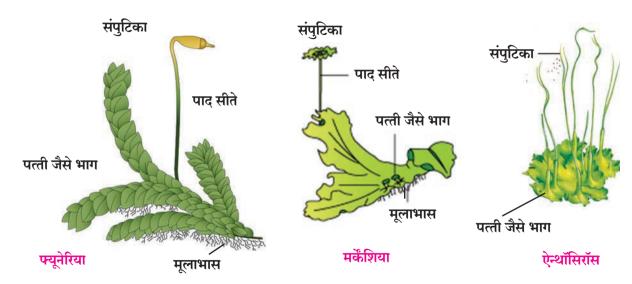
उपजगत-अबीजपत्री वनस्पतियाँ (Cryptogams)

हरे रंग के पानीवाला कोई गड्ढा ढूँढ़िए। पानी से हरे रंग के तंतु इकट्ठा करें। तंतु पेट्री डिश में रखकर पानी से स्वच्छ करें। उनमें से एक-दो तंतु स्लाइड पर पानी की बूँद में रखें और सीधे फैलाएँ।

स्लाइड पर कवरस्लिप (आच्छादक काँच) रखकर सूक्ष्मदर्शी की सहायता से निरीक्षण करें। इन तंतुओं की कोशिकाओं में स्थित हरे रंग की सर्पिल रेखाओं जैसे हरितलवक क्या आपने देखें? इस वनस्पति का नाम स्पाइरोगायरा है।


विभाग I -थैलोफायटा (Thallophyta)

इन वनस्पतियों की उपज प्रमुख रूप से पानी में होती है। जड़-तना-पित्तयाँ-फूल जैसे विशेष अंग न होने वाली,पर्णहिरम के कारण स्वयंपोषी होने वाली वनस्पितयों के इस समूह को शैवाल (Algae) कहते हैं। शैवाल में विविधता पाई जाती है। एककोशिकीय, बहुकोशिकीय, अति सूक्ष्म तो कुछ सुस्पष्ट रूप बड़े आकारवाले शैवाल पाए जाते हैं। उदा. स्पाइरोगाइरा, युलोथ्रिक्स, अल्वा, सरगैसम इत्यादि। इनमें से कुछ वनस्पितयाँ मीठे तो कुछ खारे पानी में पाई जाती हैं। इन वनस्पितयों का शरीर प्रमुख रूप से नरम और तंतुरूप होता है। इसी समूह में पर्णहिरम न होने वाले विभिन्न प्रकार के किण्व तथा फफूँदी का समावेश होता है; इन्हें कवक (Fungi) कहते हैं।


6.1 थैलोफायटा विभाग की वनस्पतियाँ

विभाग II- ब्रायोफायटा (Bryophyta)

आपने बारिश के मौसम में पुरानी नम दीवारों, ईंटों या पत्थरों पर हरे रंग की नरम कालीन देखा ही होगा। छोटी पट्टी लेकर उसे हलके से कुरेदें। प्राप्त हुए वनस्पतियों का लेंस की सहायता से निरीक्षण करें।

इस समूह की वनस्पतियों को वनस्पति जगत के 'उभयचर' कहा जाता है क्योंकि इनकी वृद्धि नम मिट्टी में होती है, परंतु प्रजनन के लिए उन्हें पानी की आवश्यकता होती है। यह वनस्पतियाँ निम्नस्तरीय, बहुकोशिकीय और स्वयंपोषी होती है। इन में बीजाणुनिर्मिति से प्रजनन होता है। विभाग ब्रायोफायटा की वनस्पतियों की रचना चपटे रिबन (फीते) जैसी, लंबी होती है। इन वनस्पतियों में मूल रूप से पाई जाने वाली जड़ें, तना, पत्तियाँ नहीं होतीं। इनमें पत्तियों जैसी रचना होती हैं और जड़ों की जगह जड़ों जैसे अंग-'मूलाभ' होते हैं तथा पानी और भोजन के संवहन के लिए विशेष ऊतक नहीं होते। उदा. : प्यूनेरिया, एन्थोसिरॉस, रिक्सिया इत्यादि।

6.2 बायोफायटा विभाग की वनस्पतियाँ

प्रेक्षण कीजिए और चर्चा कीजिए

बागों की शोभायमान झाडियों में फर्न तो आपने देखा ही होगा। पूर्ण रूप से विकसित हुए फर्न की एक पत्ती का बारीकी से प्रेक्षण करें।

विभाग III – टेरिडोफायटा (Pteridophyta)

इस विभाग का वनस्पतियों में जड, तना तथा पत्तियों जैसे अंग स्पष्ट रूप से दिखाई देते हैं। परंतु इनमें पुष्प व फल नहीं पाए जाते। जल तथा अन्य पदार्थों के संवहन के लिए स्वतंत्र ऊतक पाए जाते हैं।

इनका प्रजनन, पत्तियों के निचले भाग पर पाए जाने वाले बीजाणुओं से होता है। उदा. फर्न, नेफ्रोलेपिस, मार्शेलिया, टेरिस, एडिएंटम, इक्विसेटम, सिलैजिनेला, लायकोपोडियम इत्यादि। इन वनस्पतियों में अलैंगिक प्रजनन बीज द्वारा तथा लैंगिक प्रजनन युग्मक द्वारा होता है। इनमें स्पष्ट रूप से संवहनी संस्था पाई जाती है।

थैलोफायटा, ब्रायोफायटा व टेरिडोफायटा इन तीनों विभाग की वनस्पतियों की शरीर रचना एक-दूसरे से भिन्न होते हुए भी उनमें कौन-सी समानता पाई जाती है?

मूलरोम फर्न

पर्णदल

पर्णांग के बीजाणुधानी पुँज

सिलैजिनेला

लायकोपोडियम

6.3 टेरिडोफायटा विभाग की वनस्पतियाँ

इन सभी में प्रजनन बीजाणुओं द्वारा होता है। इनके शरीर की प्रजननसंस्था अप्रकट होने के कारण इन्हें अबीजपत्री (Cryptogams: हुई/ढकी हुई प्रजनन अंग वाली वनस्पति) कहते हैं।

उपजगत-बीजपत्री (Phanerogams)

जिन वनस्पतियों में प्रजनन के लिए विशेष ऊतक होते हैं तथा वे बीज उत्पन्न करते हैं, उन्हें बीजपत्री वनस्पतियाँ कहते हैं। इनमें प्रजनन प्रक्रिया के पश्चात बीज निर्मित होता है। बीज के अंदर भ्रूण के साथ संचित पोषक पदार्थ होता है जिसका उपयोग भ्रूण के प्रारंभिक विकास एवं अंकुरण के समय होता है। बीज फल से ढका हुआ है या नहीं इस विशेषता के आधार पर बीजपत्री वनस्पति का वर्गीकरण अनावृत्तबीजी व आवृत्तबीजी वनस्पति में किया गया है।

विभाग I- अनावृत्तबीजी वनस्पतियाँ (Gymnosperms)

अपने परिसर के बगीचे में उपलब्ध सायकस, क्रिसमस ट्री गुड़हल तथा लिली जैसी वनस्पतियों का प्रेक्षण कर उनकी तुलना कीजिए। दिखाई देने वाली समानता व असमानता के आधार पर सूची बनाएँ। पहले देखी हुई अनावृत्तबीजी वनस्पतियों व इन वनस्पतियों में क्या अंतर दिखाई देता है?

अनावृत्तबीजी समूह की वनस्पतियाँ बहुदा सदाहरित, बहुवार्षिक व काष्ठमय होती हैं। इन वनस्पतियों के तनों की शाखाएँ नहीं होती तथा पत्तियाँ मिलकर चक्रीय मुकुट का निर्माण करती हैं। इनमें नर व मादा अंग एक ही वृक्ष के अलग-अलग बीजाणुपर्ण पर होते हैं। इनके बीज आवरण रहित होते हैं अर्थात यह फलधारण नहीं करते इसलिए इन्हें अनावृत्तबीजी कहते हैं। Gymnosperms अर्थात Gymnos - अनावृत्त/खुला, Sperm- बीज।

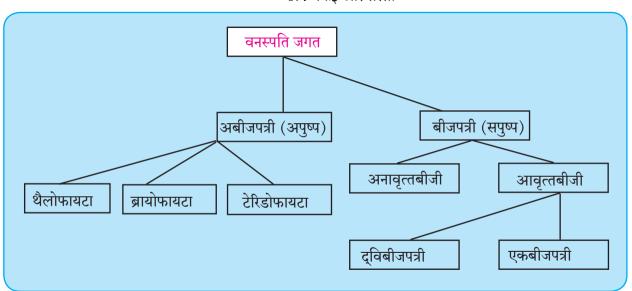
उदा. सायकस, पिसिया (क्रिसमस ट्री), युजा (मोरपंखी), पायनस (देवदार) इत्यादि।

6.4 अनावृत्तबीजी वनस्पति

मक्का, सेम की फली, मूँगफली, इमली का बीज, गेहूँ तथा आम की गुठली इत्यादि बीजों को 8-10 घंटे पानी में भिगोकर रखें। भिगोने के पश्चात प्रत्येक बीज के दो समान भाग होते हैं क्या, यह देखें व उनका वर्गीकरण करें।

इन वनस्पतियों में आने वाले फूल ही इनके प्रजनन के अंग हैं। फूलों का रूपांतरण फलों में होता है व फलों के अंदर बीज की निर्मिति होती है। इन बीजों पर आवरण होता है। Angios – Cover अर्थात आवरण, sperm – बीज।

जिन वनस्पतियों के बीज आसानी से दो भागों में विभाजित हो जाते हैं, उन्हें द्विबीजपत्री वनस्पति कहते हैं, परंतु जिन बीजों के दो भाग नहीं होते, उन्हें एकबीजपत्री वनस्पति कहते हैं।


प्रेक्षण करें और प्रेक्षणों की पड़ताल करें

तालिका में दी गई जानकारी के आधार पर सरसों

और मकई के बीच अंतर की जाँच करें। परिसर की अन्य वनस्पतियों का निरीक्षण कीजिए।

	द्विबीजपत्री वनस्पतियाँ	एकबीजपत्री वनस्पतियाँ
बीज	दो बीजपत्र	एक बीजपत्र
जड़	मूसला जड़ें	तंतुमय जड़ें, रेतेदार
तना	मजबूत, सख्त तना उदा. बरगद का पेड़	खोखला उदा, बाँस आभासी उदा. केला चकती स्वरूप उदा. प्याज
पत्ती	जालीदार शिराविन्यास	समांतर शिराविन्यास
फूल	4 या 5 भागों वाला (चतुर्भागी या पंचभागी)	3 या 3 की आवृत्तियों में (त्रिभागी)
Special Section Sectin Section Section Section Section Section Section Section Section		

6.4 मकई और सरसों

संप्रेषण प्रौदयोगिकी की उपयोगी जानकारी

- 1. कंम्प्यूटर की चित्र बनाने की प्रणाली का उपयोग कर पाठ में दिए गए वनस्पतियों के चित्र बनाएँ।
- 2. इन चित्रों का उपयोग करें और वनस्पतियों के वर्गीकरण पर आधारित Power Point Presentation बनाकर

कक्षा में प्रस्तृत करें।

स्वाध्याय 🗸 🧽

1. 'अ' 'ब' और 'क' की जोडियाँ मिलाएँ।

'अ' स्तंभ	'ब' स्तंभ	'क' स्तंभ
थैलोफायटा	फल के अंदर बीज बनते हैं	फर्न
ब्रायोफायटा	बीज पर प्राकृतिक आवरण नहीं होता	सायकस
टेरिडोफायटा	वनस्पतियों की वृद्धि प्राय: पानी में होती है	इमली
अनावृत्तबीजी	इन वनस्पतियों को प्रजनन के लिए पानी की आवश्यकता होती है	फ्यूनेरिया
आवृत्तबीजी	पानी तथा अन्न के संवहन के लिए ऊतक होते हैं।	शैवाल

2. सही विकल्प चुनकर रिक्त स्थानों की पूर्ति करें तथा कथन का कारण स्पष्ट कीजिए।

(आवृत्तबीजी, अनावृत्तबीजी, बीजाणु, ब्रायोफायटा थैलोफायटा, युग्मक)

- अ.इस वनस्पति का शरीर प्रमुख रूप से नरम और तंतुमय होता है।
- आ. समूह को वनस्पति जगत का उभयचर कहा जाता है।
- इ. टेरिडोफायटा वनस्पतियों में अलैंगिक प्रजनन निर्मिति द्वारा जबिक लैंगिक प्रजनन निर्मिति द्वारा होता है।
- ई. वनस्पित में प्रजनन के नर व मादा अंगक एक ही वृक्ष के अलग-अलग बीजाणुपत्र पर पाए जाते हैं।

3. निम्नलिखित प्रश्नों के उत्तर अपने शब्दों में लिखिए।

- अ. उपसृष्टि बीजपत्री की विशेषताएँ लिखिए।
- आ. एकबीजपत्री और द्विबीजपत्री वनस्पतियों में अंतर स्पष्ट करें।
- इ. शोभायमान झाड़ी फर्न का वर्णन करने वाला परिच्छेद अपने शब्दों में लिखें।
- ई. स्पाइरोगाइरा वनस्पति की विशेषताएँ लिखकर आकृति बनाएँ।

- ब्रायोफायटा विभाग की वनस्पतियों की विशेषताएँ लिखिए।
- 4. सुस्पष्ट और नामनिर्देशित आकृतियाँ खींचकर उनके बारे में स्पष्टीकरण लिखिए। मर्केशिया, प्यनारिया, नेचे, स्पाइरोगाइरा
- 5. आपके आसपास पाई जाने वाली एकबीजपत्री और द्विबीजपत्री वनस्पतियाँ जड़सहित प्राप्त करें। दोनों वनस्पतियों का बारीकी से निरीक्षण करें और अपने शब्दों में शास्त्रीय परिभाषा में परिच्छेद लिखें और उन्हें रेखांकित करें।
- 6. वनस्पतियों का वर्गीकरण करते समय कौन-से मुद्दों का विचार किया जाता है? उन्हें कारणसहित स्पष्ट कीजिए।

उपक्रम :

- अ. वनस्पतियों के वर्गीकरण के संदर्भ में Internet से अधिक जानकारी प्राप्त करें। 5 से 10 मिनट का भाषण तैयार करें और पाठशाला की प्रार्थना के समय सबके सामने प्रस्तृत कीजिए।
- आ. एकबीजपत्री तथा द्विबीजपत्री बीजों का संग्रह कर कक्षा की दीवार पर लगाइए।
- इ. थैलोफायटा, ब्रायोफायटा और टेरिडोफायटा से प्रत्येक प्रकार की पाँच वनस्पतियों के चित्र प्राप्त करें तथा जानकारी लिखिए।

7. परितंत्र के ऊर्जा प्रवाह

- अाहार शृंखला और खाद्यजाल
- > ऊर्जा पिरामिड
- 🕨 जैव-भू-रासायनिक चक्र : कार्बन, ऑक्सीजन और नाइट्रोजन चक्र

पुनरावलोकन करते हुए

- 1. परितंत्र क्या है?
- 2. परितंत्र के विभिन्न प्रकार कौन-से हैं ?
- 3. परितंत्र के जैविक तथा अजैविक घटकों की अंतरक्रियाएँ किस पद्धति से घटित होती हैं ?

परितंत्र का ऊर्जा प्रवाह (Energy flow in Ecosystem)

पिछली कक्षा में हम पोषण पद्धित के अनुसार सजीवों का वर्गीकरण पढ़ चुके हैं। तद्नुसार स्वयंपोषी (उत्पादक), परपोषी (भक्षक), मृतोपजीवी और विघटक ऐसे भी सजीवों के प्रकार हैं। परिवेश के परितंत्र के विभिन्न भक्षकस्तर निम्नानुसार है, उनका निरीक्षण करें।

प्राथमिक भक्षक (शाकाहारी)

उदा. टिड्डा, गिलहरी, हाथी इत्यादि। यह स्वयंपोषी (उत्पादक वनस्पति) पर प्रत्यक्ष रूप से निर्भर होते हैं।

द्वितीय भक्षक (मांसाहारी)

उदा. मेंढक, उल्लू, लोमड़ी ये शाकाहारी प्राणियों का अन्न/भोजन के रूप में उपयोग करते हैं।

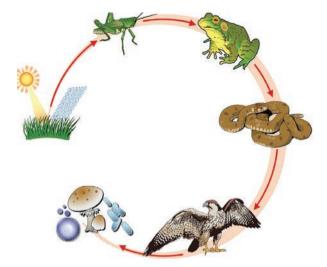
सर्वोच्च भक्षक

उदा. शेर, बाघ, शाकाहारी तथा मांसाहारी प्राणियों का भक्षण करते हैं। अन्य प्राणी इन्हें नहीं खाते।

सर्वभक्षी (मिश्राहारी)

उदा., मनुष्य, भालू । ये वनस्पति, वनस्पतिजन्य पदार्थों तथा शाकाहारी और मांसाहारी प्राणियों का भोजन के रूप में उपयोग कर सकते हैं।

आहार शृंखला और खाद्य जाल (Food chain and Food web)



प्रेक्षण कीजिए

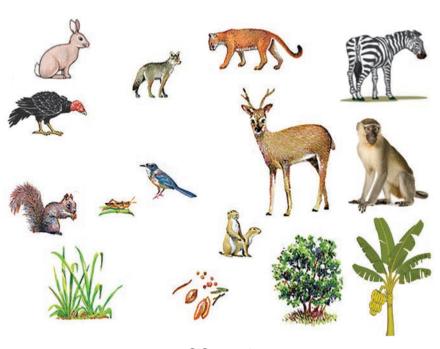
चित्र 7.1 का निरीक्षण करें और घटकों के आपसी संबंध स्पष्ट करें।

आकृति 7.1 के अनुसार आपके आसपास पाए जाने वाले सजीवों की चार आहार शृंखलाएँ बनाइए ।

उत्पादक, भक्षक और मृतोपजीवी सजीवों में सदैव अंतरिक्रयाएँ होती रहती हैं। इन अंतरिक्रयाओं का एक क्रम होता है, उसे आहार शृंखला कहते हैं। हर आहार शृंखला में ऐसी चार या पाँच से भी अधिक कड़ियाँ होती हैं। किसी परितंत्र में ऐसी एक-दूसरे से जुड़ी हुई कई आहार शृंखलाएँ समाविष्ट होती हैं। इनसे ही खाद्य जाल बनता है।

7.1 आहार शृंखला

पिछली कक्षा में आपने विभिन्न परितंत्रों का अध्ययन किया । इनमें पाई जाने वाली आहार शृंखलाएँ स्पष्ट करें ।

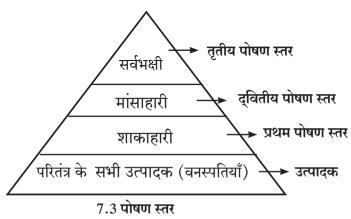

कोई सजीव कई अन्य सजीवों का भक्ष्य होता है उदा. कोई कीटक अनेक प्रकार की वनस्पतियों के पत्ते खाता है, परंतु वही कीटक मेंढक, छिपकली, पिक्षयों का भक्ष्य होता है। यह किसी आकृति की सहायता से दर्शाया जाए तो सीधी रेखा स्वरूप आहार शृंखला की जगह जिटल, अनेक शाखाओंवाला जाल बनेगा। इसे ही प्राकृतिक खाद्य-जाल (Food Web) कहते हैं। आम तौर पर ऐसे खादयजाल प्रकृति में हर जगह पाए जाते हैं।

थोड़ा सोचिए

अपने आसपास के परितंत्र के विभिन्न भक्षकों की सूची बनाएँ और इनका पोषण पद्धति के अनुसार वर्गीकरण करें। चित्र 7.2 मे विभिन्न सजीवों के चित्र दिए हैं। उनकी सहायता से खाद्यजाल बनाएँ।

- क्या खाद्य-जाल के भक्षकों की संख्या निश्चित होती है?
- 2. कई प्रकार के भक्षक यदि एक ही प्रकार के सजीवों का भक्षण करें तो इसका परितंत्र पर क्या असर होगा?
- 3. खाद्य-जाल में संतुलन होने की आवश्यकता क्यों है?

7.2 विभिन्न सजीव


घर पर भोजन करते समय एक मजेदार निरीक्षण करें। थाली में परोसे हुए विभिन्न अन्नपदार्थ आहार शृंखला के कौन-से स्तर से हैं, इसे पहचानें। इस आधार पर हम आहार शृंखला के कौन

से स्तर हैं, यह ज्ञात करें।

ऊर्जा का पिरामिड (Energy Pyramid)

पोषण का स्तर (Trophic Level)

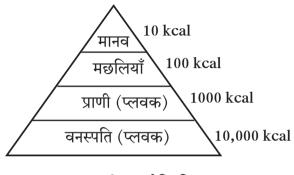
आहार शृंखला के प्रत्येक स्तर को 'पोषण स्तर' कहते हैं। पोषण स्तर का अर्थ है, अन्न प्राप्त करने का स्तर। आहार शृंखला में अन्न घटक और ऊर्जा का अनुपात निम्नस्तरीय उत्पादक से लेकर उच्च स्तरीय भक्षक तक क्रमश: घटता जाता है।

वैज्ञानिकों का परिचय:

1942 में लिंडमन नामक वैज्ञानिक ने आहार शृंखला और उसके ऊर्जावहन का अभ्यास किया।

परिस्थितिक पिरामिड (Ecological Pyramid) यह संकल्पना सर्वप्रथम चार्ल्स एल्टन नामक ब्रिटिश वैज्ञानिक ने 1927 में ब्रिटन स्थित बिअर द्वीपों के टुंड्रा परितंत्र का अध्ययन कर स्पष्ट की । इसी कारण इस पिरामिड को एल्टॉनिअन पिरामिड भी कहा जाता है ।

जब ऊर्जा उत्पादक से सर्वोच्च भक्षक की ओर प्रवाहित होती है तो उस ऊर्जा का क्या होता है? क्या वह सर्वोच्च भक्षक में ही संग्रहित रहती है अथवा उस प्राणी के जीवित रहने तक उसके शरीर में रहती है ?



थोडा सोचिए

सर्वोच्च भक्षक की मृत्यु के उपरांत आहार शृंखला की ऊर्जा हस्तांतरण के समय अगर उसमें संग्रहित रही तो क्या होगा ? अगर निसर्ग में सूक्ष्मजीव व फफूँदी जैसे विघटक न हों तो क्या होगा ?

आकृति 7.4 में दिखाए गए पिरामिड में प्रत्येक स्तर पर ऊर्जा का प्रवाह दिखाया गया है। आहार शृंखला में अनेक ऊर्जा विनिमय स्तर होते हैं। ऊर्जा विनिमय स्तर की रचना के अनुसार जब ऊर्जा का हस्तांतरण होता है, तो मूल ऊर्जा धीरे-धीरे कम होती जाती है। उसी प्रकार सजीवों की संख्या भी निम्नस्तर से उच्चस्तर की ओर कम होती जाती है। परितंत्र ऊर्जा की इस रचना को ऊर्जा का पिरामिड कहते हैं।

सर्वोच्च भक्षक की मृत्यु के उपरांत उसके मृत शरीर का विघटन करने वाले विघटकों को यह ऊर्जा प्राप्त होती है। फफूँदी तथा सूक्ष्मजीव मृत प्राणियों के शरीर का विघटन करते हैं, इन्हें विघटक कहते हैं । मृत अवशेषों से भोजन प्राप्त करते समय विघटक उसका रूपांतरण सरल कार्बनी पदार्थ में करते हैं । ये पदार्थ हवा, पानी तथा मिट्टी में सहजता से मिल जाते हैं । यहाँ से यह घटक पुनः वनस्पतियों द्वारा अवशोषित किए जाते हैं तथा आहार शृंखला में प्रवाहित होते हैं ।

7.4 जलीय ऊर्जा पिरामिड

इससे अब आपके ध्यान में आया होगा कि सजीवों के विविध प्रकार के पोषण से तैयार होने वाले खाद्यजाल की ऊर्जा तथा अन्न पोषक द्रव्य परितंत्र में प्रवाहित होते रहते हैं।

किसी भी परितंत्र की ऊर्जा का मुख्य स्रोत सूर्य है। परितंत्र में हरी वनस्पितयाँ कुल सौरऊर्जा की कुछ ऊर्जा भोजन के रूप में संग्रहित करती हैं। विघटकों तक पहुँचने के पूर्व ये ऊर्जा एक पोषण स्तर से दूसरे पोषण स्तर पर प्रवाहित की जाती है। विघटकों द्वारा इसमें से कुछ ऊर्जा, उष्मा के रूप में उत्सर्जित की जाती है परंतु इसमें से कोई भी ऊर्जा सूर्य की ओर वापस नहीं जाती इसलिए ऊर्जा के प्रवाह को एकदिशीय माना जाता है।

थोड़ा सोचिए

परितंत्र के तृतीयक (सर्वोच्च) भक्षक जैसे बाघ, शेर इनकी संख्या अन्य भक्षकों की तुलना में कम क्यों होती है?

संस्थांनों के कार्य

भारतीय परिस्थितिकी और पर्यावरण संस्था (Indian Institute of Ecology and Environment), दिल्ली इस संस्था की स्थापना सन 1980 में की गई। संशोधन, प्रशिक्षण व परिसंवाद आयोजन जैसे प्रमुख कार्य इस संस्था द्वारा किए जाते हैं। इस संस्था ने International Encyclopedia of Ecology and Environment का प्रकाशन किया है।

जैव-भू-रासायनिक चक्र (Bio-geochemical cycle)

परितंत्र में ऊर्जा का प्रवाह एकदिशीय होते हुए भी पोषक द्रव्य का प्रवाह चक्रीय होता है। प्रत्येक सजीव को वृद्धि के लिए विविध पोषक द्रव्यों की आवश्यकता होती है। दी गयी आकृति का निरीक्षण करें। उसमें दिए हुए विविध घटकों का अभ्यास करें तथा जैव-भू रासायनिक चक्र को अपने शब्दों में स्पष्ट करें।

परितंत्र में पोषण द्रव्यों के चक्रीय प्रवाह को 'जैव-भू रासायनिक चक्र' कहते हैं।

7.5 जैव – भू – रासायनिक चक्र

सजीवों की वृद्धि के लिए आवश्यक पोषक द्रव्यों के अजैविक घटकों का जैविक घटकों में तथा जैविक घटकों का अजैविक घटकों में रूपांतरण होते रहता है। शीलावरण, वातावरण, जलावरण से मिलकर बने जीवावरण के माध्यम से यह चक्र निरंतर चलते रहता है। इस प्रक्रिया में जैविक, भूस्तरीय व रासायनिक पोषक द्रव्यों का चक्रीभवन जटिल होता है तथा वह परितंत्र ऊर्जावाहन स्तर पर निर्भर होता है।

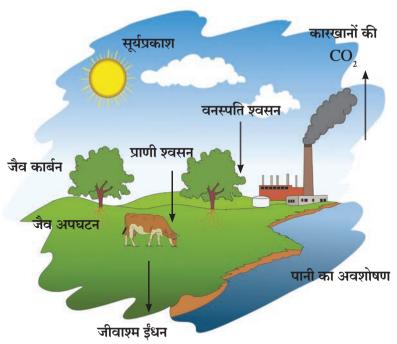
जैव-भू-रासायनिक चक्र के प्रकार

वायुचक्र	अवसादन (भू) चक्र
* प्रमुख अजैविक गैसीय पोषक द्रव्यों का संग्रह पृथ्वी	🗴 प्रमुख अजैविक पोषकद्रव्यों का संग्रह पृथ्वी पर मृदा,
के वायुमंडल में पाया जाता है।	अवसाद व अवसादी चट्टानों में पाया जाता है।
🗴 यहाँ नाइट्रोजन, ऑक्सीजन कार्बन डाइऑक्साइड,	🗴 यहा आयर्न (लोह), कैल्शियम, फॉस्फोरस तथा जमीन
वाष्प इत्यादि का समावेश होता है।	के अन्य घटकों का समावेश होता है।

वायुचक्र की गति अवसादन चक्र से अधिक होती है। उदा. किसी भाग में CO_2 जमा हो तो वह वायु के साथ फैल जाती है अथवा वनस्पतियों द्वारा अवशोषित कर ली जाती है।

जलवायु परिवर्तन व मानवीय क्रियाओं का चक्रो की गति, तीव्रता व संतुलन पर गंभीर परिणाम होते हैं, इसलिए चक्रों के विविध घटकों के अध्ययन पर अब विशेष ध्यान दिया जा रहा है।

क्या आप जानते हैं?


वायुचक्र व अवसादन चक्र इन दोनों चक्रों को एक-दूसरे से पूर्णरूप से अलग नहीं किया जा सकता। उदा. नाइट्रोजन गैसीय रूप में वातावरण में पाई जाती है तो नाइट्रोजन आक्साइड यौगिक के रूप में मृदा व अवसाद में पाया जाता है। इसी प्रकार कार्बन अजैविक स्वरूप में मुख्यत: शीलावरण के पत्थर के कोयले, ग्रेनाइट, हीरा व चूने के पत्थर में पाया जाता है जबिक वातावरण में CO_2 वायुरूप में पाया जाता है। सामान्यत: कार्बन का अस्तित्व पत्थर के कोयले में वनस्पति व प्राणियों की अपेक्षा अधिक समय तक होता है।

कार्बन चक्र (Carbon Cycle)

कार्बन के वायुमंडल से सजीवों तक और सजीवों के मृत्युपश्चात पुन:श्च वायुमंडल की ओर होने वाला अभिसरण तथा पुन: चक्रीकरण को कार्बन चक्र कहते हैं। प्रकाशसंश्लेषण और श्वसन क्रिया द्वारा कार्बन के अजैविक परमाणुओं का प्रमुख रूप से जैविक अभिसरण और पुन: चक्रीकरण होता है। इसी कारण कार्बन चक्र एक महत्त्वपूर्ण जैव-भू

रासायनिक चक्र है।

हरी वनस्पतियाँ प्रकाशसंश्लेषण प्रक्रिया द्वारा CO_2 का रूपांतरण कार्बोज पदार्थों में करती है तथा वे प्रथिन तथा वसायुक्त जैसे कार्बनी पदार्थ भी तैयार करती हैं। शाकाहारी प्राणी हरी वनस्पतियाँ खाते हैं। शाकाहारी प्राणियों को मांसाहारी प्राणी खाते हैं अर्थात, जैविक कार्बन का संक्रमण वनस्पतियों से शाकाहारी प्राणियों तक, शाकाहारी प्राणियों से मांसाहारी प्राणियों तक और मांसाहारी प्राणियों से सर्वोच्च भक्षक प्राणियों की ओर होता है।

7.6 कार्बन चक

कार्बन चक्र की प्रमुख जीविक्रियाएँ
$$C_{6}H_{12}O_{6} + 6 H_{2}O + 6 O_{2} \uparrow$$

$$C_{6}H_{12}O_{6} + 6 H_{2}O + 6 O_{2} \uparrow$$

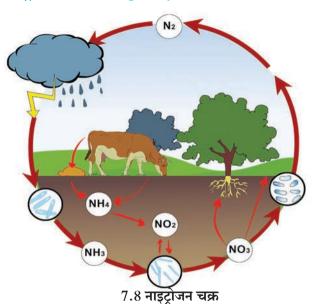
$$C_{6}H_{12}O_{6} + 6 O_{2} \rightarrow 6 CO_{2} \uparrow + 6 H_{2}O + 3 sin$$

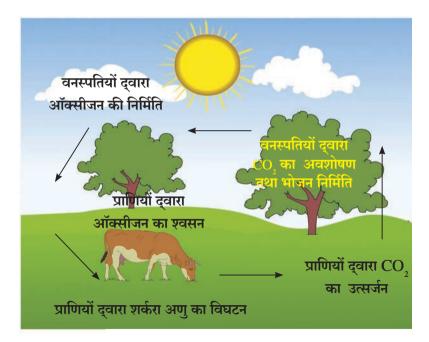
अंततः मृत्यु पश्चात सभी उत्पादकों और भक्षकों का जीवाणु और फफूँदी से विघटकों द्वारा विघटन होकर ${\rm CO}_2$ गैस पुनःश्च मुक्त होती है। यह गैस वायुमंडल में मिश्रित होती है और फिर से उपयोग में लाई जाती है। इसी प्रकार एक सजीव से दूसरे सजीव तक कार्बन का अभिसरण चलता रहता है। सजीवों के मृत्युपरांत कार्बन प्रकृति को लौटाया जाता है और पुनःश्च सजीवों के पास आता है।

जीवाश्म ईंधन का ज्वलन, लकड़ी का ज्वलन, दावानल और ज्वालामुखी का फटना जैसी अजैविक प्रक्रियाओं द्वारा CO_2 गैस बाहर निकल कर हवा में मिश्रित हो जाती है । प्रकाश संश्लेषण द्वारा ऑक्सीजन गैस वायुमंडल में उत्सर्जित की जाती है तथा श्वसनक्रिया द्वारा CO_2 वायुमंडल में उत्सर्जित की जाती है । वनस्पतियों के कारण वायुमंडल में ऑक्सीजन और CO_2 गैस का संतुलन बना रहता है ।

थोड़ा सोचिए

- उष्ण कटिबंध में कार्बन चक्र प्रभावी होता है, ऐसा क्यों होता है ?
- 2. पृथ्वी पर कार्बन का अनुपात स्थिर है फिर भी CO_2 गैस के कारण तापमान में वृद्धि क्यों हो रही है ?
- 3. हवा की कार्बन और तापमान में वृद्धि का परस्पर संबंध पहचानिए।


ऑक्सीजन चक्र (Oxygen Cycle)


पृथ्वी के वायुमंडल में लगभग 21% और जलमंडल तथा शिलावरण, ऐसे तीनों मंडलों में ऑक्सीजन पाया जाता है। जीवावरण में ऑक्सीजन का अभिसरण और उसके पुन: उपयोग को ऑक्सीजन चक्र कहते हैं। इस चक्र में भी जैविक तथा अजैविक ऐसे दो घटक समाविष्ट होते हैं।

वायुमंडल में ऑक्सीजन की निर्मिति निरंतर होती रहती है तथा उसका उपयोग भी निरंतर होता रहता है।

ऑक्सीजन अत्यधिक अभिक्रियाशील है तथा अन्य तत्त्वों और यौगिकों से उसका मिलन होता है । आण्विक ऑक्सीजन (O_2) , पानी (H_2O) , कार्बन डाइआक्साइड (CO_2) और अजैविक यौगिक के स्वरूप में ऑक्सीजन के पाए जाने के कारण जीवावरण का ऑक्सीजन चक्र जिटल होता है। प्रकाशसंश्लेषण क्रिया में ऑक्सीजन की निर्मित होती है जबिक श्वसन, ज्वलन, विघटन, जंग लगना जैसी क्रियाओं में ऑक्सीजन का उपयोग होता है।

नाइट्रोजन चक्र (Nitrogen Cycle)

7.7 ऑक्सीजन चक्र

क्या आप जानते हैं?

बहुसंख्य सूक्ष्मजीव श्वसन के लिए ऑक्सीजन का उपयोग करते हैं। ऐसे सूक्ष्मजीवों को ऑक्सीजीवी कहते हैं। जिन सूक्ष्मजीवों को ऑक्सीजन की आवश्यकता नहीं होती, उन्हें अनॉक्सीजीवी कहते हैं। कार्बोज पदार्थ, प्रथिन और वसायुक्त पदार्थों की निर्मिति के लिए ऑक्सीजन की आवश्यकता होती है। विभिन्न रासायनिक अभिक्रियाओं में ऑक्सीजन का उपयोग क्रिया जाता है। ओजोन (O_3) की निर्मिति ऑक्सीजन से ही वायुमंडलीय क्रिया–प्रक्रियाओं द्वारा होती रहती है।

थोड़ा याद करें

- नाइट्रोजन का स्थिरीकरण क्या है?
- नाइट्रोजन के स्थिरीकरण में कौन से सूक्ष्मजीव मदद करते हैं?

वायुमंडल में नाइट्रोजन गैस सबसे अधिक अनुपात 78% में पाया जाता है। प्राकृतिक चक्र का सातत्य अबाधित रखने के लिए नाइट्रोजन की आवश्यकता होती है। प्रकृति में जैविक तथा अजैविक प्रक्रियाओं से नाइट्रोजन गैस के अलग-अलग यौगिको में होने वाला अभिसरण और पुन: चक्रीकरण 'नाइट्रोजन चक्र' के नाम से जाना जाता है।

सभी सजीव नाइट्रोजन चक्र में सहभागी होते हैं। नाइट्रोजन, प्रथिन और न्यूक्लिक अम्लों का एक महत्त्वपूर्ण घटक है। अन्य तत्त्वों की तुलना में नाइट्रोजन निष्क्रिय है। वह अन्य तत्त्वों के साथ सहजता से यौगिक नहीं बनाता। अधिकतर सजीव मुक्त अवस्था के नाइट्रोजन का उपयोग नहीं कर सकते।

नाइट्रोजन चक्र की प्रमुख प्रक्रियाएँ (Processes in Nitrogen Cycle)

- 1. नाइट्रोजन का स्थिरीकरण वायुमंडलीय, औद्योगिक और जैविक प्रक्रियाओं द्वारा नाइट्रोजन का रूपांतर नाइट्रेट तथा नाइट्राइट में होना।
- 2. अमोनीकरण- सजीवों के अवशेष, उत्सर्जित पदार्थों का विघटन होकर अमोनिया मुक्त होना।
- 3. नाइट्रीकरण- अमोनिया का रूपांतरण नाइट्राइट और नाइट्रेट में होना ।
- 4. विनाइट्रीकरण- नाइट्रोजनयुक्त यौगिकों का गैसीय नाइट्रोजन में रूपांतरण होना ।

नाइट्रोजन चक्र की तरह ऑक्सीजन और कार्बन चक्र की प्रमुख प्रक्रियाओं के बारे में इंटरनेट की सहायता से जानकारी प्राप्त करें।

स्वाध्याय

 $1.\quad$ कार्बन, ऑक्सीजन और नाइट्रोजन चक्र का बारीकी से निरीक्षण कीजिए । नीचे दी गई तालिका पूर्ण करें ।

जैव-भू-रासायनिक चक्र	जैविक प्रक्रिया	अजैविक प्रक्रिया
1. कार्बन चक्र		
2. ऑक्सीजन चक्र		
3. नाइट्रोजन चक्र		

- निम्नलिखित गलत कथनों को सही करें तथा उनका पुनर्लेखन करें। अपने कथनों का समर्थन कीजिए।
 - अ. आहार शृंखला में मांसाहारी प्राणियों का पोषण स्तर दवितीय पोषण स्तर होता है।
 - आ. पोषण पदार्थों का परितंत्र में प्रवाह एकदिशीय माना जाता है।
 - इ. परितंत्र की वनस्पतियों को प्राथमिक भक्षक कहा जाता है।

3. कारण लिखिए।

- अ. परितंत्र में ऊर्जा का प्रवाह एकदिशीय होता है।
- आ. विभिन्न जैव-भू-रासायनिक चक्रों में संतुलन होना आवश्यक है।
- इ. पोषण पदार्थों का परितंत्रीय प्रवाह चक्रीय होता है।
- 4. अपने शब्दों में आकृति सहित स्पष्टीकरण लिखिए।
 - अ. कार्बन चक्र
 - आ. नाइट्रोजन चक्र
 - इ. ऑक्सीजन चक्र

- विभिन्न जैव-भू-रासायनिक चक्रों का संतुलन बनाए रखने के लिए आप क्या प्रयास करेंगे?
- 6. आहार शृंखला और खाद्य जाल के बीच अंतरसंबंध सविस्तर स्पष्ट कीजिए।
- 7. जैव-भू-रासायनिक चक्र क्या है । उनके प्रकार बताकर जैव-भू-रासायनिक चक्रों का महत्त्व स्पष्ट कीजिए।
- 8. निम्नलिखित प्रश्नों के उत्तर सोदाहरण स्पष्ट कीजिए।
 - अ. वनस्पतियों से सर्वोच्च भक्षक की ओर ऊर्जा प्रवाहित होते समय ऊर्जा के अनुपात में क्या अंतर दिखाई पड़ता है?
 - आ. परितंत्र के ऊर्जाप्रवाह और पोषक द्रव्यों के प्रवाह में क्या अंतर होता है? क्यों?

उपक्रम:

- 1. किसी एक प्राकृतिक चक्र पर आधारित प्रतिकृति तैयार कीजिए और उसे विज्ञान प्रदर्शनी में प्रस्तुत कीजिए।
- परितंत्र के संतुलन पर आधारित परिच्छेद लिखिए।

8. उपयुक्त और उपद्रवी सूक्ष्मजीव

≽ उपयुक्त सूक्ष्मजीव : लैक्टोबैसिलाई, राइजोबियम, किण्व

≽ उपद्रवी सूक्ष्मजीव : क्लास्ट्रिडियम और अन्य सूक्ष्मजीव

थोड़ा याद करें

1. सूक्ष्मजीव क्या है ? इनकी विशेषताएँ कौन-सी हैं ?

2. आपने सूक्ष्मजीवों का प्रेक्षण कैसे किया ?

हमारे आसपास सर्वत्र हैं पर सूक्ष्मदर्शी के बिना दिखाई नहीं देते, ऐसे सूक्ष्मजीवों के विभिन्न प्रकारों से आप परिचित हैं। हमारे दैनंदिन जीवन का इन सूक्ष्मजीवों से क्या संबंध होगा?

उपयुक्त सूक्ष्मजीव (Useful Micro-organisms)

करें और देखें

8.1 लैक्टोबैसिलाई

लैक्टोबैसिलाई (Lactobacilli)

ताजा छाछ की एक बूँद स्लाइड पर लें। उस बूँद की एक पतली परत बनाएँ। उसपर मिथिलिन ब्लू अभिरंजक की एक बूँद डालकर आच्छादक काँच रखें। संयुक्त सूक्ष्मदर्शी की 10X लेंस और तत्पश्चात उच्च क्षमतावाली 60X लेंस से निरीक्षण कीजिए।

क्या नीले रंग के तीली जैसे सजीव हलचल करते हुए दिखाई दिए ? इन जीवाणुओं का नाम लैक्टोबैसिलाई है । ये आयताकार होते हैं । लैक्टोबैसिलाई अनॉक्सी जीवाणु है अर्थात बगैर ऑक्सीजन के भी वे ऊर्जा निर्मित कर सकते हैं।

बताइए तो

दध से दही कैसे बनाते हैं? इस प्रक्रिया में निश्चित रूप से क्या होता है?

लैक्टोबैसिलाई जीवाणु दूध की लैक्टोज शर्करा का किण्वन प्रक्रिया द्वारा लैक्टिक अम्ल में रूपांतरण करते हैं। इसके कारण दूध का pH कम होता है और दूध के प्रथिनों का स्कंदन (Coagulation) होता है। इसके कारण दूध के प्रथिन अन्य घटकों से अलग हो जाते हैं। इसे ही 'दूध का दही में रूपांतरण होना' कहा जाता है। लैक्टिक अम्ल के कारण दही को विशिष्ट खट्टा स्वाद मिलता है। उसका pH कम होने के कारण दूध के अन्य घातक जीवाणुओं का विनाश होता है।

थोड़ा सोचिए

- अपचन होने पर या पेट खराब होने पर डॉक्टर दही या छाछ पीने के लिए क्यों कहते हैं ?
- 2. कभी-कभी दही कड़वा, चिपचिपा होकर उस पर तार आती है। ऐसा क्यों होता होगा ?
- 3. दूध की मलाई का किण्वन (जामन मिलाकर) कर घर में कौन-कौन-से पदार्थ प्राप्त किए जाते हैं?

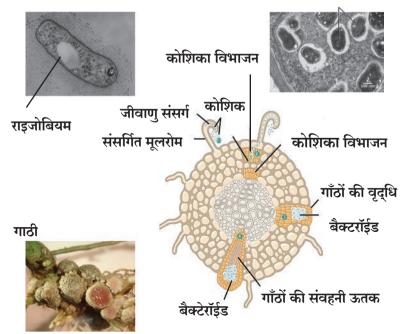
क्या आप जानते हैं?

आजकल लोकप्रिय 'प्रोबायोटिक' दही और अन्य खाद्यपदार्थ वास्तविक रूप में है?

ऐसे पदार्थों में लैक्टोबैसिलाई जैसे उपयुक्त सजीवों का उपयोग किया जाता है। ऐसा अन्न शरीर के लिए स्वास्थ्यवर्धक सिद्ध होने का कारण यह है कि ये सूक्ष्मजीव आहारनाल के क्लॉस्ट्रिडिअम जैसे घातक जीवाणु नष्ट कर हमारी रोगप्रतिकार क्षमता बढाते हैं।

लैक्टोबैसिलाई जीवाणुओं के उपयोग

- 1. दही, छाछ, घी, पनीर, चीज, श्रीखंड जैसे अनेक पदार्थ दध की किण्वन प्रक्रिया से प्राप्त होते हैं।
- 2. सिडार, कोको, सब्जियों के अचार आदि पदार्थों का बड़े पैमाने में उत्पादन करने के लिए लैक्टोबैसिलाई किण्वन प्रक्रिया उपयुक्त है।
- 3. पाचन संस्थान के कार्य में खराबी आने पर लैक्टोबैसिलाई और कुछ अन्य सूक्ष्मजीव साथ आकर उपचार करते हैं।
- 4. गाय, भैंस को दी जाने वाली बिनौले की खली वास्तविक में लैक्टोबैसिलाई की सहायता से खटास उत्पन्न किया हुआ अन्नपदार्थ है।
- 5. मद्यार्क निर्मिति तथा कुछ प्रकार की डबल रोटी बनाते समय लैक्टोबैसिलाई किण्वन प्रक्रिया का उपयोग किया जाता है।



- 1. लैक्टोबैसिलाई जीवाणु कितने उदयोगों को बढ़ावा देते हैं ?
- 2. प्रचुर मात्रा मे दूध उपलब्ध होने वाले प्रदेशों में कौन-कौन-से गृहउद्योग और कारखाने शुरू हो सकते हैं?

राइजोबियम: सहजीवी जीवाणु (Rhizobium: Symbiotic Bacteria)

मेथी, मूँगफली, सोयाबीन अथवा किसी दलहन का पौधा लेकर 3-5 % हाइड्रोजन पेरॉक्साइड के द्रावण से निर्जंतुक कीजिए।

8.2 सोयाबीन की जड़ों पर पाई जाने वाली गाँठें

बाद में 70% इथाइल अल्कोहल के द्रावण में 4-5 मिनट तक रखें। निर्जंतुक पानी से स्वच्छ कीजिए और गाँठों के बहुत ही पतले फाँक कीजिए। एक अच्छी फाँक सैफ्रेनिन के तनु द्रावण में 2-3 मिनट रखें। स्लाइड पर फाँक रखकर आच्छादन काँच रखें और संयुक्त सूक्ष्मदर्शी की सहायता से निरीक्षण कीजिए। ये गुलाबी डंडियों जैसे बेलनाकार सजीव राइजोबियम जीवाणु हैं।

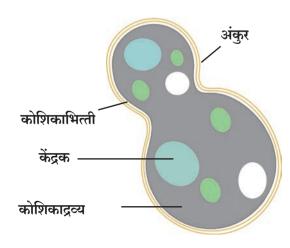
यह जीवाणु देखने के लिए हमें दलहनों के पौधों की जड़ों की गाँठे ढूँढ़नी पड़ी। उन वनस्पतियों को राइजोबियम से लाभ होता होगा या हानि?

राइजोबियम का कार्य और महत्त्व (Role and Importance of Rhizobium)

जड़ों पर गाँठो में रहने वाले राइजोबियम उस पौधे को नाइट्रेट तथा अमिनो अम्लों की आपूर्ति करते हैं और उसके बदले पौधे से कार्बोज पदार्थों के रूप में ऊर्जा प्राप्त करते हैं। इस प्रकार एक-दूसरे को फायदेमंद साबित होने वाले इस संबंध को सहजीवन कहते हैं।

राइजोबियम हवा की नाइट्रोजन से नाइट्रोजन के यौगिक बनाते हैं। परंतु इस नाइट्रोजन के स्थिरीकरण के लिए उन्हें मटर, सोयाबीन, सेम की फली तथा अन्य दलहनों जैसे शिंबावर्गीय (फिलयाँ) वनस्पितयों की अतिथेय (Host) के रूप में आवश्यकता होती है। राइजोबियम के बनाकर दिए नाइट्रोजनयुक्त यौगिकों के कारण दालें और दलहन प्रथिनों का अच्छा स्रोत साबित होते हैं।

दलहनों की फसलों की समाप्त होने पर उनकी जड़ें तथा पौधे का कुछ भाग विचारपूर्वक मिट्टी में मिलाकर जीवाणुओं की मात्रा कायम रखी जाती है। राइजोबियम के कारण रासायनिक खादों का उपयोग कम होता है; अत: रासायनिक खादों के दुष्परिणाम टाले जा सकते हैं। खादों की खरीद का खर्चा कम होने के कारण किसानों का फायदा होता है।


आजकल बोआई के पहले से ही बीजों को राइजोबियमयुक्त द्रव या पावडर लगाया जाता है। बोआई के बाद यह राइजोबियम जीवाणु पौधे में प्रवेश करते हैं, इस पद्धित को राइजोबियम टीकाकरण कहते हैं। यह प्रयोग दलहनों के साथ-साथ तृणधान्य और अन्य फसलों को भी नाइट्रोजन की आपूर्ति करने हेतु उपयुक्त होता है।

किण्व (Yeast)

कवककोशिकाएँ

8.3 कवककोशिका

कृति: बाजार से Active Dry Yeast लेकर आएँ। एक बोतल में एक चम्मच यीस्ट (किण्व), 2 चम्मच चीनी और थोड़ा गुनगुना पानी मिलाएँ। बोतल के मुँह पर एक रंगहीन पारदर्शक गुब्बारा कसकर बिठाएँ।

10 मिनट बाद कौन-कौन-से बदलाव दिखाई दिए? गुब्बारे में जमा हुई गैस में कली चूना मिलाएँ। यह कली चूना बीकर में लेकर प्रेक्षण कीजिए। क्या दिखाई दिया ?

बोतल के द्रावण की एक बूँद स्लाइड पर लेकर उसपर आच्छादक काँच रखें व संयुक्त सूक्ष्मदर्शी की सहायता से निरीक्षण कीजिए। बोतल का द्रावण संभालकर रखें।

क्या स्लाइड पर लंब वृत्ताकार, रंगहीन कवक कोशिकाएँ दिखाई दीं ? इन कोशिकाओ पर छोटे वृत्ताकार भाग चिपके हुए दिखाई देंगे। यह यीस्ट (किण्व) की नईं बनती हुई कोशिकाएँ हैं।

प्रजनन की इस अलैंगिक पद्धित को **मुकुलन** (Budding) कहते हैं। किण्व एक परपोषी, कार्बनी पदार्थों पर वृद्धि करने वाला कवकवर्गी सूक्ष्मजीव है।

यीस्ट (किण्व) यह एककोशिकीय कवक है, उनकी लगभग 1500 प्रजाति अस्तित्व में हैं । किण्व कोशिका दृश्यकेंद्रकी प्रकार की होती है।

ऊपर दिए गए प्रयोग में चीनी के द्रव में स्थित कार्बनी पदार्थों के कारण यीस्ट की वृद्धि होती है और प्रजनन शीघ्रता से होता है। अपना पोषण करते समय किण्वकोशिकाएँ विलयन के कार्बोज पदार्थों का रूपांतरण अल्कोहल और कार्बन डाइऑक्साइड गैस में करती हैं। इस प्रक्रिया को किण्वन (Fermentation) कहते हैं।

डबलरोटी (bread) कैसे बनती है ?

किण्व के प्रयोग में हमने बोतल में जो द्रावण बनाया था, उसका उपयोग कर डबलरोटी कैसे बनाई जा सकती है, इसकी जानकारी प्राप्त कीजिए और डबलरोटी बनाएँ। डबलरोटी जालीदार कैसे बनी, इसके कारण खोजें और लिखें।

क्या आप जानते हैं?

शक्कर के कारखानों में शक्कर के साथ-साथ अधिकतर अल्कोहल का उत्पादन भी किया जाता है। गन्ने के रस का शीरा (molases) निकलता है। उसमें भी प्रचुर मात्रा में कार्बोज पदार्थ होते हैं। शीरा में सैकरोमायिस किण्व मिलाकर उसका किण्वन किया जाता है। इस प्रक्रिया में इथेनॉल (C_2H_5OH) (अल्कोहल) यह प्रमुख उत्पाद तथा ईस्टर और अन्य अल्कोहल, ये अन्य उप-उत्पाद भी मिलते हैं।

इथेनॉल से स्पिरिट, मद्यार्क और अन्य रसायन प्राप्त होते हैं । उसी प्रकार इथेनॉल धूम्रविरहित, उच्चतम दर्जे का इंधन भी है । इथेनॉल के औद्योगिक उत्पादन के लिए गन्ने के शीरे की तरह मक्का, जौ (Barley) जैसे अन्य धानों का भी उपयोग किया जाता है।

अंगूर के रस में होने वाले ग्लूकोज और फ्रुक्टोज शर्कराओं का भी यीस्ट की सहायता से किण्वन किया जाता है और पाए गए अल्कोहल से 'वाइन' नामक पेय बनाया जाता है।

थोडा सोचिए

- भारत के साथ बहुत से देशों में आजकल पेट्रोल और डीजल इन इंधनों में 10 % इथेनॉल को मिश्रित करना अनिवार्य क्यों किया गया है?
- महाराष्ट्र में नासिक शहर के आसपास वाइन निर्मिति के उद्योग बड़ी मात्रा में क्यों शुरू किए गए हैं?
- 3. गेहूँ की रोटी केवल फूलती है, परंतु डबलरोटी जालीदार, नरम और पाचन के लिए हलकी होती है। ऐसा क्यों होता है?

जैव उपचार (Bio-remediation)

पाम तेल निर्मिति में तैयार होने वाले विषैले पदार्थ, अन्य कुछ औद्योगिक प्रक्रियाओं में मुक्त होने वाली भारी धातु, लवण अवशोषित करने के लिए यारोविया लाइपोलिटिका (Yarrowia lipolytica) इस किण्व का उपयोग करते हैं। उसी प्रकार सैकरोमायसिस सेरोविसी यह किण्व 'अर्सेनिक' नामक प्रदूषक अवशोषित करता है।

Alcanyvorax जीवाणुओं का उपयोग कर समुद्र के तेल के रिसाव की सफाई की जाती है।

प्रतिजैविक (Antibiotics)

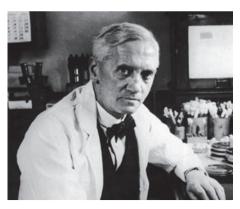
सूक्ष्मजीवों का विनाश और उनकी वृद्धि का प्रतिकार करने वाले जीवाणु और कवकों से पाए गए कार्बनी यौगिक ही प्रतिजैविक हैं। बीसवीं सदी के प्रतिजैविकों के कारण औषधोपचारों में क्रांति हुई। क्षय जैसे रोगों का तो अब कुछ देशों से लगभग निर्मूलन हो गया है।

प्रतिजैविक प्रमुख रूप से जीवाणुओं के विरुद्ध कार्य करते हैं। कुछ प्रतिजैविक आदिजीवों को नष्ट कर सकते हैं।

कुछ प्रतिजैविक अनेक प्रकार के जीवाणुओं के विरोध में उपयोगी होते हैं, इन्हें विस्तृत क्षेत्र प्रतिजैविक (Broad spectrum antibiotics) कहते हैं। उदा. एंपिसिलीन, एमॉक्सिसिलीन, टेट्रासाइक्लीन इत्यादि यदि रोग के लक्षण दिख रहे हैं किंतु रोगजंतुओं का अस्तित्व नहीं मिल रहा हो, तो Broad spectrum antibiotics का उपयोग किया जाता है।

जब रोगकारक सूक्ष्मजीव कौन-सा है, यह निश्चित रूप से समझ आता है, तब **मर्यादित क्षेत्र प्रतिजैविकों** (Narrow spectrum antibiotics) का उपयोग किया जाता है। उदा. पेनिसिलिन, जेंटामायसिन, एरिथ्रोमायसिन इत्यादि।

संस्थानों के कार्य


1952 में स्थापित, पुणे स्थित, राष्ट्रीय विषाणु संस्थान नेशनल इंस्टिट्यूट ऑफ वायरोलॉजी (National Institute of Virology) संस्थान, विश्व स्वास्थ्य संगठन की सहायता से ज्वर, खसरा, पीलिया तथा फेफड़ों के विकारों पर संशोधन कार्य कर रहा है।

पेनिसिलीन (Penicillin)

पेनिसिलीन (Penicillin), पेनिसिलिअम नामक कवक से प्राप्त होने वाला प्रतिजैविकों का समूह है। स्टैफिलो कोकाय, क्लॉस्ट्रिडिआ, स्ट्रेप्टोकोकाय प्रजातियों के जीवाणुओं से होन वाले संसर्गों को काबू में लाने के लिए उनका उपयोग होता है। कान, नाक, गला, त्वचा में जीवाणुओं द्वारा होने वाला संसर्ग तथा न्यूमोनिआ, स्कार्लेट ज्वर पर उपचार करने के लिए पेनिसिलीनयुक्त औषधियाँ उपयुक्त होती हैं।

मावधान

- प्रतिजैविक हमेशा डॉक्टरों की सलाह से लें।
- औषधियों की दूकान से डॉक्टरों की चिट्ठी के बिना कोई प्रतिजैविक न माँगें।
- गला दुखना, खाँसी-सर्दी, फ्लू इन्फ्लुएंजा होने पर अपने आप प्रतिजैविक न लें।
- मात्रा पूर्ण होने के पहले तबीयत ठीक लगी तो भी प्रतिजैविकों की निर्धारित मात्रा पूर्ण कीजिए।
- आपके लिए उपयोगी सिद्ध हुए प्रतिजैविक दूसरों को न बताएँ।

डॉ.अलेक्जांडर फ्लेमिंग

वैज्ञानिकों का परिचय

सेंट मेरीज अस्पताल के सूक्ष्मजीवशास्त्र के प्राध्यापक अलेक्जांडर फ्लेमिंग ने उनकी प्रयोगशाला में काँच की तश्तरी (पेट्रीप्लेट) में अलग-अलग प्रकार के जीवाणु और फफूँदियों की वृद्धि की थी।

3 सितंबर 1928 को फ्लेमिंग जब स्टेफाइलोकॉकस जीवाणुओं का निरीक्षण कर रहे थे, तब एक तश्तरी में उन्हें विलक्षण चीज दिखी। उस तश्तरी में फफूँदी के धब्बों की वृद्धि हुई थी। परंतु उन धब्बों के आसपास की जगह साफ हो गई थी। इसका सरल अर्थ यह था कि जीवाणु नष्ट हो गए थे। यह फफूँदी पेनिसिलिअम है और उस के स्नाव के कारण जीवाणु नष्ट हो गए थे; यह उन्होंने अधिक अध्ययन कर सिदध किया था।

इस प्रकार एक अनपेक्षित घटना के कारण विश्व के पहले प्रतिजैविक (Antibiotic) — पेनिसिलिन का जन्म हुआ था और असाह्य रोगों को काबू में लाने के प्रयासों की नींव रची गई। हमारी जान बचाने वाले प्रतिजैविक को खोज करने वाले वैज्ञानिक अलेक्जांडर फ्लेमिंग के हम हमेशा ऋणी रहेंगे, रहेंगे ना?

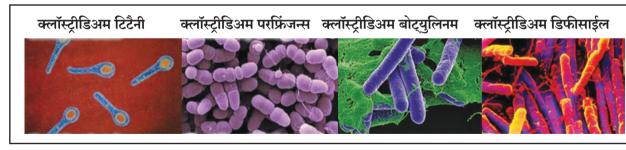
जो सुनो सो अदुभृत !

चींटियाँ अपने बिल में फफूँदी की वृद्धि कर उससे पोषण प्राप्त करती हैं तो कुछ प्रजातियों के भ्रमर और कीटक पेड़ के तनों पर उगी हुई फफूँदी में अंडे देकर इल्लियों के लिए भोजन की सुविधा बनाकर रखते हैं।

उपद्रवी सूक्ष्मजीव (Harmful Micro-organisms)

कवक (Fungi)

- 1. वर्षा ऋतु में चमड़े की वस्तुएँ, पटसन, इनमें कौन-से बदलाव दिखाई देते हैं ?
- 2. उसके बाद ऐसी वस्तुएँ आप कितने समय तक उपयोग में ला सकते हो ?
- 3. यही वस्तुएँ जाड़े के मौसम में या ग्रीष्म ऋतु में खराब क्यों नहीं होतीं ?


हवा में कवकों के सूक्ष्म बीजाणु होते हैं। नमी मिलने पर सूती कपड़ा, पटसन, चमड़े की वस्तुएँ, लकड़ी जैसे कार्बनं पदार्थों पर ये बीजाणु अंकुरित होते हैं। कवक के तंतु इन पदार्थों में गहराई तक जाकर अपना पोषण और प्रजनन करते हैं इस प्रक्रिया के कारण वह मूल पदार्थ क्षीण हो जाता है। इसी कारण फफूँदी लगा कपड़ा, पटसन, चमड़े की चप्पल-जूते बटुए, पट्टे अधिक समय तक नहीं टिकते। इसी प्रकार लकड़ी की वस्तुएँ खराब होती हैं।

थोड़ा सोचिए
चकती दिखती है। यह निश्चित रूप से क्या होता है? ऐसे पदार्थ खाने लायक क्यों नहीं होते ? अचार, मुख्बे, जैम, सॉस, चटनियाँ जैसे नम पदार्थों में भी कवकों की विभिन्न प्रजातियों की वृद्धि होती है। अन्नपदार्थ से पोषणद्रव्य अवशोषित कर अपनी वृद्धि तथा प्रजनन करते हैं। इस प्रक्रिया में फफूँदी से माइकोटॉक्सिन नामविषेले रसायन अन्न में मिश्रित होकर वह अन्न विषैला हो जाता है। इसी कारण फफूँदी लगा हुआ अन्न खाने योग्य नहीं होता

क्लॉस्ट्रीडियम (Clostridium)

बड़े कार्यक्रमों के भोजन समारोह में कुछ व्यक्तियों को अन्न विषाक्तता (Food Poisoning) होती हैं। यह अन् अचानक विषैला कैसे होता है?

पकाया हुआ भोजन खराब करने वाले ये जीवाणु क्लॉस्ट्रिडिअम है। इस जीवाणु की लगभग 100 प्रजाति होते हैं। कुछ मिट्टी में स्वतंत्र रूप से जीवनक्रमण करती हैं तो कुछ प्रजातियाँ मानव तथा अन्न प्राणियों के आहारनाल में प जाती हैं। यह जीवाणु बेलनाकार होते हैं तथा प्रतिकूल परिस्थिति में बोतल के आकारवाले बीजाणु (Endospores तैयार करते हैं। ये हवा की ऑक्सीजन का सर्वसामान्य अनुपात सहन नहीं कर पाते, यह इनकी विशेषता है। इसका कार यह है कि इनकी वृद्धि अनॉक्सी परिस्थिति में होती है।

8.4 क्लॉस्ट्रिडिअम प्रजाति

अन्य रोगकारक सूक्ष्मजीव (Other Harmful Micro- organisms)

क्या हमें केवल क्लॉस्टिडिअम के कारण ही बीमारियाँ होती है ?

कईं अन्य प्रजातियों के जीवाणु, विषाणु, आदिजीव तथा कवक ये सूक्ष्मजीव भी कई मानवीय रोगों के कारक हैं जीवाणुओं से भी आकार में महीन होने वाले तथा केवल सजीव कोशिकाओं में वृद्धि और प्रजनन करने वाले विषाणुअ के बारे में आप जानते है। अब देखते हैं कि वे हमारे लिए कष्टप्रद कैसे होते हैं ?

वैज्ञानिकों का परिचय

विज्ञान की उच्च शिक्षा प्राप्त की। मांस की खराबी 'बैसिलस' जीवाणुओं के कारण होती है, ऐसा माना जाता था। परंतु इदा ने क्लॉस्ट्रिडअम बोट्युलिनम नामक अनॉक्सी जीवाणु इस सड़न के कारक हैं यह सिद्ध किया कि इदा बेंगस्टन ने शिकागो विश्वविद्यालय से सूक्ष्मजीव जिस विष (Toxin) के कारण गैस गैंग्रीन होता है और उसके विरुद्ध कार्य करने वाला उपयुक्त प्रतिआविष (Antitoxin) के संदर्भ में इदा ने उल्लेखनीय संशोधन कार्य किया है। 'टाइफस' नामक घातक रोग के बारे में संशोधन कार्य करते समय वे स्वयं उस रोग से बाधित हुई, परंतु उसपर मात करते हुए अपना संशोधन कार्य निरंतर शुरू रखा। उनके इस कार्य के सम्मान में उन्हें 1947 का 'टाइफस पदक' प्रदान किया गया।

गेगपमार और गेगपतिबंध

षाणु		
	एड्स से बाधित व्यक्ति के शरीर का	इंजेक्शन और सूईयाँ बार-बार उपयोग
	रक्त, वीर्य, माँ का दूध	में न लाना, सुरक्षित लैंगिक संबंध
षाणु	दूषित पानी, अन्न	उबालकर छाना हुआ साफ पानी, अन्न
		ढँककर रखना
षाणु	रोगी से संपर्क	रोगी से संपर्क टालना और स्वच्छता
षाणु	रोगी से संपर्क	निर्जंतुक पानी, स्वच्छ अन्न,
		टीकाकरण करना
षाणु	रोगी पक्षी, प्राणी	स्वच्छता तथा सही विधि से पकाया
		हुआ मांस
षाणु	मच्छर का दंश	परिसर स्वच्छता, पानी न जमने देना,
		मच्छर नियंत्रण
वाणु	रोगी से हवा में आने वाली महीन बूँदे	टीकाकरण, रोगी से दूर रहना
वाणु	रोगी के दीर्घकालीन संपर्क में	रोगी से संपर्क तथा उसकी वस्तुओं का
		उपयोग टालना
वाणु	दूषित अन्न, पानी	स्वच्छ अन्न और पानी
ादिजीव	मच्छर का दंश , अस्वच्छ परिसर	परिसर स्वच्छता, पानी न जमने देना,
		मच्छर नियंत्रण
वक	रोगी और उसकी वस्तुओं से संपर्क	स्वच्छता, रोगी से संपर्क टालना
	ाणु ाणु ाणु गणु गणु गणु	पणु रोगी से संपर्क पणु रोगी से संपर्क पणु रोगी पक्षी, प्राणी पणु रोगी पक्षी, प्राणी पणु रोगी से हवा में आने वाली महीन बूँदे पणु रोगी के दीर्घकालीन संपर्क में पणु दूषित अन्न, पानी दिजीव मच्छर का दंश, अस्वच्छ परिसर

थोड़ा सोचिए

- 1. अचार की बरनी को अंदर की ओर नमक लगाते हैं और फाँकों पर तेल की परत रखते हैं; ऐसा क्यों?
- 2. खरीदे हुए अन्नपदार्थ टिकाए रखने के लिए उनमें कौन-से परिरक्षक मिलाए जाते हैं?
- 3. कवकवर्गीय सजीवों के अन्य वनस्पतियों और प्राणियों को होने वाले कुछ उपयोग खोजें।
- 4. पत्थर फूल (लाइकेन) इस मसाले के पदार्थ की रचना कैसी है? उनका अन्य उपयोग कहाँ होता है?
- 5. पैक किये हुए खाद्य पदार्थ पैकिंग पर निर्माण व उपयोग की अंतिम तारीख देखकर ही क्यों खरीदने चाहिएँ।

सूक्ष्मजीवों के कारण वनस्पति और प्राणियों में होने वाले रोग कौन-से हैं? उनपर कौन-से उपाय किए जाते हैं ?

स्वाध्याय 🗸 🤭

- निम्नलिखित विकल्पों में से योग्य विकल्प चुनकर कथन पूर्ण कीजिए तथा उनका स्पष्टीकरण दीजिए। (माइकोटॉक्सिन, मुकुलन, राइजोबियम)
 - अ. किण्व में पद्धित से अलैंगिक प्रजनन होता है।
 - आ. फफूँदीजन्य विषैले रसायनों को कहते हैं।
 - इ. के कारण शिंबावर्गीय वनस्पतियाँ अधिक मात्रा में प्रथिन निर्मिति कर पाते हैं।
- 2 निम्नलिखित पदार्थों में कौन-कौन-से सूक्ष्मजीव पाए जाते हैं, उनके नाम लिखें।

दही, डबलरोटी, दलहनों के पौधों की जड़ों की गाँठे, इडली, डोसा, खराब हो चुकी आलू की मब्जी

- 3. अलग शब्द पहचानिए तथा वह अलग क्यों है इसका कारण बताइए।
 - अ. निमोनिया, घटसर्प (डिफ्थिरिया), चेचक, हैजा।
 - आ. लैक्टोबैसिलाई, राइजोबियम, किण्व, क्लॉस्ट्रिडिअम
 - इ. जंग लगना, रुबेला, जड़ों का सड़ना, मोजेक
- 4. शास्त्रीय कारण लिखें।
 - अ. गर्मी में बहुत समय तक रखी हुई दाल पर झाग दिखती है।
 - आ. कपड़ों में कोलतार क्यों रखे जाते हैं?
- 5. कवकजन्य रोगों के प्रसार के माध्यम और प्रतिबंधक उपाय लिखिए।
- 6. जोडियाँ मिलाएँ।

'अ' समूह 'ब' समूह

- 1. राइजोबियम अ. अन्न विषाक्तता
- 2. क्लॉस्ट्रिडअम आ. नाइट्रोजन स्थिरीकरण
- 3. पेनिसिलिअम इ. बेकरी उत्पादन
- 4. किण्व (यीस्ट) ई. प्रतिजैविक निर्मिति

7. उत्तर लिखिए।

- अ. छोटे बच्चों को कौन-कौन-से टीके लगाए जाते हैं?
- आ. टीका कैसे बनाया जाता है?
- इ. प्रतिजैविक के कारण रोगनिवारण प्रक्रिया कैसे घटित होती है ?
- ई. मानव की तरह क्या प्राणियों को भी प्रतिजैविक दिए जाते हैं ? दोनों को दिए जाने वाले प्रतिजैविक क्या एक जैसे होते हैं ?
- उ. विशिष्ट रोग का निवारण करने के लिए टीका बनाने के लिए उस रोग के कारक जीवाणुओं का सुरक्षित पद्धित से जतन क्यों करना पड़ता है?
- 8. संक्षिप्त उत्तर लिखिए।
 - अ. विस्तृत क्षेत्र प्रतिजैविक क्या हैं ?
 - आ. किण्वन का क्या अर्थ है?
 - इ. परिभाषा लिखें प्रतिजैविक

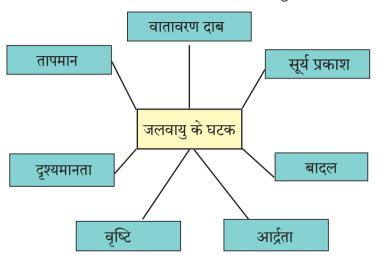
उपक्रम:

जेनेरिक दवाइयों के बारे में जानकारी प्राप्त कीजिए तथा उसपर कक्षा में चर्चा कीजिए।

9. पर्यावरण व्यवस्थापन

> जलवाय्

- > मौसम विज्ञान
- > ठोस कचरे का प्रबंधन
- आपदा व्यवस्थापन


- 1. वातावरण हमारे दैनिक जीवन से कैसे संबंधित होता है?
- 2. दूरदर्शन व आकाशवाणी पर आने वाले विविध समाचारों में जलवायु के संबंध में क्या क्या अनुमान लगाए जाते हैं?

जलवायु (Weather)

किसी स्थान पर निश्चित समय पर वातावरण की स्थिति को जलवायु कहते हैं। वातावरण की यह स्थिति जलवायु के विविध घटकों पर निर्भर होती है। जलवायु की स्थिति को निश्चित करने के लिए अनेक घटक उत्तरदायी होते हैं। (आकृति 9.1)

हम बहुधा 'आज बहुत ठंड है', 'आज बहुत गरम है' इन वाक्यों से अपने स्थान की जलवायु के विषय में अपना मत व्यक्त करते हैं। जलवायु यह हवा की उस समय की स्थिति पर निर्भर करती है। किसी प्रदेश के जलवायु के विविध घटकों

की दैनिक स्थिति का कई वर्षों तक निरीक्षण व मापन करके विशिष्ट कालाविध में निकाला गया औसत उस प्रदेश की जलवायु होती है। वातावरण की दीर्घकालीन स्थायी स्थिति को जलवायु कहते हैं।

9.1 जलवायु के घटक

जलवायु में परिवर्तन (Change in Weather)

जलवायु हमेशा नहीं बदलती, वह किसी एक प्रदेश में दीर्घकाल के लिए एक जैसी होती है। इससे हमें यह स्पष्ट होता है कि हवा का संबंध निश्चित स्थान व निश्चित समय से होता है, जबकि जलवायु का सबंध बड़े प्रदेश व दीर्घ कालाविध से होता है। हवा में अल्पकाल में बदलाव होता है तो जलवायु में बदलाव के लिए दीर्घकाल लगता है।

जलवायु की हमारे दैनिक जीवन में महत्त्वपूर्ण भूमिका है। हमारी अन्न, वस्त्र, निवास इन प्राथमिक आवश्यकताओं तथा विविध व्यवसायों पर जलवायु का परिणाम होता है। भारत जैसे कृषिप्रधान देश के लिए जलवायु अधिक महत्त्वपूर्ण है। विमान का रनवे बनाना, बंदरगाह निर्मिति, बड़े पुल बनाना व गगनचुंबी इमारतें बनाना जैसी योजनाओं में जलवायु के विविध घटकों जैसे हवा की दिशा, गित, तापमान व हवा का दाब इत्यादि मुद्दों का विचार किया जाता है।

जलवायु का किन-किन घटकों पर अनुकूल तथा प्रतिकूल परिणाम होता है? इस परिणाम को कम करने के लिए क्या करना पडेगा?

विचार कीजिए और चर्चा कीजिए

- 1. मानव की प्रगति जलवायु व भौगोलिक अनुकुलता से जुड़ी है।
- सिदयों से मौसम के अनुभव के आधार पर मानव ने अपनी समय सारिणी बनाई है।
- 3. जलवायु के खेती के उत्पादन पर होने वाले परिणाम को ध्यान में रखकर जलवायु का अध्ययन करना वैज्ञानिकों के लिए आवश्यक लगता है।

दिनविशेष

23 मार्च इस दिन को 'वैश्विक मौसम दिन' के रूप में मनाया जाता है। जलवायुशास्त्र के संदर्भ में जानकारी प्राप्त कीजिए व उसके आधार पर जनजागृति करने के लिए चार्ट बनाइए।

सजीव जगत में जलवायु का महत्त्व (Importance of Climate for Living World)

- 1. दैनिक तथा दीर्घकालीन जलवायु व जलवायु का मानवीय जीवन पद्धति पर प्रत्यक्ष या अप्रत्यक्ष प्रभाव पड़ता है। भूपृष्ठ, जलाशय, वनस्पित व प्राणी मिलकर पृथ्वी पर प्राकृतिक पर्यावरण तैयार करते हैं। यह पर्यावरण सजीवों के विकास के लिए उत्तरदायी होता है।
- 2. किसी प्रदेश के लोगों का आहार, पोशाक, घर, व्यवसाय, चयन करने में जलवायु सहायक होती है। उदाहरणार्थ, कश्मीरी तथा राजस्थानी लोगों का विशेषतापूर्ण रहन-सहन।
- समुद्री जल की लवणता, क्षारता, सागरप्रवाह की निर्मिति व जलचक्र की निर्मिति ये सभी बातें मौसम व जलवायु के विविध घटकों से संबंधित होती हैं।
- 4. भूपृष्ठ के आवरण में स्थित चट्टानों का क्षरण कार्य जलवायु के विविध घटकों द्वारा होता है।
- 5. मिटटी की निर्मिति तथा विकास में जलवाय की भूमिका अतिमहत्त्वपूर्ण है।
- 6. मिट्टी में रहने वाले जीवाणुओं का कार्बनिक द्रव्य की निर्मिति में महत्त्वपूर्ण योगदान होता है। यह प्रक्रिया जलवायु के विविध घटकों पर निर्भर होती है।
 - इस प्रकार ऊपर दिए गए तथ्यों से यह स्पष्ट होता है कि वातावरण व जलवायुशास्त्र का अध्ययन मानवीय जीवन के दृष्टिकोण से अति महत्त्वपूर्ण है।

किसी स्थान की जलवायु निश्चित करते समय इससे पूर्व अध्ययन किए हुए जलवायु के विविध अंगों का अध्ययन करना पड़ता है। इनका निरीक्षण दर्ज करने के लिए विश्व के बहुत से देशों ने जलवायु विभाग की स्थापना की है। इन्हें वेधशाला कहते हैं। ये वेधशालाएँ आधुनिक यंत्रसामग्री व उपकरणों से सुसज्जित होती हैं।

वर्तमानकालीन जलवायु की स्थिति का विगतकालीन जलवायु के संदर्भ में विश्लेषण करने पर भविष्यकालीन बदलाव का अनुमान लगाया जा सकता है परंतु जलवायु, वातावरण के विविध घटकों का सम्मिश्रित स्वरूप होने के कारण उसके बारे में अनुमान लगाना बहुत ही जिटल है। किसी जगह की जलवायु धीरे-धीरे व मर्यादित स्वरूप में बदलती है तो वहाँ के बदलाव का अनुमान लगाना आसान है परंतु जिस जगह जलवायु में होने वाले बदलाव जिटल व परस्परावलंबी होते हैं तथा शीघ्रता से बदलते हैं तो वहाँ के बदलाव का अनुमान लगाना कठिन होता है।

मौसम विज्ञान (Meteorology)

हवा के विभिन्न घटक, प्राकृतिक चक्र, पृथ्वी की भौगोलिक हलचल और इन सभी के परस्पर संबंधों का अभ्यास तथा विश्लेषण करने के शास्त्र को मौसम विज्ञान कहते हैं।

इसमें जलवायुसंबंधी तूफान, बादल, वृष्टि तथा बिजली की कड़कड़ाहट तथा अन्य अनेक घटकों का अध्ययन किया जाता है। इसके आधार पर भविष्यकालीन जलवायुसंबंधी अनुमान लगाए जाते हैं। इसका उपयोग सामान्य जनता, किसान, मछुआरे, विमान सेवा, जल यातायात और विभिन्न संस्थानों को होता है।

संस्थानों के कार्य

संयुक्त राष्ट्रसंघ की ओर से 23 मार्च 1950 को 'विश्व जलवायु शास्त्र संगठन' (World Meteorological Organization) संस्थान की स्थापना की गई। इस संस्थान का कार्य अन्नसुरक्षा, जलव्यवस्थापन, यातायात के लिए अत्यंत महत्त्वपूर्ण है।

सूचना और संचार प्रौदुयोगिकी के साथ

इंटरनेट से अलग-अलग सर्च इंजिन का उपयोग कीजिए और निम्निलिखित संस्थानों की जानकारी देने वाली विभिन्न लिंक्स खोजें। प्राप्त जानकारी के आधार पर रपट तैयार कीजिए।

अंतरराष्ट्रीय जलवायु विज्ञान संस्थान (WMO) भारतीय उष्णदेशीय मौसम विज्ञान संस्थाना (IITM) राष्ट्रीय, समुद्री व वातावरणीय व्यवस्थापन (NOAA)

भारतीय मौसम विभाग (Indian Meteorology Department)

शिमला में भारतीय जलवायु विभाग की स्थापना 1875 में ब्रिटिशों ने की। इस संस्थान का प्रमुख कार्यालय पुणे में है। मुंबई, कोलकाता, चेन्नई, नागपुर और दिल्ली में इनके प्रादेशिक कार्यालय हैं। हर दिन की मौसम की स्थिति दर्शाने वाले मानचित्र बनाए जाते हैं। हर 24 घंटों में दो बार ऐसे मानचित्र बनाकर प्रसारित किए जाते हैं। यहाँ जलवायु की जानकारी पाने के लिए लगने वाले उपकरण, रडार की सहायता से जलवायुसंबंधी व्यक्त किए गए अनुमान, भूकंप मापन से संबंधित जलवायु के अनुमान, वर्षा के संदर्भ में लगाए जाने वाले अनुमानों के लिए उपग्रह की सहायता से जलवायु का अनुमान, वायु प्रदूषण जैसे विषयों पर निरंतर संशोधन किया जाता है।

भारतीय जलवायु विभाग की ओर से विमान उड्डान विभाग, नौकायन विभाग, खेती, जलसंधारण, समुद्र में तेल संशोधन तथा उत्पादन करने वाले संस्थानों को जानकारी दी जाती है। तूफान, रेतीले तूफान, मूसलाधार बारिश, लू और शीत लहर, सुनामी जैसे अन्य संकटों की पूर्वसूचना विभिन्न विभागों को तथा सभी संचार माध्यमों और सामान्य नागरिकों तक पहुँचाई जाती है। इसके लिए उच्च तकनीक से सुसज्ज कई उपग्रह भारत देश ने अंतरिक्ष में छोड़े हैं। उनसे प्राप्त होने वाली जानकारी का पृथक्करण या विश्लेषण करने हेतु भारत में विभिन्न स्थानों की वेधशालाएँ बहुत उच्च कोटि का कार्य कर रही हैं। (www.imdpune.gov.in)

मानसून का प्रारूप और मौसम का अनुमान (Monsoon Model and Weather Prediction)

भारत में मानसून संबंधी जलवायु में अनुमान लगाने की परंपरा सौ वर्ष से भी अधिक पुरानी है। सन 1877 के अकाल के पश्चात IMD के संस्थापक एच. एफ. ब्लेनफोर्ड ने 1884 में हिमाचल की हिमवृष्टि इस घटक को ध्यान में रखते हुए सर्वप्रथम इस प्रकार अनुमान लगाया था। 1930 के दशक में IMD के तत्कालीन संचालक सर गिल्बट वॉकर ने विश्वभर के विभिन्न जलवायु विज्ञान के घटकों और स्थानिकीय मानसून का संबंध अधोरेखित किया तथा उन्हें उपलब्ध प्रेक्षणों तथा पुराने पठनों के आधार पर आने वाला मानसून कैसा होगा, इसका अनुमान प्रतिपादित किया। 1990 के दशक में डॉ. वसंत गोवारीकर के नेतृत्व में विश्वभर के मौसम संबंधी 16 घटकों पर आधारित मानसून का प्रारूप बनाया गया। 1990 से 2002 तक यह प्रारूप उपयोग में लाया जाता था।

संख्यात्मक प्रारूप (डायनामिक/गणितीय मॉडेल)

जलवायु की वर्तमान गतिविधियों तथा उनमें चल रही भौतिक प्रक्रियाओं का अंदाजा लगाकर संख्यात्मक प्रारूपों द्वारा अनुमान लगाया जाता है। जलवायु के वर्तमान प्रेक्षणों का उपयोग कर परम संगणक की सहायता से गणितीय प्रक्रियाएँ की जाती हैं। गणितीय प्रकार के प्रारूप दैनिक भौगोलिक घटनाओं पर आधारित महासंगणकीय तकनीक द्वारा प्रस्तुत किए जाते हैं।

आज IITM की ओर से नए प्रारूप बनाए जा रहे हैं। वर्तमान प्रारूपों को अधिक उपयुक्त बनाना, कुछ नए प्रारूप तथा तकनीक विकसित करने के दोनों स्तरों पर काम चल रहा है। इसलिए रडार व्यवस्था, उपग्रह तंत्रज्ञान के विकास पर भी ध्यान दिया जा रहा है।

समुच्चित प्रारूप

अनेक प्रारूपों में उपयोग में लाए जाने वाले जिन घटकों का मानसून पर अधिक प्रभाव है ऐसे घटकों को ध्यान में रखकर एकत्रित अनुमान लगाया जाता है। आजकल IMD की ओर से दिया जाने वाला अनुमान इसी प्रकार के अनेक प्रारूपों का एकत्रित फलित होता है। इसे समुच्चित प्रारूप कहते हैं।

मांख्यिकी प्रारूप

विगत काल में विभिन्न प्रदेशों में समुद्र का तापमान, वातावरण का दाब तथा उस वर्ष का मानसून कैसा था, इसका एकत्रित अभ्यास कर उसकी तुलना में आज उस प्रदेश के जलवायु संबंधी प्रेक्षण कैसे हैं, उस आधार पर वर्तमान स्थिति में मानसून कैसा होगा इसका अनुमान लगाया जाता है।

इसे सदैव ध्यान में रखिए

कोई भी जलवायु विषयक प्रारूप, उसमें उपयोग में लाए जाने वाले घटक और मॉडेल्स से अपेक्षित परिणामों के परस्पर संबंध पर निर्भर होता है। यद्यपि समुद्र और वातावरण में ये परस्परसंबंध हमेशा एक जैसे न रहने के कारण जलवायु विज्ञान प्रारूप में उसके अनुसार सातत्यपूर्ण परिवर्तन लाने पड़ते हैं।

ठोस कचरा व्यवस्थापन : समय की माँग (Solid Waste Management)

- 1. प्रदूषण क्या है?
- 2. अपने आसपास का परिसर किन-किन कारणों से प्रदूषित होता है?

आपकी कक्षा के कूड़ेदान में जमा हुए कचरे का निरीक्षण कीजिए। उसमें कौन-कौन-से पदार्थ हैं, उसकी सूची बनाएँ और इस कचरे का योग्य व्यवस्थापन कैसे किया जा सकता है, उसके बारे में शिक्षकों से चर्चा कीजिए।

क्या अपने घर के कूड़े का ऐसा व्यवस्थापन किया जा सकता है? इसपर विचार कीजिए।

9.2 ठोस कचरा

प्रेक्षण कीजिए और चर्चा कीजिए

9.3 कूड़ेवाला परिसर और स्वच्छ परिसर

- 1. नीचे दिए हुए दोनों छायाचित्र (9.2 अ और ब) कौन-सा मुख्य अंतर दर्शाते हैं ?
- 2. छायाचित्र 'ब' में दिखाई गई स्थिति को यथावत रखने के लिए क्या करना पड़ेगा? मानव के प्रतिदिन की विविध कृतियों में अनेक निरूपयोगी पदार्थ तैयार होते हैं जिन्हें ठोस कचरा कहते हैं। अगर हम योग्य पद्धति से कचरे का व्यवस्थापन करें तो ये अपशिष्ट पदार्थ ऊर्जा का एक मल्यवान स्रोत बन सकते है। आज की परिस्थिति में संपर्ण विश्व के समक्ष ठोस कचरा एक बड़ी समस्या बन गया है, जिससे पानी व जमीन दोनों ही प्रदिषत हो रहे हैं। ठोस कचरा आर्थिक विकास, पर्यावरण क्षति व आरोग्य समस्या की दृष्टि से एक गंभीर समस्या है। इसके कारण हवा, पानी व जमीन प्रदृषित हो रहे हैं तथा प्रकृति व मानव अधिवास के लिए बड़ा संकट निर्माण हो गया है।

क्या आप जानते हैं?

प्रतिदिवस कचरानिर्मिति

राज्य के प्रमुख महानगरों में निर्माण होने वाला ठोस कचरा इस प्रकार है, मुंबई लगभग 5000 टन, पुणे लगभग 1700 टन, नागपुर लगभग 900 टन।

26 जुलाई 2005 में मुंबई में बाढ़ की विकराल समस्या उत्पन्न हुई थी। इस विपत्ति का एक महत्त्वपूर्ण कारण अयोग्य ठोसकचरा व्यवस्थापन था। इकट्ठा किया हुआ ठोस कचरा विविध विपत्तियों का प्रमुख कारण हो सकता है।

निरीक्षण कीजिए और सूची बनाइए

आप जहाँ रहते हैं उस इमारत या परिसर का सर्वेक्षण कीजिए। नष्ट होने वाले तथा नष्ट न होने वाले कचरों का वर्गीकरण कीजिए। साधारणत: एक सप्ताह में कितने अनुपात में ठोसकचरा जमा होता है? इसके लिए उत्तरदायी घटकों की सूची तैयार कीजिए।

बताइए तो

- 1. ठोस कचरे का अर्थ क्या है?
- 2. ठोस कचरे में किन-किन घटकों का समावेश होता है?

दैनिक जीवन में हम अनेक पदार्थों, वस्तुओं का उपयोग करते हैं। हमारे उपयोग में आने वाली वस्तुओं व पदार्थों का स्वरूप भिन्न-भिन्न होता है। इनमें से कुछ फेंकने लायक तो कुछ पुनः उपयोग करने जैसे होते हैं। परंतु अगर इनका योग्य विनिमय नहीं किया गया तो इसका विपरीत परिणाम पर्यावरण पर होता है।

पढ़िए और चर्चा कीजिए

नीचे दी गई सारिणी ध्यान से पढ़े । पढ़ने पर क्या विचार बनता है ?

वर्गीकरण	स्रोत		
वंगाकरण			
घर का कचरा	रसोईघर का बचा हुआ भोजन, खराब कागज, प्लास्टिक की थैलियाँ, सब्जियों के डंठल, फलों		
	के छिलके, पतरे की वस्तुएँ, काँच की वस्तुएँ इत्यादि।		
औद्योगिक कचरा	रसायन, रंग, तलछट, राख, व्यर्थ वस्तुएँ, धातु इत्यादि।		
धोखादायक कचरा	विविध उद्योगों से निर्माण होने वाले रसायन, रेडियो सक्रिय पदार्थ, स्फोटक, रोगप्रसारक पदार्थ		
	इत्यादि।		
खेतों/बगीचों का	पेड़ों की पत्तियाँ, फूल, टहनियाँ, खेत में फसलों के अवशेष जैसे खर-पतवार, जानवरों का		
कचरा	मल-मूत्र, कीटनाशक, विविध रसायन व खाद के अवशेष इत्यादि।		
इलेक्ट्रॉनिक कचरा	खराब हुआ टेलिविजन, मोबइल फोन्स, म्युजिक सिस्टिम, संगणक इत्यादि।		
जैव वैद्यकीय कचरा दवाखाने, हॉस्पिटल्स, रक्त बैंक व प्रयोगशाला में प्रयुक्त बैंडेजेस, ड्रेसिंग रूई, स			
,	के भाग, रक्त, सलाईन की बोतलें, दवाइयाँ, पुरानी दवाइयों की बोतलें, परखनलियाँ इत्यादि।		
शहर/नगर का कचरा	घर का कचरा, औद्योगिक व व्यापारी उद्योग द्वारा निर्मित फेंकने लायक पदार्थ, द्कानें,		
	सब्जीमंडी, मटन मार्केट इत्यादि में उपयोग में आने वाले कैरीबैग, काँच, धातु के टुकड़े व लोहे		
	की छड़, धागे, रबड़, कागज, डिब्बे व इमारत के निर्माणकार्य के समय का फेंकने लायक सामान		
	इत्यादि।		
आण्विक कचरा परमाणुविद्युत केंद्र, यूरेनियम की खदान, परमाणु अनुसंधान केंद्र, परमाणु अस्त्र की			
जााञ्जका कावरा	का स्थान, वहाँ से बाहर निकलने वाले रेडियोसक्रिय पदार्थ उदाहरण, स्ट्रॉंशियम-90		
	सिरियम-141 तथा बेरियम-140 इस प्रक्रिया से बाहर निकलने वाला भारी पानी।		
खनिज कचरा	खदान से निकलने वाले सीसा, आर्सेनिक, कैडिमयम जैसी भारी धातुओं के अवशेष।		

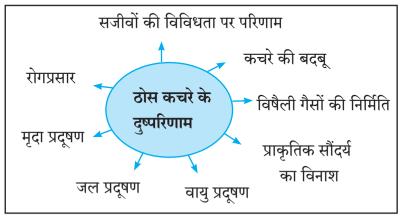
ऊपर दिए गए अपशिष्ट पदार्थों को प्रमुख रूप में कौन से दो समूहों में विभाजन किया जा सकता है?

विघटनशील कचरा (Bio-Degradable waste): इस प्रकार के कचरे का विघटन सूक्ष्मजीवों द्वारा आसानी से होता है। इनमें प्रमुख रूप से रसोईघर का कचरा, खराब भोजन, फल, सब्जी, मिट्टी, राख, गोबर, वृक्षों के भाग इत्यादि का समावेश होता है। यह कचरा मुख्यत: कार्बनिक रूप में होता है जिसे हम गीला ठोसकचरा कहते हैं। इसका सुयोग्य विघटन करने पर हमें उससे उत्तम प्रकार की खाद व ईंधन मिलता है। अनेक शहरों में इस प्रकार के जैव ईंधन निर्मिति प्रकल्प शुरू किए गए हैं।

अविघटनशील कचरा (Non-Bio-Degradable waste): इस प्रकार के कचरे का आसानी से विघटन नहीं होता क्योंकि इनके विघटन के लिए दीर्घकाल लगता है तथा विविध तंत्रों का उपयोग करना पड़ता है। इसमें प्लास्टिक, धातु व इन जैसे अन्य पदार्थों का समावेश होता है। इस प्रकार के कचरे को सूखा ठोसकचरा कहते हैं।

- 1. अविघटनशील ठोसकचरे का पुनर्चक्रीकरण क्यों आवश्यक है?
- 2. सूखे ठोसकचरे में किन-किन पदार्थों का समावेश होता है?

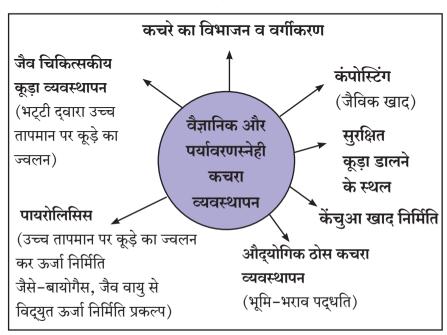
अपने परिसर के विभिन्न अपशिष्ट पदार्थों की (कचरा) सची बनाएँ और निम्नानसार सारिणी बनाइए।


	वस्तु	विघटनशील पदार्थ (कार्बनिक)	अविघटनशील पदार्थ (अकार्बनिक)	पुनर्निमिति	पुनरूपयोग	विषैला
	प्लास्टिक की बोतल	नहीं	हाँ	संभव है	संभव है	ौह
ĺ						

आजकल सर्वत्र मोबाइल फोन, यह इलेक्ट्रॉनिक उपकरण बहुत लोकप्रिय है। आपके घर के आसपास की मोबाइल की दुकान पर जाकर खराब और फेंकने लायक मोबाइल का निपटारा वे कैसे करते हैं इसकी जानकारी दकानदार से प्राप्त कीजिए।

सूचना और संचार प्रौद्योगिकी के साथ

दी गई आकृति 9.4 का बारीकी से निरीक्षण कीजिए। उसके आधार पर ठोस कचरा व्यवस्थापन का क्या महत्त्व है यह अपने मित्र को e-mail की सहायता से भेजिए।



9.4 ठोस कचरे के दृष्परिणाम

ठोसकचरा व्यवस्थापन की आवश्यकता

- 1. पर्यावरण प्रदषण की रोकथाम तथा परिसर स्वच्छता के लिए।
- 2. ऊर्जा निर्मिति तथा खाद्य निर्मिति और उससे रोजगार निर्मिति के अवसर उपलब्ध कराना।
- 3. ठोस कचरा प्रक्रिया द्वारा प्राकृतिक संसाधनों पर से भार कम करने के लिए।
- 4. आरोग्य संरक्षण और जीवन का स्तर सुधारने के लिए तथा पर्यावरण का संतुलन बनाए रखने के लिए।

शहरी और औद्योगिक क्षेत्रों से निर्मित होने वाला ठोस कचरा और उसके कारण आने वाली समस्याएँ टालने के लिए और पर्यावरण स्वच्छ बनाए रखने के लिए ठोसकचरे का व्यवस्थापन करना आज के समय की माँग है। यह साध्य करने के लिए उत्पादन प्रक्रिया कार्यक्षम बनाकर कूड़े की निर्मिति कम होगी इसका ध्यान रखना, पुनरूपयोग से कचरे की निर्मिति कम करना और कचरे से पुन: वस्तुएँ बनाना, ऐसे उपाय करने चाहिए।

9.5 ठोस कचरे का व्यवस्थापन

होस कचरा व्यवस्थापन के 7 नियम

पुनःउपयोग (Reuse)

उपयोगी वस्तुएँ व्यर्थ होने पर भी उनका अन्य जगहों पर उचित उपयोग कीजिए।

उपयोग से इन्कार (Refuse)

प्लास्टिक और थर्माकोल जैसे अविघटनशील पदार्थों से बनी वस्तुओं का उपयोग करने से इन्कार करना।

चक्रीकरण (Recycle)

अपशिष्ट पदार्थों पर पुन: चक्रीकरण प्रक्रिया कर उनसे उपयुक्त पदार्थ बनाना। उदा. कागज, काँच का पुन: चक्रीकरण किया जा सकता है।

प्नःविचार (Rethink)

दैनिक जीवन में वस्तुओं के उपयोग के बारे में अपनी आदतें, कृति तथा उनके परिणाम का पुन:श्च नए दृष्टि से विचार करना।

कम उपयोग करना (Reduce)

संसाधन व्यर्थ न जाएँ इसलिए ऐसी वस्तुओं का उपयोग कम करना। पुरानी वस्तुओं का पुन: उपयोग करना। अनेक व्यक्तियों का मिलकर एक वस्तु का उपयोग करना। उपयोग में लाओ और फेंक दो (Use and Throw) प्रकार की वस्तुओं का उपयोग टालना।

संशोधन (Research)

वर्तमान में उपयोग से बाहर हुए अपशिष्ट पदार्थ फिर से उपयोग में कैसे लाए जा सकते हैं, इस विषय में संशोधन करना।

नियमन/जनजागृति

(Regulate and Public Awareness)

कूड़ा व्यवस्थापन संबंधी कानून, नियमों का स्वयं पालन करना तथा दूसरों को पालन करने के लिए प्रवृत्त करना।

नीचे कुछ कृतियाँ दी गई हैं। क्या हम वह कृतियाँ प्रत्यक्ष रूप से करते हैं? यह करने से ठोसकचरा व्यवस्थापन में हमारी कितनी मदद होगी?

- ठोसकचरा व्यवस्थापन में 3 'R' मंत्र का उपयोग करना। Reduce (कूड़ा कम करना), Reuse (कूड़े का पुन:उपयोग), Recycle (कूड़े का पुन: चक्रीकरण)
- 2 चॉकलेट, बिस्कुट, आईस्क्रीम या ठंडे पदार्थों के प्लास्टिक आवरण रास्ते पर या खुली जगहों पर न फेंककर योग्य कूड़ेदान में डालना।
- उप्लास्टिक की थैलियों का उपयोग न करना। इसे पर्यायस्वरूप कपड़े की थैलियाँ, पुरानी साड़ियाँ, चद्दरें, परदें इनका उपयोग कर बनाई हुई थैलियों का उपयोग करना।
- 4 कागज के दोनों ओर लिखना। ग्रीटिंग कार्ड्स, गिफ्ट पेपर का पुन:श्च उपयोग करना।
- टिश्यू पेपर का उपयोग कम करना और अपने रूमाल का उपयोग करना।
- 6. सीसावाली बैटरी की जगह रिचार्जेबल बैटरी का उपयोग करना।
- 7. ठोस कचरा व्यवस्थापन में स्वयं, परिवार और समाज को प्रोत्साहित करना, प्रबोधन करना, विविध उपक्रम चलाना।
- 8. Use and Throw (उपयोग करो और फेंको) प्रकार की वस्तुओं का उपयोग टालना।

ठोस कूड़े का उपयोग कर विद्युत ऊर्जानिर्मिति करने का अनुपात अमेरिका में सबसे अधिक है। जापान में केले के पौधे की परतों से कपड़ों के धागे और कागज तथा अन्य उपयोगी वस्तुएँ तैयार करने के प्रकल्प विकसित किए गए हैं। अपने परिसर में ऐसे प्रकल्प कहाँ हैं?

आपके गाँव/शहर में कूड़ा व्यवस्थापन के लिए कौन-कौन-सी प्रक्रियाएँ अमल में लाई जाती हैं?

कुड़े के विघटन के लिए लगने वाली कालावधि

पूर्ञ परायपटन पराराष्ट्र राजन पारा। परारामाय			
पदार्थ	प्राकृतिक रूप से विघटित होने के लिए लगने वाली		
	कालावधि		
केले का छिलका	3 से 4 सप्ताह		
कागज की थैली	1 महीने		
कपड़े की चिंदियाँ	5 महीने		
ऊनी मोजे	1 वर्ष		
लकड़ी	10 से 15 वर्ष		
चमड़े के जूते	40 से 50 वर्ष		
जस्ते के डिब्बे	50 से 100 वर्ष		
एल्युमीनियम के डिब्बे	200 से 250 वर्ष		
विशिष्ट प्लास्टिक थैली	10 लाख वर्ष		
थर्मोकोल कप (स्टायरोफोम)	अनंत काल		

अपने आसपास जमा होने वाले ठोस कचरे के विघटन के लिए लगने वाली कालावधि अधिक हो तो उसका गंभीर परिणाम पर्यावरण के अन्य घटकों पर होता है। यह न हो इसलिए आप क्या सावधानी बरतेंगे?

नीचे दिए गए चित्र 9.5 'अ' में कूड़ा किस प्रकार रखना चाहिए यह दर्शाया है जबिक 'ब' में कचरे के प्रकार के अनुसार कौन-से विशिष्ट डिब्बों का उपयोग करते हैं यह दर्शाया है। अपने घर में भी इन पद्धितियों का उपयोग कर पर्यावरणस्नेही कूड़ा व्यवस्थापन कैसे किया जा सकता है, इसपर विचार कीजिए।

9.6 ठोस कूड़े के भंडारण की विधि

इतिहास के पन्नों से

प्राचीन काल से कूड़े के व्यवस्थापन की ओर विशेष ध्यान दिया गया है। ग्रीस में ईसा पूर्व 320 में अथेन्स नगरी में कूड़े के निपटारे संबंधी कानून लागू किया गया था। इसके अनुसार कूड़ा बाहर फेंकना अपराध माना जाता था।

आपदा प्रबंधन (Disaster Management)

- 1. आपके आसपास कौन-कौन-से प्रकार की आपदाओं का अनुभव आपने किया है? उनका आसपास की परिस्थिति पर क्या परिणाम हआ था?
- 2. आपदा से बचाव होने के लिए या उनसे कम-से-कम हानि हो इसके लिए आप कैसी योजना बनाएँगे?

अपने आसपास बिजली गिरना, बाढ़ आना, आग लगना ऐसी प्राकृतिक तथा दुर्घटना होना, बम विस्फोट, कारखानों में रासायनिक दुर्घटना, यात्रा और भीड़वाली जगहों पर होने वाली भगदड़, दंगों जैसी मानव निर्मित आपदाएँ होती रहती हैं। इनमें बड़े पैमाने में जीवित तथा आर्थिक हानि होती है।

विविध प्रकार की आपदाएँ आने पर होने वाली प्राणहानि निश्चित रूप किस प्रकार की होती है?

आपदा में जख्मी हुए लोगों को प्रथमोपचार

प्रथमोपचार का प्रमुख उद्देश्य प्राणहानि टालना, सेहत अधिक खराब होने से रोकना तथा पुन:लाभ की प्रक्रिया की शुरुआत करना होता है। इसके लिए प्रथमोपचार या शीघ्रता से करने वाले उपाय कौन-से हैं यह जानना महत्त्वपूर्ण है।

प्रथमोपचार के मूलतत्त्व: सुचेतनता और पुनरुज्जीवन (Life and Resucitation)

- 1. श्वसन मार्ग (Airway): आपदाग्रस्त को साँस लेने में कठिनाई हो रही हो तो सिर नीचे की ओर कीजिए या ठुड्डी को ऊपर की ओर उठाएँ। इसके कारण श्वसननली खुली रहती है।
- 2. श्वासोच्छ्वास (Breathing) : श्वासोच्छवास बंद हो गया हो तो आपदाग्रस्त को मुँह से कृत्रिम श्वासोच्छ्वास दें।
- 3. रक्ताभिसरण (Circulation): आपदाग्रस्त बेहोश हो तो उस व्यक्ति को पहले दो बार कृत्रिम श्वासोच्छवास दें तथा बाद में छाती पर दोनों हथेलियों की सहायता से हाथ रखकर हृदय पर जोर से दाब देकर छोड़ने की यह क्रिया लगभग 15 बार करें। इसे CPR (Cardio – Pulmonary Resuscitation) कहते हैं। आपदाग्रस्त व्यक्ति का रक्तपरिसंचरण पुन: सुचारू रूप से शुरू होने में मदद होती है।

आपदा प्रबंधन से तात्पर्य है कि सुनियोजित संगठनात्मक कृति एवं समन्वयन द्वारा कारवाई करने की एकत्रित क्रिया । इनमें निम्न बातों का समावेश होता है ।

- 1. आपदाओं के कारण होने वाली हानि तथा खतरे को प्रतिबंधित करना।
- 2. परिस्थिति की समझ एवं सामना करने की क्षमता विकसित करना ।
- आपदा निवारण करना। खतरे का स्वरूप तथा व्याप्ति कम करना।
- 4. आपदा का सामना करने हेतु पूर्वतैयारी करना।
- 5. आपदा/संकट के समय तत्काल कृति करना।
- आपदाओं के कारण हुई हानि एवं उसकी तीव्रता का अनुमान लगाना।
- 7. बचाव एवं मदद कार्य करना।
- 8. पुनर्वसन एवं पुनर्निमाण करना।

रक्तस्राव : आपदाग्रस्त व्यक्ति को जख्म होकर उसमें से रक्तस्राव हो रहा हो, तो उस जख्म पर निर्जंतुक आवरण रखकर अँगूठे या हथेली से 5 मिनट तक दाब दें।

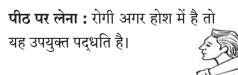
अस्थिभंग और कशेरूका पर आघात: यदि आपदाग्रस्त व्यक्ति की हड्डी टूट गई हो तो उस हड्डी के टूटे हुए भागों का निसंचालन (Immobilisation) करना अत्यावश्यक होता है। इसके लिए किसी भी प्रकार के तख्तें उपलब्ध हो तो उन्हें बाँधकर निसंचालन करने के लिए उपयोग कीजिए। पीठ पर/कशेरूका पर आघात हुआ हो तो ऐसे व्यक्ति को सख्त रुग्णशिविका (Hard Stretcher) पर रखें।

जलना – झुलसना: अगर आपदाग्रस्त को आग की लपटों ने झुलसा दिया हो तो उनके जले हुए और झुलसे हुए भागों को कम-से-कम 10 मिनट तक ठंडे पानी की धार के नीचे रखना फायदेमंद होता है।

लचक, मोच आना, चमक आना, मुक्कामार ऐसी परिस्थिति में RICE की योजना का उपयोग कीजिए।

Rest: आपदाग्रस्त को आरामदायक अवस्था में बैठाएँ।

Ice: आपदाग्रस्त की मार लगी हुई जगह पर बर्फ की पोटली रखें।


Compression: बर्फ की पोटली थोड़ी देर रखने के बाद उस भाग पर हल्के से मालिश कीजिए।

Elevate: मार लगे हुए भाग को ऊपर/ऊँचा उठाकर रखे।

रोगी का वहन कैसे करें ?

झला पद्धति : बच्चे तथा कम वजन के रोगियों के लिए उपयुक्त।

मानवी बैसाखी पद्धित : एक पैर पर जख्म/मार लगी हो तो दसरे पैर पर कम-से-कम भार देना।

खींचकर ले जाना या उठाकर ले जाना : बेहोश रोगी को थोडी दरी तक ले जाने के लिए।

चार हाथों की बैठक: जब रोगी के कमर के नीचे के अंगों को आधार की आवश्यकता हो।

दो हाथों की बैठक: जो रोगी आधार के लिए स्वयं के हाथ का उपयोग नहीं कर सकते परंतु अपना शरीर सीधा रख सकते हैं।

अग्निशमन दल की ऊपर उठाने की पद्धित

स्ट्रेचर: आपदाकाल में जल्दबाजी में हमेशा स्ट्रेचर मिलेगा ऐसा नहीं है। ऐसे समय में उपलब्ध वस्तु जैसे बाँस का दरवाजा, कंबल, रग, चादर का उपयोग करके स्ट्रेचर बनाएँ।

आपदाकाल में अन्य साधन: बाढ़ की स्थिति में लोगों को सुरक्षित बाहर लाने के लिए प्रशासन की ओर से नाव का उपयोग किया जाता है। शीघ्र मदद के क्षण में लकड़ी के तख्ते, बाँस की लकड़ी, उसी प्रकार हवा भरी हुई टायर की टयूब का उपयोग करना उचित है।

अग्निशमन यंत्र आसानी से कहीं भी ले जाया जा सकता है। आग बुझाने के लिए अलग–अलग प्रकार के यंत्रों का उपयोग किया जाता है। इस संदर्भ में आपके शहर के अग्निशामक दल से मिलकर विस्तृत जानकारी प्राप्त कीजिए। (अधिक जानकारी के लिए पाठ क्रमांक 13 देखिए।)

स्वाध्याय 🗸 🍑

1. 'अ' व 'ब' स्तंभ की योग्य जोड़ियाँ मिलाएँ तथा उसका पर्यावरण पर होने वाला परिणाम स्पष्ट कीजिए।

'अ' स्तंभ

- १. धोखादायक कचरा
- २. घरेलू कचरा
- ३. चिकित्सालय कचरा
- ४. औदयोगिक कचरा
- ५. शहरी कचरा

'ब' स्तंभ

- अ. काँच, रबड़, कैरीबैग इत्यादि।
- आ. रसायन, रंग, राख इत्यादि।
- इ. रेडियो सक्रिय पदार्थ पदार्थ
- ई. खराब हुआ भोजन, सब्जी, फलों के छिलके
- उ. बैंडेज, रूई, सूई इत्यादि।

2. दिए गए विकल्पों में से योग्य शब्द चुनकर कथन पूर्ण कीजिए और उनका समर्थन कीजिए।

(भौगोलिक अनुकूलता, जलवायु, हवा, वेधशाला)

- अ. अजैविक घटकों में से जैवविविधता पर सबसे अधिक परिणाम करने वाला घटक...... है।
- आ. किसी भी स्थान पर अल्पकाल होने वाली वातावरण की स्थिति को.....कहते हैं।
- इ. मानव ने कितनी भी प्रगति की हो फिर भी.....पर विचार करना ही पड़ता है।
- ई. हवा के सभी घटकों का निरीक्षण कर पठन रखने वाले स्थानों को...... कहते हैं।

3. निम्नलिखित प्रश्नों के उत्तर लिखें।

- अ. आपदाओं में जख्मी हुए आपदाग्रस्तों को प्रथमोपचार कैसे दिया जाना चाहिए?
- आ. वैज्ञानिक तथा पर्यावरणस्नेही कूड़ा व्यवस्थापन पद्धतियाँ बताएँ।
- इ. जलवायु का अनुमान और आपदा प्रबंधन इन के बीच सहसंबंध उदाहरण सहित स्पष्ट कीजिए।
- ई. ई-कूड़ा घातक क्यों है? इसके संबंध में अपने विचार लिखिए।
- ठोस कूड़ा व्यवस्थापन में आपका व्यक्तिगत सहभाग कैसे करेंगे?

4. टिप्पणी लिखिए।

जलवायु विज्ञान, जलवायु के घटक, मानसून प्रारूप, औद्योगिक कूड़ा, प्लास्टिक का कूड़ा, प्रथमोपचार के मूलतत्त्व

- 5. जलवायु का सजीवसृष्टि में महत्त्व अधोरेखित करने वाले उदाहरण स्पष्टीकरणसहित आपके शब्दों में लिखिए।
- 6. रुग्णों को एक जगह से दूसरी जगह ले जाने की पद्धतियों का उपयोग करते समय कौन-सी सावधानी बरतनी चाहिए, ये उदाहरण सहित स्पष्ट कीजिए।

7. अंतर स्पष्ट कीजिए।

- अ. हवा और जलवायु
- आ. विघटनशील और अविघटनशील कूड़ा

उपक्रम:

- अपने नजदीक के अस्पताल में जाकर और वहाँ कूड़ा व्यवस्थापन कैसे किया जाता है, इसके बारे में जानकारी प्राप्त कीजिए।
- 2. अपने स्कूल के परिसर में शिक्षकों के मार्गदर्शन से केंचुआ खाद प्रकल्प तैयार कीजिए।

10. सूचना एवं संचार प्रौद्योगिकी : प्रगति की नई दिशा

- > संगणक के महत्त्वपूर्ण घटक 🕒 विविध सॉफ्टवेअर
- > विज्ञान और प्रौद्योगिकी में सूचना संचार का महत्त्व > संगणक क्षेत्र में अवसर

सूचना एकत्र करने, सूचना का आदान-प्रदान करने, सूचना पर प्रक्रिया करने और संचार करने के लिए प्रत्यक्ष और अप्रत्यक्ष रूप से कौन-कौन-से साधनों का हम उपयोग करते हैं?

सूचना एवं संचार प्रौद्योगिकी (Information Communication Technology: ICT) इस संज्ञा में संचार के साधनों और उनके उपयोग के साथ ही उनका उपयोग करके दी जाने वाली सेवाओं का भी समावेश होता है। विज्ञान और प्रौद्योगिकी की प्रगति के कारण निर्मित होने वाली जानकारियों का भंडार प्रचंड वेग से बढ़ रहा है। इन जानकारियों के विस्फोट को नजरअंदाज करने से हमारा ज्ञान कालबाह्य हो सकता है।

सूचना के विस्फोट का सामना करने के लिए सूचना एवं संचार प्रौद्योगिकी की भूमिका किस प्रकार महत्त्वपूर्ण है?

सूचना एवं संचार प्रौद्योगिकी के साधन: संचार के लिए जानकारी निर्मित करना, उसका वर्गीकरण करना, सूचना को संग्रहित करना, सूचना का व्यवस्थापन करना इत्यादि सभी क्रियाओं के लिए विभिन्न साधनों का उपयोग किया जाता है। जैसे टेलिफोन का उपयोग संभाषण द्वारा सूचना का लेन-देन करने के लिए होता है।

नीचे दी गई तालिका में सूचना एवं संचार प्रौद्योगिकी के कुछ साधनों के नाम दिए गए हैं। उसमें पूछे गए प्रश्नों के आधार पर तालिका पूर्ण कीजिए तथा आपको ज्ञात अन्य साधनों के नाम लिखिए।

साधन का नाम	उपयोग किसलिए किया जाता है?	कहाँ किया जाता है?	उपयोग से होने वाला फायदा
संगणक/लैपटॉप			
मोबाइल			
रेडियो			
दूरदर्शन			

सूचना एवं संचार प्रौद्योगिकी के प्रमुख साधन संगणक की पहली निर्मित के बाद से पाँच पीढ़ियाँ मानी जा रही हैं। संगणक की पहली पीढ़ी 1946 से 1959 इस समयावधि के बीच मानी जाती है। इस काल में ENIAC नामक संगणक तैयार हुआ। उनमें व्हॉल्वज का उपयोग किया गया था। ये व्हॉल्वज आकार में बड़े थे। इनमें विद्युत की खपत भी अधिक होती थी। उसके कारण उष्मा निर्मित होती थी और कईं बार संगणक बंद हो जाते थे। वर्तमान के संगणक पाँचवीं पीढ़ी के हैं।

जानकारी प्राप्त कीजिए

इंटरनेट की सहायता से संगणक की सभी पीढ़ियों और उनके प्रकारों की जानकारी प्राप्त कीजिए और उनकी विशेषताओं में भिन्नता को लिखिए। संगणक के बढ़ते हुए वेग के कारण ही वर्तमान तकनीकी युग के सभी क्षेत्रों में संगणक का प्रवेश संभव हुआ है। हमारे आसपास के कौन-कौन-से क्षेत्रों में संगणक का उपयोग किया जाता है?

10.1 संगणक की कार्यप्रणाली

1. मेमरी युनिट

2. कंट्रोल युनिट

3. ALU युनिट

संगणक के महत्त्वपूर्ण घटक

मेमरी: इनपुट युनिट से आने वाली सूचना और तैयार हुए उत्तर को संग्रहित करने के स्थान को 'मेमरी' कहते हैं। संगणक में दो प्रकार की मेमरी का इस्तेमाल किया जाता है।

आऊटपुट युनिट: तैयार हए उत्तर बाद में

आऊटपुट (Output) युनिट को जाते हैं।

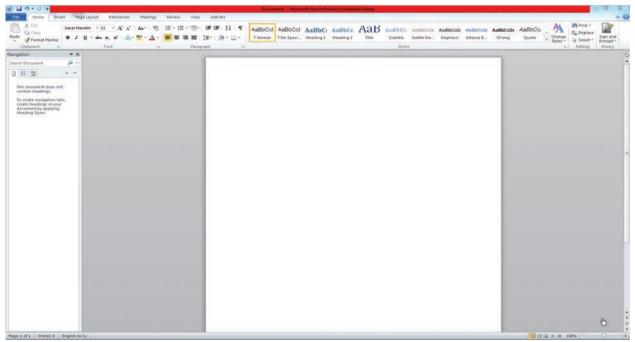
सामान्यत: आऊटपुट युनिट के लिए स्क्रीन और

प्रिंटर का उपयोग किया जाता है।

- 1. संगणक की स्वयं की मेमरी (Internal Memory) 2. बाहर से आपूर्ति की गई मेमरी (External Memory) संगणक की इंटरनल (Internal) मेमरी दो प्रकार की होती है
- 1. RAM (Random Access Memory) : ये मेमरी इलेक्ट्रॉनिक पार्टस् द्वारा निर्मित होती है। कोई भी इलेक्ट्रॉनिक पार्ट उसे विदयत आपूर्ति होने तक कार्य करता है।
- 2. ROM (Read Only Memory) : इस मेमरी की सूचना हम केवल पढ़ सकते हैं। मूल सूचना में हम कोई परिवर्तन नहीं कर सकते।

ऑपरेटिंग सिस्टिम: संगणक और उसपर कार्य करने वाले व्यक्ति इन दोनों में सुसंवाद स्थापित होने का कार्य इन प्रोग्राम्स द्वारा किया जाता है। इसे ही DOS (Disk Operating System) कहते हैं। ऑपरेटिंग सिस्टम के बिना हम संगणक का उपयोग नहीं कर सकते।

प्रोग्राम: संगणक को दिए जाने वाले कमांड के समूह (Group) को प्रोग्राम कहते हैं। डाटा और इन्फॉरमेशन: कच्चे स्वरूप की जानकारी (Information) डाटा होती है।

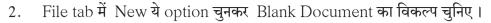

संगणक के प्रमख दो घटक

हार्डवेअर:-संगणक में इस्तेमाल किए गए सभी भागों को (Electronic & Mechanical parts) हार्डवेअर कहते हैं।

सॉफ्टवेअर: - सॉफ्टवेयर का अर्थ संगणक को कमांडस के लिए दी जाने वाली जानकारी (Input) तथा संगणक से विश्लेषित होकर प्राप्त होने वाली जानकारी (Output) होता है।

सची बनाइए और चर्चा कीजिए

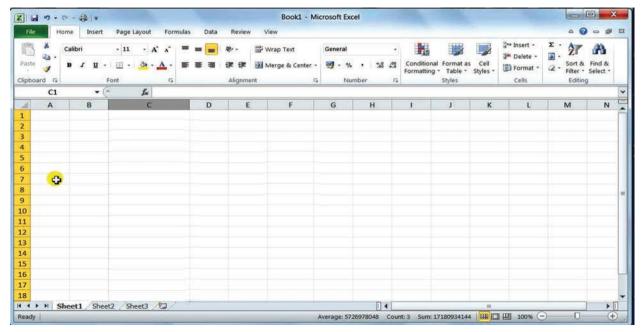
संगणक के विविध हाईवेअरों और सॉफ्टवेअरों की सची बनाकर कक्षा मे उनके कार्यों के बारे में चर्चा कीजिए।


करें और देखें

संगणक के Microsoft Word की सहायता से लेख और समीकरण तैयार कीजिए।

1.

Desktop का या Icon पर click कीजिए।



स्क्रीन पर दिखने वाले कोरे पन्ने (page) पर Key Board सहायता से विषय वस्तु type कीजिए। Type की गई 3. विषयवस्तु की भाषा, आकार, अक्षर सुस्पष्ट करना इत्यादि Home tab में दिए गए विकल्पों का उपयोग करके विषयवस्तु को आकर्षक बनाइए।

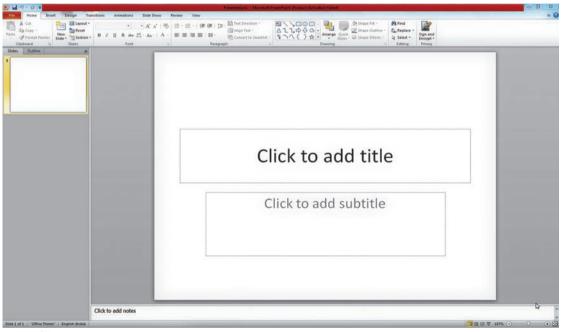
विषय वस्तु में equation type करने के लिए insert tab में equation विकल्प चुनिए।

Microsoft Excel की सहायता से प्राप्त संख्यात्मक जानकारी का आलेख खींचना

1. Desktop के

Icon पर click कीजिए।

- 2. File tab में New यह option चुनकर Blank Document का विकल्प चुनिए।
- 3. Screen पर दिखने वाली Sheet में जिस जानकारी के आधार पर आलेख खींचना है उस जानकारी को type कर लीजिए।
- 4. जानकारी type करने के बाद उसे select कीजिए और Insert tab में आवश्यक graph पर click कीजिए।

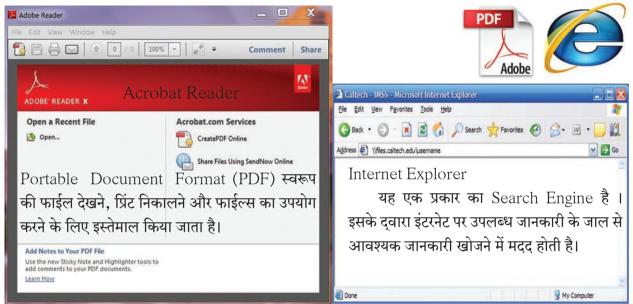


5. आलेख के आधार पर जानकारी का विश्लेषण कीजिए।

Data Entry करते समय कौन-सी सावधानी बरतेंगे ?

- 1. संभवतः Data enter करते समय यथा संभव टेबल स्वरूप में रखना चाहिए। भिन्न-भिन्न प्रकार के डाटा के लिए भिन्न-भिन्न Cells का उपयोग करना चाहिए। भरते समय Data सुव्यवस्थित (क्रमबद्ध) और एक ही प्रवाह में होना चाहिए। अनावश्यक स्पेस और Special Characters का उपयोग नहीं करना चाहिए।
- 2. हम अधिकतर डाटा Drag and Fill करते हैं। उस समय Data Drag करने बाद आने वाले Smart tag का उपयोग करके वंछित Data Fill कर सकते हैं।
- 3. Data enter करने के बाद उसे भिन्न-भिन्न प्रकार की formating कर सकते हैं और भिन्न-भिन्न प्रकार के Formulae का उपयोग करके Calculations भी कर सकते हैं।
- 4. Formula का उपयोग करते समय '=' चिह्न पहले देना आवश्यक है। उसी प्रकार कोई भी Formula Type करते समय उसमें Space न दें।

Microsoft Powerpoint



Microsoft Powerpoint की सहायता से प्रस्तुतीकरण तैयार करना।

1. Desktop के Microsoft PowerPoi...

Icon पर click कीजिए ।

- 2. जिस घटक पर आधारित Presentation बनाना है उस घटक से संबंधित विषयवस्तु, चित्र या दोनों अपने पास होना आवश्यक है।
- 3. File tab में New option चुनकर Blank Slide चुनिए।
- (Presentation के अनुसार आवश्यक Slide का चयन कर सकते हैं।)
- 4. चयन की गई Slide पर आप आवश्यक जानकारी type कीजिए और चित्र Insert कीजिए।
- 5. Design tab की सहायता से slide को Design कीजिए।
- 6. Animations tab की सहायता से slide को animation दीजिए और slide show कीजिए।

टिप्पणी : इस प्रकरण में अध्ययन की गई सूचना एवं संचार प्रौद्योगिकी का उपयोग, विज्ञान और प्रौद्योगिकी विषय का अध्ययन करते समय प्रत्यक्ष रूप में करें इसके लिए अपने शिक्षक, माता-पिता और मित्रों से सहायता अवश्य लीजिए।

विज्ञान और प्रौद्योगिकी में सूचना एवं संचार प्रौद्योगिकी का उपयोग कुछ चौखटों में दिया गया है। इसके अतिरिक्त अन्य उपयोग कौन-से हैं?

निर्देशन

विज्ञान के कुछ प्रयोग और संकल्पनाओं का सिम्युलेशन और एनिमेशन का उपयोग करके प्रभावकारी रूप से और आसानी से निरूपण किया जा सकता है। उदा, तंत्रिका तंत्र के कार्य

अनुमान लगाना

सूचनाओं का संकलन कर उनपर प्रक्रिया करके अनुमान लगाया जाता है। उदा. मौसम विज्ञान। वैज्ञानिक जानकारी संग्रहित करना। इंटरनेट, ई-मेल, न्यूजग्रुप, ब्लॉग्स, चैट रूम्स, विकीपिडिया, वीडियो कॉन्फेंसिंग इत्यादि।

संगणक क्षेत्र में सुअवसर

1. **सॉफ्टवेअर क्षेत्र :** यह महत्त्वपूर्ण क्षेत्र है। सॉफ्टवेअर निर्मित करने का आह्वान स्वीकार कर अनेक कंपनियों ने इस क्षेत्र में पर्दापण किया है। सॉफ्टवेअर के क्षेत्र के सुअवसरों का वर्गीकरण निम्नानुसार किया जा सकता है –

एप्लिकेशन प्रोग्राम डेवलपमेंट, सॉफ्टवेअर पैकेज डेवलपमेंट, ऑपरेटिंग सिस्टम और युटिलिटी डेवलपमेंट, स्पेशल पर्पज साइंटिफिक एप्लिकेशन।

- 2. हार्डवेअर क्षेत्र: वर्तमान में हमारे देश में भी संगणक निर्मित करने वाली बहुत सारी कंपनियाँ हैं। ये कंपनियाँ अपने बनाए गए संगणकों की विक्री करती हैं, तो कुछ बाहर से लाकर बेचती हैं, मरम्मत करती हैं तथा कुछ कंपनियाँ बड़ी कंपनियों से संगणकों के सतत कार्यक्षम रहने, बंद न पड़ें इसलिए उनकी देखभाल करने के लिए संविदा (ठेका) लेती हैं। उसमें बहुत सारी नौकरियाँ उपलब्ध हैं। हार्डवेअर डिजायनिंग, हार्डवेअर प्रोडक्शन, हार्डवेअर असेंब्ली एवं टेस्टिंग, हार्डवेअर मेंटेनन्स, सर्विसिंग एवं मरम्मत इत्यादि क्षेत्रों में नौकरी के सुअवसर उपलब्ध हैं।
- 3. प्रशिक्षण: भिन्न-भिन्न कार्यों के लिए नए लोगों को सिखाने का ट्रेनिंग फील्ड बहुत ही बड़ा है। स्वयं लीन होकर सिखाने वाले और संगणक विषय में कार्यक्षम प्रशिक्षकों के लिए महत्त्वपूर्ण सुअवसर उपलब्ध हैं।
- 4. **मार्केटिंग**: संगणक और उसकी पूरक सामग्री (एक्सेसरीज) तैयार करने और बिक्री करने वाली अनेक संस्थाएँ हैं। उन्हें बिक्री में कुशल लोगों की आवश्यकता होती है। उन्हें संगणक की कार्यप्रणाली, अनुभव के साथ ही मार्केटिंग का कौशल होना चाहिए।

संस्थानों के कार्य

C-DAC प्रगत संगणन संस्था (Centre for Development of Advance Computing) यह पुणे स्थित संगणक क्षेत्र में संशोधन का कार्य करने वाला भारत का सुप्रसिद्ध अग्रणी संस्थान है। सी-डेक की सहायता से भारत ने भारतीय बनावट का पहला सुपर कम्प्यूटर बनाया। इस परम संगणक की निर्मित के लिए वरिष्ठ वैज्ञानिक डॉ. विजय भटकर का अमूल्य मार्गदर्शन प्राप्त हुआ। परम अर्थात सर्वश्रेष्ठ। यह संगणक एक अरब गणित प्रति सेकंड कर सकता है। अंतरिक्ष संशोधन, भूगर्भ की हलचल, तेल भंडार संशोधन, चिकित्सा, मौसम विज्ञान, अभियांत्रिकी, सेना जैसे अनेक क्षेत्रों में उपयोगी सिद्ध होता है। भाषा लिखने के लिए ISCII (ईस्की) कोड की निर्मिति में भी सी-डेक का योगदान है।

स्वाध्याय 💐

- रिक्त स्थानों में उचित शब्द लिखकर कथनों को पूर्ण करके उनका समर्थन कीजिए।
 - संगणक पर कार्य करते समय मेमरी की सूचना हम पढ़ सकते हैं तथामेमरी में हम अन्य प्रक्रिया कर सकते हैं।
 - वैज्ञानिकों के अविष्कारों के चित्र और वीडियो के प्रस्तुतीकरण के लिए का उपयोग किया जा सकता है।
 - प्रयोग द्वारा प्राप्त संख्यात्मक जानकारी पर प्रक्रिया करके तालिका और आलेख तैयार करने के लिए......का उपयोग किया जाता है।
 - 4. पहली पीढ़ी के संगणकके कारण बंद पड जाते थे।
 - 5. संगणक को नहीं दिया तो उसका कार्य नहीं चलेगा।

2. निम्नलिखित प्रश्नों के उत्तर लिखिए।

- अ. विज्ञान और प्रौद्योगिकी में सूचना एवं संचार की भूमिका और महत्त्व स्पष्ट कीजिए।
- आ. संगणक के कौन-कौन-से एप्लिकेशन सॉफ्टवेअर का उपयोग आपको विज्ञान का अध्ययन करते समय हआ? किस प्रकार?
- इ. संगणक का कार्य किस प्रकार चलता है?
- ई. संगणक के विभिन्न सॉफ्टवेअर का उपयोग करते समय कौन-सी सावधानी बरतना आवश्यक है?
- उ. सूचना और संचार के विभिन्न साधन कौन-से हैं? विज्ञान के संदर्भ में उनका उपयोग कैसे किया जाता है?

- 3. गित के नियम प्रकरण के पृष्ठ क्र. 4 पर दी गई सारिणी की जानकारी के आधार पर अमर, अकबर और एंथनी की गित का दूरी-समय आलेख Spread sheet का उपयोग करके खींचिए। उसे खींचते समय आप कौन-सी सावधानी बरतेंगे?
- 4. संगणक की विभिन्न पीढ़ियों में अंतर स्पष्ट कीजिए। उसके लिए विज्ञान का क्या योगदान है?
- 5. आपके पास की जानकारी अन्य लोगों को देने के लिए आप कौन-कौन-से सूचना व संचार साधनों की सहायता लेंगे?
- 6. सूचना एवं संचार प्रौद्योगिकी का उपयोग करके पाठ्यपुस्तक के कम—से—कम तीन घटकों पर Powerpoint Presentations तैयार कीजिए। यह करते समय कौन—से चरणों का उपयोग किया उसके अनुसार प्रवाह—तालिका बनाइए।
- 7. संगणक का उपयोग करते समय आपको कौन-सी तकनीकी परेशानी आई? उसे हल करने के लिए आपने क्या किया?

उपकम:

सूचना एवं संचार साधनों का उपयोग करके प्रकरण क्र. 18 के इस्रो संस्था के संदर्भ में दी गई जानकारी के आधार पर शिक्षकों की सहायता से वृत्त-चित्र तैयार कीजिए।

11, प्रकाश का परावर्तन

- 🕨 दर्पण और दर्पण के प्रकार ⊳ गोलीय दर्पण और उसके दवारा प्राप्त होने वाले प्रतिबिंब
- > गोलीय दर्पण के कारण होने वाला आवर्धन

थोड़ा याद करें

- 1. प्रकाश क्या है?
- 2. प्रकाश के परावर्तन का क्या अर्थ है? परावर्तन के प्रकार कौन-से हैं?

प्रकाश हमारे आसपास की घटनाओं की जानकारी देने वाला संदेशवाहक हैं। केवल प्रकाश के अस्तित्व के कारण हम सूर्योदय, सूर्यास्त और इंद्रधनुष जैसे प्रकृति के विभिन्न चमत्कारों का आनंद ले सकते हैं। हमारे आसपास के सुंदर विश्व के हरे-भरे वन, रंग-बिरंगे फूल, दिन में नीला दिखने वाला आकाश, अंधेरे में चमकने वाले तारे तथा हमारे आसपास की कृत्रिम वस्तुएँ भी हम प्रकाश के अस्तित्व के कारण ही देख सकते हैं। प्रकाश दृष्टि की संवेदना निर्मित करने वाली विद्युत चंबकीय तरंग है।

हमारे आसपास के विभिन्न प्रकार के पृष्ठभागों से प्रकाश का होने वाला परावर्तन भिन्न होता है। चिकने और समतल पृष्ठभाग से प्रकाश का नियमित परावर्तन होता है। जबिक खुरदरे पृष्ठभाग से प्रकाश का अनियमित परावर्तन होता है। इस बारे में हमने जानकारी प्राप्त की है।

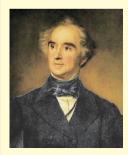
दर्पण और दर्पण के प्रकार (Mirror and Types of Mirror)

बताइए तो

दर्पण क्या है?

प्रकाश के परावर्तन के लिए हमें चमकीले पृष्ठभाग की आवश्यकता होती है क्योंकि चमकीला पृष्ठभाग कम प्रकाश अवशोषित करता है और इस कारण अधिक-से-अधिक प्रकाश का परावर्तन होता है।

विज्ञान की भाषा में कहा जाए तो वह पृष्ठभाग जिसके द्वारा प्रकाश का परावर्तन करके सुस्पष्ट प्रतिबिंब निर्मित होता है उसे दर्पण कहते हैं। दर्पण परावर्तक पृष्ठभाग होता है।


हमारे दैनिक जीवन में विभिन्न प्रकार के दर्पणों का उपयोग किया जाता है। दर्पण के दो प्रकार होते हैं – समतल दर्पण और गोलीय दर्पण।

समतल दर्पण (Plane Mirror) – दैनिक जीवन में अनेक जगहों पर समतल दर्पण का उपयोग किया जाता है। समतल चिकने काँच के पिछले पृष्ठ पर एल्युमीनियम या चाँदी धातु का पतला परावर्तक लेप लगाने से समतल दर्पण तैयार होता है। परावर्तक पृष्ठ को अपारदर्शी करने के लिए तथा पृष्ठभाग का संरक्षण करने के लिए धातु के परावर्तक लेप पर लेड ऑक्साइड जैसे पदार्थ का लेप लगाया जाता है।

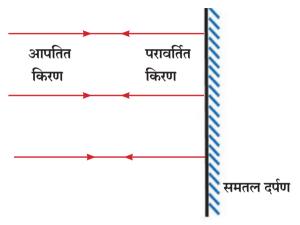
प्रकाश के परावर्तन के नियम कौन-से हैं?

वैज्ञानिकों का परिचय

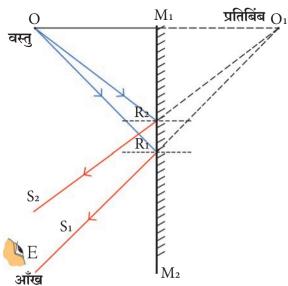
जर्मन वैज्ञानिक जस्टस् वॉन लिबिंग ने सादे काँच के टुकड़े के एक समतल पृष्ठभाग पर चाँदी का लेप लगाया और दर्पण तैयार किया। इसे ही रजत काँच परावर्तक कहते हैं।

11.1 समतल दर्पण

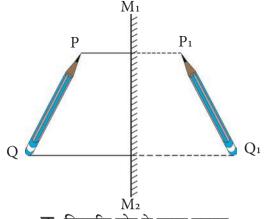
घर के दर्पण के सामने खड़े रहने पर दर्पण में सुस्पष्ट प्रतिबिंब दिखता है। दर्पण द्वारा प्रतिबिंब कैसे निर्मित होता है इसे समझने के लिए बिंदुस्रोत के प्रतिबिंब का अध्ययन करेंगे। बिंदुस्रोत से सभी दिशाओं में प्रकाश किरणें निकलती हैं। उनमें से अनेक किरणें दर्पण पर आती हैं और परावर्तित होकर आँखों तक पहुँचती हैं। परावर्तन के कारण ये किरणें दर्पण के पीछे के जिस बिंदु से आती हुई प्रतीत होती हैं उस बिंदु पर दर्पण का प्रतिबिंब निर्मित होता है।


आकृति 11.2 'अ' में दिखाए अनुसार समतल दर्पण पर लंबवत आने वाली किरणें लंबवत ही परावर्तित होती हैं।

आकृति 11.2 'ब' में दिखाए अनुसार समतल दर्पण $\mathbf{M_1}\mathbf{M_2}$ के सम्मुख बिंदुस्रोत O है । दो आपितत किरणें $O\mathbf{R_1}$ और $O\mathbf{R_2}$ परावर्तन के नियमानुसार $\mathbf{R_1}\mathbf{S_1}$ और $\mathbf{R_2}\mathbf{S_2}$ मार्गों पर परावर्तित होती हैं। इन परावर्तित किरणों को पीछे की ओर बढ़ाने पर वे एक-दूसरे को बिंदु O_1 पर प्रतिच्छेदित करती हैं और E की ओर से देखने पर वे बिंदु O_1 से आती हुई प्रतीत होती हैं। बिंदु O से निकलने वाली अन्य किरणें भी इसी प्रकार परावर्तित होकर बिंदु O_1 से निकलती हुई प्रतीत होती हैं, इसलिए बिंदु O_1 ही बिंदु O का प्रतिबिंब होता है।


परावर्तित किरणें प्रत्यक्ष एक-दूसरे को प्रतिच्छेदित नहीं करती इसलिए इस प्रतिबिंब को आभासी प्रतिबिंब कहते हैं। प्रतिबिंब की दर्पण से लंबवत दूरी बिंदुस्रोत की दर्पण से लंबवत दुरी के बराबर होती है।

बिंदुस्रोत के स्थान पर विस्तारित स्रोत का उपयोग किया गया तो स्रोत के प्रत्येक बिंदु का प्रतिबिंब निर्मित होने से संपूर्ण स्रोत का प्रतिबिंब निर्मित होता है। आकृति 11.2 'क' में दिखाए अनुसार समतल दर्पण $\mathbf{M_1}\mathbf{M_2}$ के सम्मुख विस्तारित स्रोत PQ है। P का प्रतिबिंब $\mathbf{P_1}$ पर निर्मित होता है तथा Q का प्रतिबिंब $\mathbf{Q_1}$ पर निर्मित होता है। इसी प्रकार PQ के सभी बिंदुओं का प्रतिबिंब निर्मित होने से विस्तारित स्रोत का प्रतिबिंब $\mathbf{P_1}\mathbf{Q_1}$ निर्मित होता है।


समतल दर्पण द्वारा निर्मित प्रतिबिंब का आकार स्रोत के आकार के बराबर होता है।

अ. दर्पण पर लंबवत आने वाली किरणें

ब. बिंदुस्रोत के कारण समतल दर्पण दवारा प्रतिबिंब की निर्मिति

क. विस्तारित स्रोत के कारण समतल दर्पण द्वारा प्रतिबिंब की निर्मिति

11.2 दर्पण में प्रतिबिंब की निर्मिति

- 1. पुस्तक का पृष्ठ दर्पण के सम्मुख पकड़ने पर पृष्ठ के अक्षर उलटे दिखते हैं। ऐसा क्यों होता है ?
- 2. अंग्रेजी वर्णमाला के कौन-कौन-से अक्षरों के प्रतिबिंब उनके मूल अक्षरों के समान दिखते हैं ?

दर्पण में शब्दों का उलटा प्रतिबिंब दिखता है। शब्दों के आरेखन के प्रत्येक बिंदु का प्रतिबिंब दर्पण के पीछे उतनी ह दूरी पर निर्मित होता है, इसे ही पक्षों की अदला-बदली कहते हैं।

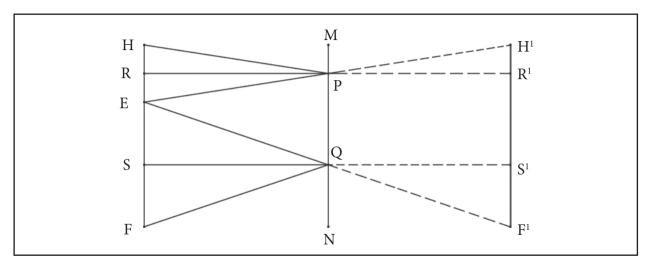
यदि कोई व्यक्ति समतल दर्पण के सामने खड़ा हो तो उसका प्रतिबिंब कै निर्मित होता है? प्रतिबिंब का स्वरूप क्या होता है?

दो दर्पणों को समकोण पर खड़े रखिए और उनके बीच एक छोटी वस्तु रखकर दोन दर्पणों में दिखने वाले प्रतिबिंब देखिए। आपको कितने प्रतिबिंब दिखाई देते हैं?

अब नीचे दी गई तालिका के अनुसार दर्पणों के बीच के कोण परिवर्तित कीजिए और दिखने वाले प्रतिबिंबों की संख्या गिनिए। प्रत्येक बार कोण का माप परिवर्तित करने से प्रतिबिंबों की संख्या में क्या अंतर दिखाई देता है? उसका कोण के माप से क्या संबंध है? इस बारे में चर्चा कीजिए।

1/1

11.3 समकोण पर खडे किए गए दर्पण


$$n = \frac{360^{\circ}}{A} - 1$$

 $n = y$ तिबिंबों की संख्या, $A = दर्पण के बीच का कोण$

- 1. उपर्युक्त सूत्र से प्रतिबिंबों की संख्या और कोण द्वारा आपको प्राप्त हुए प्रतिबिंबों की संख्याओं की जाँच करके देखिए।
- 2. यदि दर्पण एक-दसरे के समांतर रखें जाएँ तो दर्पणों से कितने प्रतिबिंब प्राप्त होंगे?

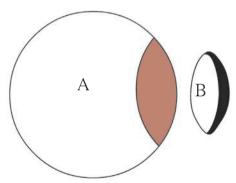
कथन: समतल दर्पण द्वारा व्यक्ति का पूर्ण प्रतिबिंब दिखने के लिए दर्पण की न्यूनतम ऊँचाई उस व्यक्ति की ऊँचा से आधी होना आवश्यक है।

उपपत्ति : आकृति 10.4 में व्यक्ति के सिर के ऊपर के बिंदु, आँखे और पैर के नीचे के बिंदु को H, E और F द्वा दर्शाया गया है। HE का मध्यबिंदु R है जबिक EF का मध्यबिंदु S है। समतल दर्पण को जमीन से ऊँचाई NQ पर लंबव रखा गया है। व्यक्ति की पूर्ण प्रतिमा दिखने के लिए आवश्यक दर्पण की न्यूनतम ऊँचाई PQ हैं। इसके लिए RP औं SQ को दर्पण के लंबवत होना आवश्यक है। ऐसा क्यों? उसे आकृति का निरीक्षण करके खोजिए। दर्पण की न्यूनतम ऊँचाई:

PQ = RS
= RE + ES
$$= \frac{HE}{2} + \frac{EF}{2} = \frac{HF}{2} =$$

11.4 समतल दर्पण और व्यक्ति का पूर्ण प्रतिबिंब

गोलीय दर्पण (Spherical mirrors)



11.5 हास्य दालान

मेले के हास्य दालान में लगाए गए दर्पण आपने देखे होंगे। इन दर्पणों में आपको टेढ़े-मेढ़े चेहरे दिखाई देते हैं। ऐसा क्यों होता है? ये दर्पण हर घर में होने वाले दर्पण की तरह समतल न होकर वक्रीय होते हैं। गोलीय दर्पण से प्राप्त होने वाले प्रतिबिंबों का स्वरूप समतल दर्पण द्वारा प्राप्त प्रतिबिंबों के स्वरूप से भिन्न होते हैं। इसलिए हमेशा के दर्पण में दिखने वाला प्रतिबिंब इस दर्पण में नहीं दिखता।

मोटर चालक को पीछे से आने वाले वाहन देखने के लिए लगाया गया दर्पण समतल न होकर गोलीय होता है।

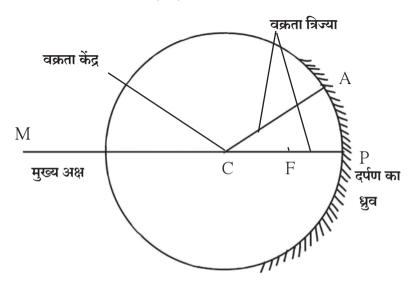
11. 6 गोलीय दर्पण निर्मिति

एक रबड़ की गेंद लेकर उसे आकृति 11.6 में दिखाए अनुसार काटा तो निर्मित होने वाले किसी भी एक भाग पर दो प्रकार के पृष्ठ आसानी से दिखते हैं।

गोलीय दर्पण सामान्यत: काँच के खोखले गोले से काटा गया भाग (B के समान) होता है। उसके आंतरिक या बाह्य पृष्ठ पर चमकीले पदार्थ का विलेपन करके गोलीय दर्पण तैयार किए जाते हैं। इनके आंतरिक या बाह्य पृष्ठभाग से प्रकाश का परावर्तन होता है। इस आधार पर गोलीय दर्पण के दो प्रकार होते हैं। इन दोनों प्रकारों को आगे स्पष्ट करके दिखाया गया है।

अ. अवतल दर्पण (Concave mirror)

यदि गोलीय पृष्ठ का आंतरिक भाग चमकदार हो तो उसे अवतल दर्पण कहते हैं। इस दर्पण के आंतरिक पृष्ठभा दवारा प्रकाश का परावर्तन होता है।


आ. उत्तल दर्पण (Convex mirror)

यदि गोलीय पृष्ठ का बाह्य भाग चमकदार हो तो उसे उत्तल दर्पण कहते हैं। दर्पण के बाह्य पृष्ठभाग द्वारा प्रका का परावर्तन होता है।

गोलीय दर्पण से संबंधित चिह्न

ध्रुव (Pole): गोलीय दर्पण के पृष्ठभाग के मध्यबिंदु को उसका ध्रुव कहते हैं। आकृति में बिंदु P गोलीय दर्पण का ध्रु है।

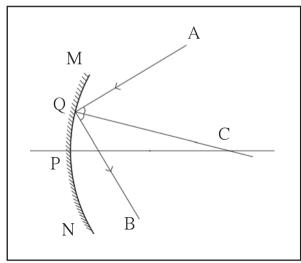
वक्रता केंद्र (Centre of Curvature): गोलीय दर्पण जिस गोले का भाग होता है, उस गोले के केंद्र को वक्रता केंद्र कहते हैं।

11.7 गोलीय दर्पण से संबंधित चिह्न

वक्रता त्रिज्या (Radius of Curvature) : गोलीय दर्पण जिस गोले का भाग होता है उस गोले की त्रिज्या को गोली दर्पण की वक्रता त्रिज्या कहते हैं। आकृति में CP और CA की लंबाई गोलीय दर्पण की वक्रता त्रिज्याएँ हैं।

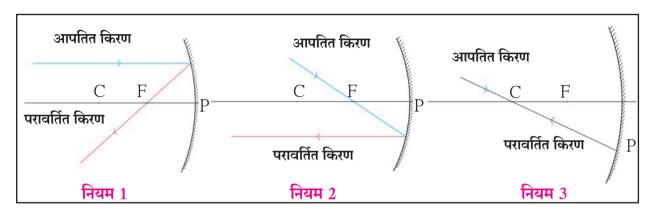
मुख्य अक्ष (Principal Axis) : गोलीय दर्पण के ध्रुव और वक्रता केंद्र से जाने वाली सरल रेखा गोलीय दर्पण का मुख्य अक्ष कहलाती है। आकृति में PM गोलीय दर्पण का मुख्य अक्ष है।

मुख्य नाभि (Principal Focus): अवतल दर्पण के मुख्य अक्ष के समांतर आने वाली आपितत किरणें परावर्तन वे पश्चात मुख्य अक्ष पर गोलीय दर्पण के सम्मुख एक विशिष्ट बिंदु (F) पर एकत्र होती हैं, इस बिंदु को अवतल दर्पण के मुख्य नाभि कहते हैं। उत्तल दर्पण के मुख्य अक्ष के समांतर आने वाली आपितत किरणें परावर्तन के पश्चात दर्पण के पी मुख्य अक्ष के एक विशिष्ट बिंदु से आती हुई प्रतीत होती हैं, इस बिंदु को उत्तल दर्पण की मुख्य नाभि कहते हैं।


नाभ्यांतर (Focal length) : गोलीय दर्पण के ध्रुव और मुख्य नाभि के बीच की दूरी को नाभ्यांतर (F) कहते हैं। नाभ्यांत वक्रता त्रिज्या का आधा होता है।

अवतल दर्पण और उत्तल दर्पण की नाभियों के बीच मुख्य अंतर कौन-सा है?

परावर्तित किरणों का आरेखन



गोलीय दर्पण पर आने वाली किरण किस दिशा में परावर्तित होती है, इसे कैसे निश्चित किया जाता है? आकृति 10.8 में दिखाए अनुसार गोलीय दर्पण MN के बिंदु Q पर AQ आपतित किरण है। गोलीय दर्पण की एक त्रिज्या CQ है, इसलिए बिंदु Q पर CQ गोलीय दर्पण का अभिलंब होता है और कोण AQC आपतन कोण होता है। परावर्तन के नियमानुसार आपतन कोण और परावर्तन कोण समान माप के होते हैं इसलिए किरण AQ का परावर्तन मार्ग QB निश्चित करते समय परावर्तन कोण CQB को आपतन कोण AQC के बराबर ही रखा जाता है।

11.8 परावर्तित किरणों का आरेखन

गोलीय दर्पण द्वारा प्राप्त होने वाले प्रतिबिंब का अध्ययन किरणाकृति की सहायता किया जा सकता है। किरणाकृति का अर्थ प्रकाश किरण के पथ का विशेष चित्रीकरण होता है। किरणाकृति खींचने के लिए प्रकाश के परावर्तन के नियमों पर आधारित नियम का उपयोग किया जाता है। (देखिए : आकृति 11.9)

नियम 1 : यदि आपतित किरण मुख्य अक्ष के समांतर है तो परावर्तित किरण मुख्य नाभि से होकर जाती है। नियम 2 : यदि आपतित किरण मुख्य नाभि से जाती है तो परावर्तित किरण मुख्य अक्ष के समांतर जाती है। नियम 3 : यदि आपतित किरण वक्रता केंद्र में से जाती है तो परावर्तित किरण उसी मार्ग से वापस लौट जाती है।

11.9 किरणाकृति खींचने के नियम

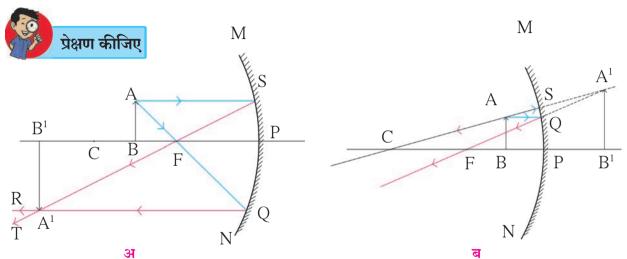
अवतल दर्पण द्वारा प्राप्त होने वाले प्रतिबिंब (Images formed by a Concave Mirror)

करें और देखें

सामग्री: मोमबत्ती या काँच की चिमनी, गत्ते का डिब्बा, सफेद कागज, बड़ा गत्ता, अवतल दर्पण. मीटर-स्केल

कृति: मोमबत्ती या काँच की चिमनी को समाविष्ट करने वाला और एक तरफ से खुला गत्ते का डिब्बा लीजिए। डिब्बे की एक भुजा पर तीर के आकार का चीरा बनाइए। डिब्बे में मोमबत्ती रखने के पश्चात तीराकृति प्रकाशस्रोत प्राप्त होता है।

20×30 सेमी आकार के गत्ते पर सफेद कागज चिपकाकर गत्ता लकड़ी के गुटके पर खड़ा करके पर्दा तैयार कीजिए। गत्ते का एक और डिब्बा लेकर उसके ऊपर के पृष्ठ पर चीरा बनाइए और उसमें अवतल दर्पण खोंचकर खड़ा कीजिए।



11.10 अवतल दर्पण दुवारा प्राप्त होने वाला प्रतिबिंब

खिड़की के पास पर्दा रखकर उसके सामने अवतल दर्पण रखिए। अवतल दर्पण की सहायता से सूर्य का या खिड़की के बाहर दूर के दृश्य का सुस्पष्ट प्रतिबिंब परदे पर मिले, इस प्रकार से उसकी जगह निश्चित कीजिए। परदे और दर्पण के बीच की दरी ज्ञात कीजिए। यह दरी अवतल दर्पण का नाभ्यांतर है।

आकृति में दिखाए अनुसार सामग्री की रचना अंधेरे कमरे में कीजिए। अवतल दर्पण को मीटर पट्टी के चिह्न के पास रखें। उसके सामने परदा खड़ा रखें। परदे और अवतल दर्पण के बीच प्रकाश स्रोत रखें। ऐसा करते समय प्रकाश स्रोत और दर्पण के बीच की दूरी अवतल दर्पण के नाभ्यांतर से थोड़ी अधिक रखें। परदा पट्टी पर आगे-पीछे और पट्टी के दाहिनी और बायीं ओर सरकाकर उस पर प्रकाश स्रोत का सुस्पष्ट प्रतिबिंब प्राप्त कीजिए। यह प्रतिबिंब मूल स्रोत से बड़ा और उलटा होता है। प्रतिबिंब परदे पर प्राप्त होने के कारण यह वास्तविक प्रतिबिंब होता है।

अब प्रकाश स्रोत को अवतल दर्पण से दूर सरकाइए। ऐसा करते समय दर्पण और स्रोत के बीच की दूरी अवतल दर्पण के नाभ्यांतर के दोगुने से अधिक रखें। परदा अवतल दर्पण की ओर सरकाकर उसपर प्रकाश स्रोत का सुस्पष्ट प्रतिबिंब प्राप्त कीजिए। प्रतिबिंब उलटा, मूल स्रोत से छोटा और वास्तविक होता है।

11.11 अवतल दर्पण द्वारा प्राप्त होने वाला प्रतिबिंब

आकृति 11.11 'अ' में दिखाए अनुसार वस्तु AB अवतल दर्पण MN के सम्मुख नाभि और वक्रता केंद्र के बीच रखी गई है। A से निकलने वाली और नाभि से जाने वाली आपितत किरण परावर्तन के पश्चात अक्ष के समांतर AS मार्ग पर परावर्तित होती है। मुख्य अक्ष के समांतर जाने वाली आपितत किरण ST परावर्तन के पश्चात नाभि से QR मार्ग से जाकर परावर्तित किरण को A^1 बिंदु पर प्रतिच्छेदित करती है अर्थात बिंदु A का प्रतिबिंब बिंदु A^1 पर निर्मित होता है, बिंदु B मुख्य अक्ष पर स्थित होने के कारण उसका प्रतिबिंब मुख्य अक्ष पर ही होगा और बिंदु A^1 के सीधे ऊपर बिंदु B^1 पर निर्मित होगा। A^1 और B^1 के बीच के सभी बिंदुओं के प्रतिबिंब A और B के बीच निर्मित होते हैं। अत: वस्तुत AB वस्तु का A^1B^1 प्रतिबिंब निर्मित होता है।

इस आधार पर स्पष्ट होता है कि अवतल दर्पण के सम्मुख किसी वस्तु को नाभि और वक्रता केंद्र के बीच रखा जाए तो उसका प्रतिबिंब वक्रता केंद्र से परे प्राप्त होता है। यह प्रतिबिंब उलटा और मूल वस्तु की तुलना में बड़ा होता है। परावर्तित किरणें एक-दूसरे को प्रत्यक्ष रूप से प्रतिच्छेदित करती हैं इसलिए प्रतिबिंब वास्तविक होता है और परदे पर प्राप्त किया जा सकता है।

आकृति 11.11'ब' में वस्तु AB अवतल दर्पण के सम्मुख ध्रुव और नाभि के बीच रखी गई है। वस्तु के बिंदु A से निकलने वाली और अक्ष के समांतर जाने वाली किरण AQ और A को वक्रता केंद्र से जोड़ने वाली दिशा में जाने वाली किरण AS दो आपितत किरणें हैं। इन किरणों का परावर्तन कैसे होता है और वस्तु का प्रतिबिंब A^1B^1 कैसे प्राप्त होता है, यह आकृति द्वारा स्पष्ट होता है। यह प्रतिबिंब दर्पण के पीछे, सीधा और मूल वस्तु की तुलना में आकार में बड़ा होता है तथा परावर्तित किरण एक-दूसरे को प्रतिच्छेदित नहीं करती परंतु दर्पण के पीछे एकत्र आती हुई प्रतीत होती है। अत: यह प्रतिबिंब आभासी प्रतिबिंब होता है।

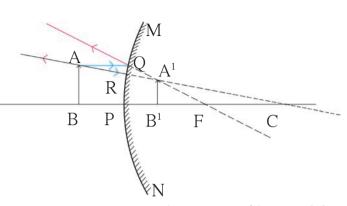
कोई वस्तु अवतल दर्पण के सम्मुख ध्रुव और नाभि के मध्य, नाभि पर, वक्रता केंद्र और नाभि के बीच, वक्रता केंद्र पर, वक्रता केंद्र से परे और वक्रता केंद्र से बहुत अधिक दूरी पर रखी जाने पर प्रतिबिंब कैसा और कहाँ प्राप्त होता है वह आगे दी गई तालिका द्वारा स्पष्ट होता है।

अवतल दर्पण द्वारा प्राप्त होने वाले प्रतिबिंब

अ.क्र.	वस्तु का स्थान	प्रतिबिंब का स्थान	प्रतिबिंब का स्वरूप	प्रतिबिंब का आकार
1.	ध्रुव और नाभि के मध्य	दर्पण के पीछे	आभासी, सीधा	वस्तु से बड़ा
2.	नाभि पर	अनंत दूरी पर	वास्तविक, उलटा	बहुत बड़ा
3.	वक्रता केंद्र और नाभि के	वक्रता केंद्र से परे	वास्तविक, उलटा	वस्तु से बड़ा
	मध्य			
4.	वक्रता केंद्र पर	वक्रता केंद्र पर	वास्तविक, उलटा	मूल वस्तु के बराबर
5.	वक्रता केंद्र से परे	वक्रता केंद्र और नाभि के	वास्तविक, उलटा	वस्तु से छोटा
		मध्य		
6.	वक्रता केंद्र से बहुत दूर	नाभि पर	वास्तविक, उलटा	बिंदु रूप
	(अनंत दूरी पर)			

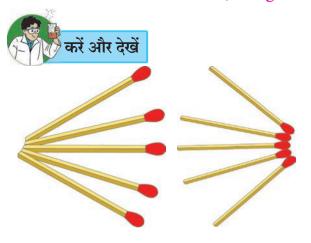
अधिक जानकारी प्राप्त कीजिए

www.physicsclassroom.com


अवतल दर्पण के लिए वस्तु (1) नाभि पर (2) वक्रता केंद्र पर (3) वक्रता केंद्र से परे (4) अनंत दूरी पर हो तो प्रत्येक के लिए प्रतिबिंब का स्वरूप कैसा होगा, उसे किरणाकृति की सहायता से ढूँढ़ने का प्रयत्न कीजिए। आपके उत्तरों की पीछे दी गई तालिका से तुलना कीजिए।

उत्तल दर्पण द्वारा प्राप्त होने वाला प्रतिबिंब (Image formed by Convex Mirror)

आकृति 11.12 में MN उत्तल लैंस AB के सम्मुख वस्तु A रखी गई है। वस्तु के बिंदु A से निकलने वाली और मुख्य अक्ष के समांतर जाने वाली किरण को AQ रेखा से जबिक वक्रता केंद्र की ओर जाने वाली किरण को AR रेखा से दर्शाया गया है। आकृति द्वारा स्पष्ट होता है कि, इन दोनों आपितत किरणों का परावर्तन कैसे होता है और वस्तु का A^1B^1 प्रतिबिंब कैसे प्राप्त होता है। यह प्रतिबिंब दर्पण के पीछे, सीधा और वस्तु से छोटा बनता है।


उत्तल दर्पण से परावर्तित हुई किरणें एक-दूसरे को वास्तविक रूप से प्रतिच्छेदित नहीं करतीं परंतु वे दर्पण के पीछे एकत्र आती हुई प्रतीत होती हैं इसलिए यह प्रतिबिंब आभासी प्रतिबिंब होता है।

उत्तल दर्पण द्वारा प्राप्त होने वाले प्रतिबिंबों के स्वरूप वस्तु से छोटे आकार के होते हैं तथा दर्पण के पीछे निर्मित होते हैं। इसकी किरणाकृति के द्वारा जाँच कीजिए।

11.12 उत्तल दर्पण द्वारा प्राप्त होने वाला प्रतिबिंब

प्रकाश का अपसरण और अभिसरण (Divergence and Convergence of Light)

11.13 अपसरण और अभिसरण

- अ. माचिस की डिब्बी से पाँच तीलियाँ लें। उनके रसायन विलेपित सिरे एक बिंदु के पास एकत्र आएँ, इस प्रकार से रचना कीजिए। यहाँ रसायन विलेपित सिरे अभिसरित हुए हैं।
- ब. अब तीलियों की रचना इस प्रकार कीजिए कि उनके दूसरे सिरे एकत्र हो और रसायन विलेपित सिरे एक दूसरे से दूर हो। यहाँ रसायन विलेपित सिरे अपसारित हुए हैं।

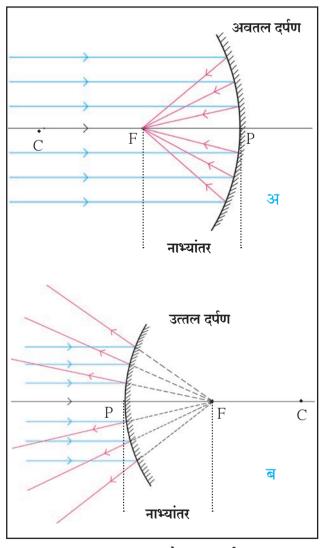
अवतल दर्पण को अभिसारी दर्पण भी कहते हैं क्योंकि मुख्य अक्ष के समांतर आने वाली किरणें अवतल दर्पण से परावर्तन के उपरांत एक बिंदु पर अभिसरित होती हैं। (आकृति 11.14 अ देखिए)

अवतल दर्पण द्वारा वस्तु की दर्पण से दूरी के अनुसार मूल वस्तु से बड़ा या छोटा प्रतिबिंब निर्मित होता है।

मुख्य अक्ष के समांतर आने वाली किरणें उत्तल दर्पण द्वारा परावर्तित होने के उपरांत अपसरित होती हैं इसलिए इस दर्पण का अपसारी दर्पण कहते हैं। (आकृति 11.14 ब देखिए) उत्तल दर्पण द्वारा वस्तु के मूल आकार से छोटा प्रतिबिंब निर्मित होता है।

आप कैसे पहचानेंगे कि गोलीय दर्पण अवतल है या उत्तल?

दाढ़ी करने के लिए इस्तेमाल किया जाने वाला विशेष दर्पण अवतल दर्पण होता है। इस दर्पण को चेहरे के पास पकड़ने पर दर्पण में चेहरे का सीधा और बड़ा प्रतिबिंब प्राप्त होता है। इसी दर्पण को चेहरे से दूर-दूर ले जाने पर प्रतिबिंब उलटा और छोटा होता जाता है।


मोटर और मोटर साइकिल का दर्पण उत्तल दर्पण होता है। उत्तल दर्पण में देखने पर चेहरे का प्रतिबिंब सीधा परंतु छोटा प्राप्त होता है। दर्पण से दूर जाने पर प्रतिबिंब छोटा होते जाता है परंतु वह सीधा ही रहता है। इस कारण आसपास की अन्य वस्तुएँ भी दर्पण में दिखने लगती हैं अर्थात दर्पण द्वारा प्राप्त होने वाले प्रतिबिंबों के रूप के आधार पर हम यह निश्चित कर सकते हैं कि दर्पण अवतल है या उत्तल।

जब किसी वस्तु से आने वाली प्रकाश किरणें हमारी आँखों में प्रवेश करती हैं। तब हम उस वस्तु को देख सकते हैं क्योंकि आँख के लैंस द्वारा प्रकाश किरणें अभिसरित होकर वस्तु का प्रतिबिंब नेत्रपटल पर निर्मित होता है। इस प्रकार प्रकाश किरणों के एक बिंदु पर अभिसरित होने से निर्मित होने वाला प्रतिबिंब ही वास्तविक प्रतिबिंब (Real Image) होता है। वास्तविक प्रतिबिंब को परदे पर प्राप्त किया जा सकता है।

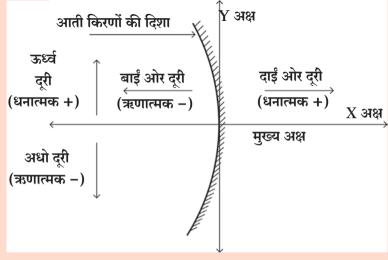
समतल दर्पण द्वारा प्राप्त होने वाला प्रतिबिंब आभासी प्रतिबिंब (Virtual Image) होता है। यह प्रतिबिंब ऐसे बिंदु के पास प्राप्त होता है जहाँ से परावर्तित किरणों के अपसरित होने का आभास होता है। आकृति (11.2 ब) इस प्रतिबिंब को परदे पर प्राप्त नहीं किया जा सकता क्योंकि प्रकाश किरणें वहाँ वास्तविक रूप से एकत्र नहीं आतीं।

जब प्रकाश किरणें दर्पण से परावर्तित होकर एक बिंदु पर एकत्रित होती हैं तब प्रकाश का अभिसरण होता है। हमें जब प्रकाश एक बिंदु पर एकत्र लाना होता है तब अभिसरित प्रकाशपुँज का उपयोग किया जाता है। इस प्रकार के प्रकाशपुँज का उपयोग करके डॉक्टर दाँत, कान, आँख इत्यादि पर प्रकाश एकाग्र करते हैं। अभिसरित प्रकाश का उपयोग सौर उपकरणों में भी किया जाता है।

जब एक बिंदुम्नोत से आनी वाली प्रकाश किरणें दर्पण से परावर्तित होकर एक-दूसरे से दूर फैलती हैं तब प्रकाश का अपसरण होता है। जिस समय हमें स्नोत से आने वाले प्रकाश का फैलना अपेक्षित होता है उस समय अपसरित प्रकाश पुँज का उपयोग किया जाता है। उदाहरणार्थ रास्ते के बल्ब, टेबल लैंप इत्यादि।

11.14 अवतल और उत्तल दर्पण

अवतल दर्पण के गुणधर्म और उपयोग


- 1. केशकर्तनालय, दाँतों का दवाखाना दर्पण के ध्रुव और नाभि के बीच वस्तु रहने पर वस्तु का सीधा, आभासी और अधिक बडा प्रतिबिंब प्राप्त होता है।
- 2. बैटरी और वाहनों के हेडलाइट प्रकाश स्रोत को नाभि के पास रखने पर प्रकाश का समांतर पुँज प्राप्त होता है।
- 3. फ्लड लाईट्स प्रकाश स्रोत को अवतल दर्पण के वक्रता केंद्र से थोड़ा परे रखने पर तीव्र प्रकाश पुँज प्राप्त होता है।
- 4. विविध सौर उपकरण अवतल दर्पण द्वारा परावर्तित सूर्यिकरणें नाभीय प्रतल में एकत्र होती हैं।

उत्तल दर्पण के गुणधर्म और उपयोग

- 1. गाड़ियों के दाईं और बाईं ओर लगाए गए दर्पण उत्तल दर्पण होते हैं।
- 2. बड़े उत्तल दर्पण दवार पर चौराहे में लगाए जाते हैं।

कार्तीय चिह्न परिपाटी के अनुसार, दर्पण के ध्रुव (P) को मूलबिंदु माना जाता है। दर्पण के मुख्य अक्ष को निर्देशांक ऊर्ध्व पद्धति (Frame of Referance) दूरी (धनात्मक +) निम्नानुसार हैं।

- वस्तु को हमेशा दर्पण के बाईं ओर रखा जाता है। मुख्य अक्ष के समांतर सभी दूरियाँ दर्पण के ध्रुव से मापी जाती हैं।
- मूलबिंदु के दाईं ओर नापी गई सभी दूरियाँ धनात्मक तथा बाईं ओर मापी गई दूरियाँ ऋणात्मक मानी जाती हैं।

11.15 कार्टेशिअन चिह्न संकेत

- 3. मुख्य अक्ष के लंबवत तथा ऊपर की ओर मापी गई दूरियाँ (उर्ध्व दूरी) धनात्मक होती हैं।
- 4. मुख्य अक्ष के लंबवत तथा नीचे की ओर मापी गई दूरियाँ (अधो दूरी) ऋणात्मक होती हैं।
- 5. अवतल दर्पण का नाभ्यांतर ऋणात्मक तथा उत्तल दर्पण का नाभ्यांतर धनात्मक होता है।

दर्पण सूत्र (Mirror formula)

जब हम कार्तीय चिह्न परिपाटी के अनुसार दूरियाँ नापते हैं तब हमें वस्तु की दूरी, प्रतिबिंब की दूरी और नाभ्यांतर के उचित मान प्राप्त होते हैं। वस्तु की ध्रुव से दूरी को वस्तु दूरी (u) कहते हैं। प्रतिबिंब की ध्रुव से दूरी को प्रतिबिंब दूरी (v) कहते हैं। वस्तु दूरी, प्रतिबिंब दूरी और नाभ्यांतर के बीच के संबंध को दर्पण सूत्र कहते हैं।

दर्पण का सूत्र इस प्रकार होता है,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

यह सूत्र सभी परिस्थितियों में, सभी गोलीय दर्पणों के लिए, वस्तु के सभी स्थानों के लिए उपयुक्त है।

गोलीय दर्पण दुवारा होने वाला आवर्धन (M) (Magnification due to Spherical Mirrors)

गोलीय दर्पण द्वारा होने वाले आवर्धन को प्रतिबिंब की ऊँचाई का (h_2) और वस्तु की ऊँचाई से (h_1) होनेवाले अनुपात द्वारा दर्शाते हैं। उसके द्वारा दर्शाया जाता है कि वस्तु के आकार की तुलना में संबंधित प्रतिबिंब कितने गुना बड़ा है।

आवर्धन =
$$\frac{\sqrt[]{\pi \ln |\vec{a}|}}{\sqrt[]{\alpha + 1}} = \frac{h_2}{\sqrt[]{n_1}}$$
 इस आधार पर ऐसा सिद्ध किया जा सकता है कि $M = -\frac{v}{u}$

वस्तु हमेशा मुख्य अक्ष पर रखी जाने के कारण वस्तु की ऊँचाई धनात्मक मानी जाती है। प्रतिबिंब आभासी होने पर उसकी ऊँचाई धनात्मक होती है परंतु वास्तविक प्रतिबिंब के लिए उसकी ऊँचाई ऋणात्मक होती है। कार्तीय परिपाटी के अनुसार वस्तु को दर्पण के बाईं ओर रखा जाता है इस कारण वस्तु दूरी ऋणात्मक होती है।

पृष्ठ क्र. 122 की तालिका में दी गई जानकारी के आधार पर प्रत्येक स्थिति के लिए (अ.क्र. 1 से 6) आवर्धन M के चिह्न दोनों सूत्रों से ज्ञात कीजिए। वे समान हैं क्या, उनकी जाँच कीजिए।

हल किए गए उदाहरण

उदाहरण: राजश्री को 10 सेमी नाभ्यांतर वाले अवतल दर्पण की सहायता से दर्पण से 30 सेमी दूर स्थित वस्तु का 5 सेमी ऊँचा प्रतिबिंब उल्टा प्राप्त करना है तो उसे परदा दर्पण से कितनी दूरी पर रखना होगा तथा उसने प्राप्त किए प्रतिबिंब का स्वरूप और वस्तु का आकार क्या होगा?

दत्त:

नाभ्यांतर = f = - 10 सेमी, वस्तु की दूरी = u = - 30 सेमी , प्रतिबिंब की ऊँचाई = h_2 = -5 सेमी प्रतिबिंब की दूरी = v = ? , वस्तु की ऊँचाई = h_1 = ?

दर्पण सूत्रानुसार

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$\frac{1}{v} = \frac{1}{-10} - \frac{1}{-30}$$

$$\frac{1}{v} = \frac{-3+1}{30}$$

$$\frac{1}{v} = \frac{-2}{30}$$

वस्तु की ऊँचाई 10 सेमी होगी। इसलिए प्रतिबिंब वास्तविक और वस्तु से छोटा होगा।

 $\frac{1}{v} = \frac{1}{-15}$ दर्पण से पर्दे की दूरी 15 सेमी होनी चाहिए। अत: राजश्री को पर्दा दर्पण से 15 सेमी दूरी पर रखना v = -15 पड़ेगा।

र्रे इसे सदैव ध्यान में रखिए

दर्पण द्वारा प्राप्त होने वाले जो प्रतिबिंब को परदे पर प्राप्त किया जा सकता है, उसे वास्तविक प्रतिबिंब कहते हैं। वस्तु का स्थान कहीं भी हो तब भी उत्तल दर्पण द्वारा प्राप्त होने वाला प्रतिबिंब आभासी, सीधा, वस्तु से छोटा और दर्पण के पीछे प्राप्त होता है। दर्पण के पीछे प्राप्त होने वाला प्रतिबिंब जिसे परदे पर प्राप्त नहीं किया जा सकता उसे आभासी प्रतिबिंब कहते हैं, इस प्रतिबिंब का आवर्धन एक-से-कम होता है।

स्वाध्याय 🗸 🍑

नीचे दिए गए प्रश्नों के उत्तर लिखिए ।

- अ. समतल दर्पण, अवतल दर्पण, उत्तल दर्पण के बीच अंतर प्रतिबिंब के स्वरूप और आकार के आधार पर लिखिए।
- आ. अवतल दर्पण के संदर्भ में प्रकाश स्रोत की भिन्न-भिन्न स्थिति बताइए।

 1. टार्च 2. प्रोजेक्ट लैंप 3. फ्लड लाईट
- इ. सौर उपकरणों में अवतल दर्पणों का उपयोग क्यों किया जाता है?
- ई. वाहनों के बाहर की ओर लगाया गया दर्पण उत्तल दर्पण क्यों होता है?
- 3. अवतल दर्पण की सहायता से कागज पर सूर्य का प्रतिबिंब प्राप्त करने पर कुछ समय उपरांत कागज क्यों जलता है?
- ऊ. गोलीय दर्पण टूटने के बाद मिलने वाला प्रत्येक टुकड़ा कौन-से प्रकार का दर्पण होगा? क्यों?
- गोलीय दर्पण द्वारा होने वाले परावर्तन के लिए कौन-सी चिह्न परिपाटी का उपयोग किया जाता है?
- 3. अवतल दर्पण द्वारा मिलने वाले प्रतिबिंबों की सारिणी के आधार पर उनकी किरणाकृति बनाइए।
- 4. नीचे दिए गए उपकरणों में कौन-से दर्पण का उपयोग किया जाता है?

पेरिस्कोप, फ्लडलाईट्स, दाढ़ी करने का दर्पण, बहुरूपदर्शक (कैलिडोस्कोप), रास्ते के बल्ब, मोटर गाडी के बल्ब

5. उदाहरण हल कीजिए।

अ. 15 सेमी नाभ्यांतर वाले अवतल दर्पण के सामने 7 सेमी ऊँची वस्तु 15 सेमी दूरी पर रखी गई। दर्पण से कितनी दूरी पर पर्दा रखने पर हमें उसका सुस्पष्ट प्रतिबिंब प्राप्त होगा? प्रतिबिंब का स्वरूप और आकार स्पष्ट कीजिए।

(उत्तर: 37.5 सेमी, 10.5 सेमी, वास्तविक)

- आ. 18 सेमी नाभ्यांतर वाले उत्तल दर्पण के सामने रखी वस्तु का प्रतिबिंब वस्तु की ऊँचाई से आधी ऊँचाई का प्राप्त होता है तो वह वस्तु उत्तल दर्पण से कितनी दूरी पर रखी गई होगी? (उत्तर: 18 सेमी)
- इ. 10 सेमी लंबी लकड़ी 10 सेमी नाभ्यांतर वाले अवतल दर्पण के मुख्य अक्ष पर ध्रुव से 20 सेमी दूरी पर रखी है तो अवतल दर्पण द्वारा प्राप्त होने वाले प्रतिबिंब की ऊँचाई कितनी होगी?

(उत्तर: 10 सेमी)

6. एक ही गोले से तीन दर्पण तैयार किए गए तो उनके ध्रुव, वक्रता केंद्र, वक्रता त्रिज्या, मुख्य अक्ष में से क्या समान होगा और क्या नहीं, कारण सहित स्पष्ट कीजिए।

उपक्रम :

बहुरूपदर्शक (Kaleidoscope) यंत्र बनाकर उसके कार्य का कक्षा में प्रस्तुतीकरण कीजिए।

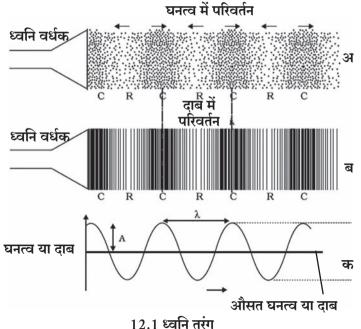
12. ध्वनि का अध्ययन

ध्वनि तरंग

> ध्वनि का वेग

> ध्विन का प्रावर्तन

मानवीय कर्ण, श्राट्य, अवश्राट्य ध्वनि और श्रट्यातीत ध्वनि


- 1.ध्वनि की गति उसकी आवृत्ति पर कैसे निर्भर करती है?
- 2. ध्विन तरंगों में माध्यम के कणों के कंपन और ध्विन संचरण की दिशा में क्या संबंध होता

ध्विन एक प्रकार की ऊर्जा होती है जो हमारे कानों में सुनाई देने की संवेदना निर्माण करती है। यह ऊर्जा तरंगों के स्वरूप में होती है। ध्विन के संचरण के लिए माध्यम की आवश्यकता होती है। ध्विन तरंग के कारण माध्यम में संपीडन (अधिक घनत्व का क्षेत्र) और विरलन (कम घनत्व का क्षेत्र)) की शंखला निर्मित होती है। माध्यम के कणों का कंपन अपनी मुल स्थिति के दोनों ओर तरंग संचरण की समांतर दिशा में होता है. ऐसी तरंग को अनदैध्य तरंग (Longitudinal Waves) कहते हैं। इसके विपरीत पानी में कंकड डालने पर निर्माण होने वाली तरंग में पानी के कण ऊपर नीचे कंपन करते हैं, ये कंपन तरंग संचरण की दिशा के लंबवत होते हैं, उसे अनुप्रस्थ तरंग (Transverse Waves) कहते हैं।

प्रेक्षण कीजिए और चर्चा कीजिए

किसी ध्वनितरंग को हम आलेख के स्वरूप में आकृति में बताए अनुसार दिखा सकते हैं। ध्वनि तरंग का संचरण होते समय किसी भी क्षण देखें तो हवा में अधिक कम घनत्व (संपीडन अथवा विरलन) के पटटे निर्मित हुए दिखाई देंगे। आकृति 'अ' में घनत्व में हआ परिवर्तन दिखाया गया है तो आकति 'ब' में दाब में परिवर्तन दिखाया गया है। घनत्व/दाब का यही परिवर्तन आलेख की सहायता से आकृति 'क' में दिखाया गया है।

ध्विन तरंगदैर्ध्य की लंबाई (Wavelength) ग्रीक अक्षर λ (लॅम्डा) द्वारा दर्शाते हैं जबिक आवृत्ति (Frequency) को ग्रीक अक्षर v (न्यू) द्वारा दर्शाते हैं। आयाम (Amplitude) को A से दर्शाया जाता है। माध्यम के किसी बिंद के पास घनत्व का एक आवर्तन पूर्ण होने के लिए लगने वाले समय को दोलन काल (Period) कहते हैं। दोलनकाल को 'T' अक्षर से दर्शाते हैं।

आवृत्ति के मान से ध्वनि का तारत्व (Pitch) निश्चित होता है और आयाम के मान से ध्वनि की प्रबलता निश्चित होती है।

- सा, रे, ग, म, प, ध, नि, इन स्वरों की आवृत्ति एक-दूसरे के साथ कौन-से सूत्र द्वारा जोडी गई है?
- पुरुषों और स्त्रियों की आवाजों की आवृत्ति में मुख्य अंतर कौन-सा होता है?

ध्वनि का वेग (Speed of Sound)

- 1. आप अपने एक मित्र / सहेली को लेकर ऐसी जगह पर जाइए जहाँ लोहे का पाइप हो। उदा. विद्यालय का बरामदा, घर की सीढ़ियाँ या बाड़।
- 2. आप पाइप के एक सिरे के पास खड़े रहें और लगभग 20 से 25 फूट दूरी पर अपने मित्र को खड़ा रखें।
- 3. मित्र को पत्थर की सहायता से पाइप पर आघात करने को कहें और आप पाइप को कान लगाकर पाइप में से आने वाली पत्थर की आवाज सुनिए।
- 4. पत्थर के पाइप पर आघात से हुई आवाज हमें हवा में भी सुनाई देगी परंतु कौन-सी आवाज पहले आई? उपर्युक्त कृति से हमें यह स्पष्ट होता है कि हवा की अपेक्षा लोहे में से ध्विन की आवाज बहुत शीघ्र सुनाई देती है अर्थात ध्विन का वेग हवा की अपेक्षा लोहे में अधिक होता है। तरंग के संपीडन या विरलन जैसे किसी बिंदु द्वारा इकाई समय में तय की गई दुरी को ध्विन का वेग कहते हैं।

ध्विन तरंग का कोई भी बिंदु T (दोलन काल) समयाविध में λ दूरी (तरंग दैर्ध्य) तय करता है। इसलिए ध्विन का वेग निम्नानुसार होगा

v = υ λ क्योंकि $\frac{1}{T} = υ$ अर्थात

ध्वनि का वेग = आवृत्ति x तरंगदैर्ध्य

समान भौतिक अवस्था वाले माध्यमों में ध्विन का वेग सभी आवृत्तियों के लिए लगभग समान होता है। ठोस माध्यम से गैसीय माध्यम तक ध्विन का वेग कम होते जाता है। यदि हम किसी भी माध्यम का तापमान बढ़ाएँ तो ध्विन का वेग बढ़ता है।

इटालियन भौतिक वैज्ञानिक बोरेली और विवियानी ने 1660 के शतक में ध्विन का हवा में वेग ज्ञात किया। दूर स्थित बंदूक से गोली निकलते समय निकलने वाले प्रकाश और ध्विन हमारे तक पहुँचने के समय के आधार पर उनके द्वारा मापी गई गित 350 m/s आज के स्वीकृत मान (346 m/s) के बहुत ही आसपास है।

विविध माध्यमों मे 25°C तापमान पर ध्वनि का वेग

विविध मध्यमा म 25°८ तापमान पर ध्वान का वरा			
अवस्था	पदार्थ	वेग (m/s) में	
स्थायी	एल्युमीनियम	5420	
	निकिल	6040	
	स्टील	5960	
	लोहा	5950	
	पीतल	4700	
	काँच	3980	
द्रव	समुद्र का पानी	1531	
	शुद्ध पानी	1498	
	इथेनॉल	1207	
	मिथेनॉल	1103	
गैस	हाइड्रोजन	1284	
	हीलियम	965	
	हवा	346	
	ऑक्सीजन	316	
	सल्फर डायऑक्साइड	213	

ध्विन का हवा में वेग: हवा माध्यम से जाने वाली ध्विन तरंगों का वेग हवा की भौतिक स्थिति पर निर्भर होता है। भौतिक स्थिति का अर्थ हवा का तापमान, उसका घनत्व व उसका अणुभार।

तापमान (Temperature T) : ध्विन का वेग माध्यम के तापमान (T) के वर्गमूल के समानुपाती होता है अर्थात तापमान चौगुना होने पर ध्विन का वेग दोगुना होता है। $\nabla \alpha \sqrt{T}$

अणुभार (Molecular Weight M): ध्विन का वेग माध्यम के अणुभार के वर्गमूल के प्रतिलोमानुपाती होता है।

$$V \alpha \frac{1}{\sqrt{M}}$$

विचार कीजिए।

ऑक्सीजन गैस (O_2) का अणुभार 32 तथा हाइड्रोजन का अणुभार (H_2) का अणुभार 2 है। इस आधार पर सिद्ध कीजिए कि समान भौतिक अवस्था में ध्विन का वेग हाइड्रोजन में ऑक्सीजन की अपेक्षा चौगुना होगा। स्थिर तापमान पर ध्विन का वेग वायुदाब पर निर्भर नहीं करता।

श्राव्य, अवश्राव्य और श्रव्यातीत ध्वनि

मानवीय कान की ध्विन सुनने की सीमा 20 Hz से 20000 Hz है अर्थात मानवीय कान इस आवृत्ति के बीच की ध्विन सुन सकते हैं। इसिलए इस ध्विन को श्रव्य ध्विन कहते हैं। मानवीय कान 20 Hz से कम और 20000 Hz (20 kHz) से अधिक आवृत्ति की ध्विन नहीं सुन सकते। 20 Hz से कम आवृत्ति की ध्विन को अव श्राव्य ध्विन कहते हैं। लोलक के कंपन से निर्मित ध्विन, भूकंप आने के पूर्व पृथ्वी के पृष्ठभाग के कंपन से निर्मित ध्विन 20 Hz से कम आवृत्ति की होती है अर्थात अवश्राव्य ध्विन (Infrasound) है। 20000 Hz से अधिक आवृत्ति की ध्विन को श्रव्यातीत ध्विन (Ultrasound) कहते हैं।

कुत्ते, चूहे, चमगादड़, डॉल्फिन जैसे प्राणी उन्हें प्राप्त विशेष क्षमता के कारण मानव को सुनाई न देने वाली पराश्रव्य ध्विन सुन सकते हैं। इस क्षमता के कारण उन्हें कुछ ऐसी आवाजें सुनाई पड़ती है जिन्हें हम नहीं सुन सकते। पाँच साल से कम उम्र के बच्चे, कुछ प्राणी और कीटक 25000 Hz तक की ध्विन सुन सकते है। डॉल्फिन, चमगादड़, चूहे जैसे प्राणी पराश्रव्य ध्विन का निर्माण भी कर सकते हैं।

इतिहास के पन्ने से

इटालियन वैज्ञानिक स्पालांझानी ने चमगादड़ के शरीर की विशिष्ट रचना की खोज प्रथम की। एक समय में चमगादड़ का एक अंग (कान, नाक, आँखें इत्यादि) ढक/ बंद कर उन्हें अंधेरें में छोड़ने पर चमगादड़ बेधड़क अंधेरे में कैसे उड़ सकते हैं, इसका रहस्य स्पालांझानी ने खोला। कान बंद किए गए चमगादड़ इधर-उधर टकराने लगे। आँखे खुली होने पर भी उन्हें उनका उपयोग नहीं हो रहा था। इस आधार पर यह स्पष्ट हुआ कि चमगादड़ों की अंधेरे में उड़ने की क्षमता उनके कानों पर निर्भर करती है।

चमगादड़ जिस पराश्रव्य ध्विन को मुँह से निकालते हैं वह सामने के पदार्थ पर टकराकर परावर्तित होती है। यह परावर्तित ध्विन वे कानों से सुन सकते हैं। इस प्रकार सामने के पदार्थ के अस्तित्व व दूरी के बारे में चमगादड़ों को अंधेरे में भी अचूक ज्ञान होता है।

श्रव्यातीत ध्वनि का उपयोग

- 1. एक जहाज से दसरे जहाज के बीच संपर्क स्थापित करने के लिए पराश्रव्य ध्विन उपयोगी साबित होती है।
- 2. प्लास्टिक के पृष्ठभाग एकत्र जोड़ने के लिए पराश्रव्य ध्वनि का उपयोग किया जाता है।
- 3. दूध जैसे द्रवों को अधिक समय तक टिका कर (परिरक्षित कर) रखते समय उसके जीवाणुओं को मारने के लिए पराश्रव्य ध्वनि का उपयोग किया जाता है।
- 4. हृदय की धड़कनों का अध्ययन करने की तकनीक (Echocardiography) पराश्रव्य ध्वनि पर आधारित है। (सोनोग्राफी तकनीक)
- 5. मानवीय शरीर के आंतरिक अवयवों के प्रतिबिंब पराश्रव्य ध्विन दवारा प्राप्त किए जा सकते हैं।
- 6. पराश्रव्य ध्विन का उपयोग कारखानों में होता है। जिस जगह हाथ पहुँचना संभव नहीं है, यंत्रों के ऐसे भागों की स्वच्छता करने के लिए इसका उपयोग किया जाता है।
- 7. धातु के गुटके में दरारें और छिद्र ढूँढ़ने के लिए भी इस ध्वनि का उपयोग किया जाता है।

ध्वनि का परावर्तन (Reflection of Sound)

12.2 घड़ी की सहायता से निर्मित होने वाले कंपन

- 1. दो कार्डबोर्ड (गत्ते) लेकर उससे पर्याप्त लंबाई की दो एक जैसी नलियाँ तैयार कीजिए।
- टेबल पर दीवार के पास आकृति में दिखाए अनुसार उन्हें रखिए।
- 3. एक नली के खुले सिरे के पास एक घड़ी रखें और दूसरी नली के सिरे से ध्विन सुनने का प्रयत्न कीजिए।
- दोनों निलयों के बीच का कोण इस प्रकार रिखए कि आपको घड़ी की आवाज अत्यंत स्पष्ट रूप से सुनाई आए।
- 5. आपितत कोण θ_1 और परावर्तन कोण θ_2 को मापें और उन दोनों कोणों के बीच का संबंध ज्ञात कीजिए।

प्रकाश तरंगों की भाँति ध्विन तरंगों का भी ठोस या द्रव पृष्ठभाग से परावर्तन होता है। वे भी परावर्तन के नियमों का पालन करती हैं। ध्विन के परावर्तन के लिए किसी खुरदुरे या चिकने पृष्ठभाग की रुकावट की आवश्यकता होती है। ध्विन के आने की दिशा व परावर्तित होने की दिशा परावर्तक पृष्ठभाग के अभिलंब के साथ समान कोण बनाती है और वे एक ही प्रतल में होते हैं।

ध्विन के योग्य परावर्तक व अयोग्य परावर्तक

किसी परावर्तक से ध्विन परावर्तित होते समय ध्विन कितनी मात्रा में परावर्तित हुई, इस आधार पर उनका ध्विन के योग्य परावर्तक और अयोग्य परावर्तक में वर्गीकरण किया जाता है। कठोर और समतल पृष्ठभाग से ध्विन का परावर्तन अच्छी तरह होता है तो कपड़े, पेपर, चटाई, पर्दे, फिनचर से ध्विन का परावर्तन न होकर ध्विन अवशोषित कर ली जाती है इसलिए इन्हें अयोग्य परावर्तक कहते हैं।

कृति में दाहिनी ओर की नली को कुछ ऊँचाई पर उठाने से क्या होगा?

प्रतिध्वनि (Echo)

किसी ठंडी हवा के स्थान पर प्रतिध्वनि – स्थल अर्थात् इकोपाईंट के पास आपके द्वारा जोर से आवाज लगाने पर थोड़ी देर बाद पुन: वही ध्वनि सुनाई देती है। ऐसी ध्वनि को प्रतिध्वनि कहते हैं। इसका अनुभव आपको होगा।

प्रतिध्विन का अर्थ मूल ध्विन का किसी भी पृष्ठभाग से परावर्तन के कारण होने वाली पुनरावृत्ति है।

ध्विन और प्रतिध्विन अलग-अलग सुनाई देने के लिए 22°C से. तापमान पर ध्विन के स्रोत से परावर्तक पृष्ठभाग तक की न्यूनतम दूरी कितने मीटर होनी चाहिए? 22°C से. तापमान पर हवा में ध्विन का वेग 344 मीटर/सेकंड होता है। हमारे मिस्तिष्क में ध्विन का सातत्य लगभग 0.1 सेकंड होता है। इसिलए यदि ध्विन रुकावट तक जाकर पुनः श्रोता के कान तक 0.1 सेकंड से अधिक समय में पहुँचती है तो ही हमें वह स्वतंत्र ध्विन के रूप में सुनाई देगी। ध्विन की स्रोत से परावर्तक पृष्ठ तक और पुनः पीछे ऐसी न्यूनतम दूरी हम नीचे दिए गए सूत्र द्वारा ज्ञात कर सकते हैं।

दूरी = वेग × समय

- = 344 मीटर / सेकंड × 0.1 सेकंड
- **=** 34.4 मीटर

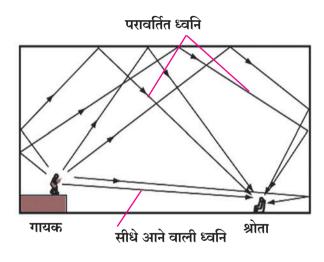
अत: सुस्पष्ट ध्विन सुनाई देने के लिए ध्विन के स्रोत से रुकावट (परावर्तक पृष्ठ) की न्यूनतम दूरी उपर्युक्त दूरी की आधी अर्थात 17.2 मीटर होनी चाहिए। विभिन्न तापमानों पर ये दूरियाँ भिन्न-भिन्न होती हैं।

थोड़ा सोचिए

- क्या विभिन्न तापमानों पर सुस्पष्ट प्रतिध्विन सुनाई देने के लिए ध्विन स्रोत से रुकावट तक की दूरियाँ समान होंगी? आपके उत्तर का समर्थन कीजिए।
- 2. कभी-कभी ध्वनि का कौन-सा परावर्तन हानिकारक हो सकता है?

परिसर में विज्ञान

सतत या बहुत बार होने वाले परावर्तन के कारण प्रतिध्विन अनेक बार सुनाई दे सकती है। इसका उत्तम उदाहरण कर्नाटक के विजयपुर में स्थित गोल गुंबद है।



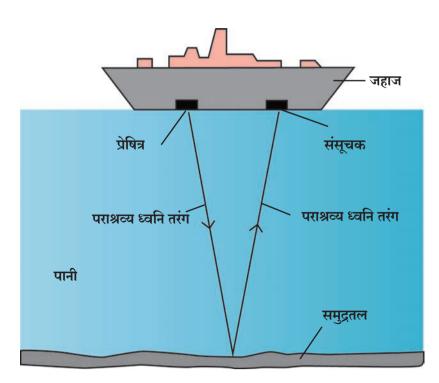
तुलना कीजिए

- एक खाली बंद या नए बंद घर में आप अपने मित्रों के साथ जाइए।
- घर में प्रवेश करने के पश्चात अपने मित्रों से बातें करिए।
- आपको क्या महसूस हुआ उसे नोट कीजिए।
- घर के दरवाजे, खिड़िकयाँ बंद करके म्युजिक सिस्टम शुरू कीजिए।
- 2. म्युजिक सिस्टम की आवाज यथासंभव बढ़ाइए।
- 3. आपको क्या महसूस होता है, उसे नोट कीजिए।

अनुरणन (Reverberation)

इमारत की छत या दीवार से ध्विन तरंगों के बार-बार परावर्तन होने के कारण ध्विन तरंगें एकत्र आकर सतत अनुभव होने वाली ध्विन निर्मित करती हैं, परिणाम स्वरूप ध्विन के सातत्य का निर्माण होता हैं। (अर्थात ध्विन के बाद बहुत देर तक बनी रहती है) ऐसी ध्विन को अनुरणन कहते हैं। दो ध्विन तरंगों के लगातार आगमन की समयाविध कम होती जाती है और परावर्तित ध्विन एक-दूसरे में मिश्रित होने से अस्पष्ट और बढ़ी हुई तीव्रता (Intensity) की ध्विन कमरे में निर्मित होती है। कुछ सार्वजिनक सभागृह या श्रोताओं के बैठने की जगह ध्विन विषयक निकृष्ट होती हैं इसका कारण अनुरणन ही है।

12.3 अनुरणन निर्मिति



थोड़ा सोचिए

सोनार (SONAR)

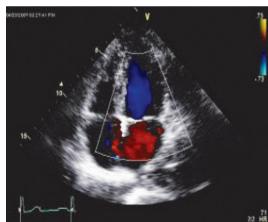
Sound Navigation and Ranging का लघुरूप SONAR है। SONAR द्वारा पराश्रव्य ध्विन का उपयोग करके जल में स्थित पिंडों की दूरी, दिशा और वेग का मापन किया जाता है। सोनार में एक प्रेषित्र तथा एक संसूचक होता है, उन्हें जहाज पर या नाव पर लगाया जाता है।

प्रेषित्र पराश्रव्य ध्वनि उत्पन्न करके प्रेषित करता है। ये तरंगें जल में चलती हैं तथा समुद्र तल में पिंड से टकराने के पश्चात परावर्तित होकर संसूचक द्वारा ग्रहण कर ली जाती हैं।

सार्वजनिक सभागृह, इमारतों में होने वाला अन्रणन आप कैसे कम करेंगे?

12.4 सोनार प्रणाली

संसूचक पराश्रव्य ध्विन तरंगों को विद्युत संकेतों में बदल देता है जिनकी समुचित व्याख्या की जाती है। पराश्रव्य ध्विन के प्रेषण तथा अभिग्रहण के समय अंतराल तथा जल में ध्विन की चाल ज्ञात करके उस पिंड की दूरी की गणना की जा सकती है।


SONAR की तकनीक का उपयोग करके समुद्र की गहराई ज्ञात की जा सकती है। जल के अंदर स्थित पहाड़ियों, खाइयों, पनडुब्बियों, हिमशैल, डूबे हुए जहाज आदि की जानकारी प्राप्त करने के लिए इसका उपयोग किया जाता है।

सोनोग्राफी (Sonography)

सोनोग्राफी तकनीक में पराश्रव्य ध्विन तरंगों का उपयोग शरीर के आंतरिक भागों के चित्र निर्मिति के लिए किया जाता है। इसकी सहायता से सूजन आना, जंतुसंसर्ग और वेदना के कारणों को ज्ञात किया जाता है। हृदय की स्थिति, हृदयाघात (दिल का दौरा) के बाद हृदय की अवस्था और गर्भवती स्त्रियों के गर्भाशय में गर्भ की वृद्धि देखने के लिए इस तकनीक का उपयोग किया जाता है।

सोनोग्राफी यंत्र

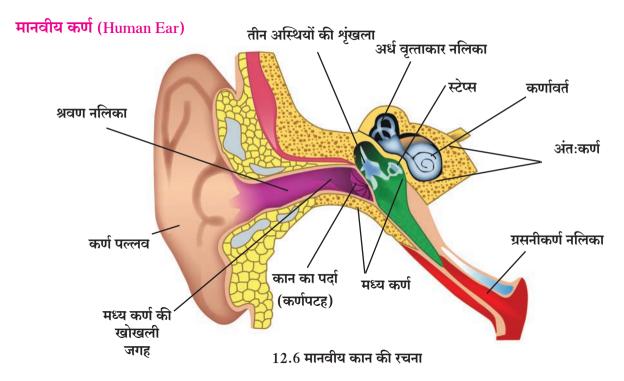
प्राप्त प्रतिबिंब

12.5 सोनोग्राफी यंत्र और उसके दवारा दिखने वाला प्रतिबिंब

इस तकनीक में एक छोटी सलाई (Probe) और एक विशिष्ट द्रव का उपयोग किया जाता है। सलाई और त्वचा के बीच संपर्क उचित प्रकार से होने तथा पराश्रव्य ध्विन का पूर्ण क्षमता से उपयोग करने के लिए इस द्रव का उपयोग किया जाता है।

परीक्षण किए जाने वाले भाग की त्वचा पर द्रव लगाकर सलाई की सहायता से उच्च आवृत्ति की ध्विन द्रव में से शरीर में संचरित की जाती है। शरीर के आंतरिक भागों में परावर्तित ध्विन को पुन: सलाई द्वारा एकत्र किया जाता है और इस परावर्तित ध्विन की सहायता से संगणक द्वारा शरीर के आंतरिक भागों के चित्र तैयार किए जाते हैं। यह तकनीक वेदनारहित होने के कारण अचूक निदान करने के लिए इस तकनीक का उपयोग चिकित्सा शास्त्र में बढ़ रहा है।

खोजिए


पराश्राय ध्वनि का चिकित्साशास्त्र में किस प्रकार उपयोग किया जाता है, इस बारे में जानकारी प्राप्त करें।

इसे सदैव ध्यान में रखिए

विज्ञान के माध्यम से तकनीक में हुआ विकास मानव की प्रगति के लिए उपयोगी सिद्ध हुआ है, फिर भी तकनीक के दुरूपयोग से मानवीय जीवन पर अनेक दुष्परिणाम हुए हैं। सोनोग्राफी तकनीक के आधार पर हमें यह पता चलता है कि जन्म लेने वाला भ्रूण कैसा है, उसकी वृद्धि कैसे हो रही है। कितु इस तकनीक का दुरूपयोग कर लड़का-लड़की के बीच भेद करते हुए स्त्रीभ्रूण हत्या का प्रमाण बढ़ रहा है। ऐसा करना कानूनन अपराध है। इसके लिए PNDT Act बनाया गया है।

कान मानव का महत्त्वपूर्ण अंग है। कान से हम ध्विन सुनते हैं। ध्विन तरंग कान तक आने पर कान का पर्दा (कर्णपट) कंपित होता है और उन कंपनों का विद्युत तरंगों में रूपांतरण होता है। इन विद्युत तरंगों को श्रवण तंत्रिका द्वारा मस्तिष्क तक भेज दिया जाता है। कान के तीन भाग होते हैं –

कर्णपल्लव (Pinna)

यह बाह्य परिवेश से ध्विन एकत्रित करता है, एकत्रित ध्विन श्रवण निलका से मध्य कर्ण की खोखली जगह तक पहुँचती है।

मध्यकर्ण (Middle Ear)

मध्य कर्ण की खोखली जगह में एक पतला पर्दा (झिल्ली) होता है जिसे कर्णपटह कहते हैं। जब माध्यम के संपीड़न कर्णपटह पर पहुँचते हैं तो झिल्ली के बाहर की ओर लगने वाला दाब बढ़ जाता है और कर्ण पटह को अंदर की ओर दबाता है। इसी प्रकार, विरलन के पहुँचने पर झिल्ली के बाहर की ओर लगने वाला दाब कम हो जाता है और कर्णपटह बाहर की ओर गित करता है। इस प्रकार ध्वनितरंग के कारण कर्णपटह में कंपन होते हैं।

अंत:कर्ण (Inner Ear)

श्रवण तंत्रिका अंत:कर्ण को मस्तिष्क से जोड़ती है। अत: कर्ण में घोंघे के शंख की तरह चक्राकार कर्णावर्त होता है। कर्णपटह से आने वाले कंपन कर्णावर्त द्वारा स्वीकार किए जाते हैं तथा उन्हें विद्युत तरंगों में परावर्तित कर दिया जाता है। इन विद्युत तरंगों को श्रवण तंत्रिका द्वारा मस्तिष्क तक भेज दिया जाता है और मस्तिष्क इनकी ध्विन के रूप में व्याख्या करता है।

इसे सदैव ध्यान में रखिए

कान एक महत्त्वपूर्ण अंग है। कान को स्वच्छ करने के लिए कान में लकड़ी, नुकीली वस्तु नहीं डालें और इअरफोन की सहायता से ऊँची आवाज में गाने न सुनें। इसके चलते कान के पर्दे (कर्णपटह) को गंभीर क्षति पहुँचने की आशंका होती है।

हल किए गए उदाहरण

उदाहरण 1: 1.5 kHz आवृत्ति तथा 25 cm तरंग दैर्ध्य की ध्वनि को 1.5 km दूरी तय करने के लिए कितना समय लगेगा?

ध्वनि का वेग = बारंबारता × तरंगदैर्ध्य

$$v = v \lambda$$

 $v = 1.5 \times 10^{3} \times 0.25$
 $v = 0.375 \times 10^{3}$
 $v = 375 \text{ m/s}$

समय =
$$\frac{\overline{q}\chi 1}{\overline{q}}$$

$$t = \frac{s}{v} = \frac{1.5 \times 10^3}{375} = \frac{1500}{375} = 4 s$$

ध्वनि को 1.5 km दूरी तय करने के लिए

4 s लगेंगे ।

उदाहरण 2: SONAR की सहायता से समुद्र के पानी में ध्वनितरंग प्रेषित करने के उपरांत 4s के बाद प्रतिध्वनि प्राप्त हुई तो उस स्थान पर समुद्र की गहराई कितनी होगी?

(समुद्र जल में ध्वनि का वेग=1550 m/s)

दत्तः

समुद्र में ध्विन का वेग = $1550~\mathrm{m/s}$ प्रतिध्विन सुनाई देने का समय अंतराल = $4\mathrm{s}$ ध्विन तरंग को समुद्रतल तक जाने का समय अंतराल

दूरी = वेग
$$\times$$
 समय
= 1550 \times 2
= 3100 m

उस जगह समुद्र की गहराई 3100 m होगी।

उदाहरण 3:1 cm तरंगदैर्ध्य वाली ध्विन तरंग 340 m/s के वेग से हवा में जा रही है तो ध्विन की आवृत्ति कितनी होगी? क्या यह ध्विन मानव के श्रवण योग्य है?

द्रतः तरंगदैर्ध्य = $\lambda = 1 \text{cm} = 1 \times 10^{-2} \text{m}$, ध्वनि का वेग = v = 340 m/s

$$v = \upsilon \lambda$$

$$\therefore \upsilon = \frac{\upsilon}{\lambda} = \frac{340}{1 \times 10^{-2}} = 340 \times 10^{2}$$

∴ $\upsilon = 34000 \text{ Hz}$

आवृत्ति 20000 Hz से अधिक होने के कारण यह ध्वनि मानव को सुनाई नहीं देगी।

सोनार तकनीक को पहले विश्वयुद्ध् में शत्रु की पनडुब्बियों का पता लगाने के लिए विकसित किया गया था। इस तंत्रज्ञान का उपयोग हवा में भी किया जा सकता है। चमगादड़ इसी तकनीक का उपयोग करके अपने रास्ते की रुकावटों की जानकारी प्राप्त करते हैं और अंधेरे में सरलतापूर्वक उड़ सकते हैं।

- नीचे दिए गए कथन पूर्ण कीजिए व उनका स्पष्टीकरण लिखिए
 - अ.में से ध्विन का संचरण नहीं होता है।
 - आ. पानी और स्टील में ध्वनि के वेग की तुलना करने परमें ध्वनि का वेग अधिक होगा।
 - इ. दैनिक जीवन में के उदाहरण द्वारा यह सिद्ध होता है कि ध्वनि का वेग प्रकाश के वेग से कम होता है।
 - ई. समुद्र में डूबे किसी जहाज, वस्तु को खोजने के लिए..... तकनीक का उपयोग किया जाता है।

2. वैज्ञानिक कारण स्पष्ट कीजिए।

- अ. चित्रपटगृह, सभागृह की छतें वक्राकार बनी होती हैं।
- आ. बंद खाली घर में अनुरणन की तीव्रता अधिक होती है।
- इ. कक्षा में निर्मित होने वाली प्रतिध्विन को हम सुन नहीं सकते।

नीचे दिए गए प्रश्नों के उत्तर आपके शब्दों में लिखिए।

- अ. प्रतिध्विन का क्या अर्थ है? प्रतिध्विन सुनाई देने के लिए कौन-कौन-सी शर्ते आवश्यक हैं?
- आ. विजयपुर के गोलगुंबद की रचनाके बारे में अध्ययन कीजिए और वहाँ अनेक प्रतिध्वनि सुनाई देने के कारण बताइए।
- इ. प्रतिध्विन निर्माण न हो इसलिए कक्षा की मापें व रचना कैसी होनी चाहिए।
- 4. ध्विन अवशोषक सामग्री का उपयोग किस स्थान पर और क्यों किया जाता है?

5. उदाहरण हल कीजिए।

अ. 0° C. पर ध्विन का हवा में वेग $332 \, \mathrm{m/s}$ है। उसमें प्रति अंश सेल्सियस $0.6 \, \mathrm{m/s}$ की वृद्धि होती है तो $344 \, \mathrm{m/s}$ वेग के लिए ध्विन का तापमान कितना होगा?

(उत्तर : 20 °C)

आ. बिजली चमकने के 4 सेकंड़ के पश्चात नीता को बिजली की आवाज सुनाई दी तो बिजली नीता से कितनी दूरी पर होगी? ध्विन का हवा में वेग = 340 m/s

(उत्तर:1360 m)

- इ. सुनील दो दीवारों के बीच खड़ा है। उससे सबसे समीप की दीवार 360 मीटर दूरी पर है। उसके द्वारा जोर से आवाज देने के बाद 4 सेकंड बाद पहली प्रतिध्वनि सुनाई दी और बाद में 2 सेकंड पश्चात दूसरी प्रतिध्वनि सुनाई दी तो
 - 1.हवा में ध्वनि का वेग कितना होगा?
 - 2. दोनों दीवारों के बीच की दूरी कितनी होगी? (उत्तर: 330 m/s; 1650 m)

ई. हाइड्रोजन गैस दो समान बोतलों (A और B) में समान तापमान पर रखी गई है। बोतलों में हाइड्रोजन गैस का भार क्रमश: 12 ग्राम और 48 ग्राम है। किस बोतल में ध्वनि की गति

अधिक होगी? कितने गुना?

(उत्तर : A में; दोगुना)

3. दो समान बोतलों में हिलीयम गैस भरी गई है। 3नमें गैस का भार 10 ग्राम और 40 ग्राम है। यदि दोनों बोतलों में गैस की गति समान हो तो आप कौन-सा निष्कर्ष प्राप्त करेंगे?

उपक्रम:

 वाद्ययंत्र जलतरंग के बारे में जानकारी प्राप्त कीजिए। उससे विभिन्न स्वर निर्मिति कैसे होती है, इसे समझिए।

13. कार्बन: एक महत्त्वपूर्ण तत्त्व

- कार्बन-उपस्थिति, गुणधर्म, अपरूप > हायडोकार्बन
- > कार्बन डाइऑक्साड और मिथेन-उपस्थिति, गुणधर्म, उपयोग

- 1. तत्त्व क्या हैं? तत्त्वों के विभिन्न प्रकार कौन-से हैं?
- 2. किसी भी कार्बनिक पदार्थ का संपूर्ण ज्वलन होने पर अंततः क्या बचता है?
- 3. कार्बन किस प्रकार का तत्त्व है? इस विषय में जानकारी दें।

पिछली कक्षा में आपने कार्बन एक अधातु तत्त्व है, यह पढ़ा है। प्रकृति में कार्बन कौन-कौन-से यौगिकों के रूप में पाया जाता है यह जानकारी भी आपने प्राप्त की है।

- एक वाष्पन पात्र में थोड़ा दूध लें । वाष्पन पात्र को बनसेन बरनर की सहायता से गर्म करें । दूध पूरी तरह औटने पर वाष्पन पात्र की पेंदी में क्या बचता है?
- 2. अलग-अलग परखनलियों में चीनी, ऊन, सूखे पत्ते, बाल, कोई बीज, दाल, कागज,

प्लास्टिक इनके थोड़े-थोड़े नमूने लें । प्रत्येक परखनली को उष्मा देकर पदार्थों में आने वाले बदलावों का प्रेक्षण करें । प्रत्येक परखनली में अंततः बचने वाला काला पदार्थ क्या दर्शाता है?

कार्बन (Carbon)

प्रकृति में प्रचुर मात्रा में पाया जाने वाला कार्बन यह तत्त्व स्वतंत्र अवस्था में तथा यौगिकों के रूप में पाया जाता है। अधातु मूलद्रव्य कार्बन के विभिन्न गुणधर्मों का अध्ययन हम इस पाठ में करेंगे।

अपने दैनिक जीवन में आप सुबह से लेकर रात तक जिन-जिन वस्तुओं/पदार्थों का उपयोग करते हैं या जो पदार्थ खाने के लिए उपयोग में लाते हैं, उनकी सूची बनाएँ। नीचे दी गई सारिणी के अनुसार सूची की वस्तुओं/पदार्थों को वर्गीकृत करें।

- 1. कार्बन का प्रतीक C
- 2. परमाणुअंक **-** 6
- 3. परमाणु द्रव्यमान -12
- इलेक्ट्रॉन संरूपण 2,4
- 5. संयोजकता -4
- 6. अधातु तत्त्व

धातुओं से बनी वस्तुएँ	मिट्टी / काँच की वस्तुएँ	अन्य वस्तुएँ / पदार्थ

अब सबसे अंतिम स्तंभ में लिखी वस्तुओं की सूची देखें। इस सूची में अन्नपदार्थ, कपड़े, दवाइयाँ/औषधियाँ, इंधन, लकड़ी की वस्तुएँ हैं। इन सभी विविधपूर्ण वस्तुओं का कार्बन महत्त्वपूर्ण घटक हैं।

यौगिक क्या है ? यौगिक कैसे बनते हैं?

वनस्पित तथा प्राणियों से प्रत्यक्ष या अप्रत्यक्ष रूप से पाए जाने वाले यौगिकों को कार्बनी यौगिक कहते हैं। खनिजों से पाए जाने वाले यौगिक अकार्बनी यौगिकों के नाम से जाने जाते हैं। हमारे आनुवंशिक गुणधर्म एक पीढ़ी से दूसरी पीढ़ी तक संक्रमित करने वाले कोशिकास्थित DNA तथा RNA का कार्बन एक प्रमुख घटक है।

वैजानिकों का परिचय

जर्मन रसायन वैज्ञानिक वोहलर ने अमोनियम साइनेट इस अकार्बनिक यौगिक से यूरिया संश्लेषित किया। तब से बड़ी मात्रा में अकार्बनिक योगिकों से कार्बनिक यौगिक तैयार किए गए। इन सभी यौगिकों में कार्बन यह प्रमुख तत्त्व है, यह ज्ञात हुआ। इसलिए कार्बनिक रसायन शास्त्र को कार्बनी रसायनशास्त्र कहते हैं।

 $NH_4^+CNO^ \longrightarrow$ NH_2CONH_2

कार्बन की उपस्थिति (Occurrence of Carbon)

लैटिन भाषा में 'कार्बो' का अर्थ है कोयला । इससे कार्बन यह नाम इस तत्त्व को दिया गया है । प्रकृति में कार्बन स्वतंत्र तथा यौगिकों के रूप में होता है । स्वतंत्र अवस्था में कार्बन हीरे तथा ग्रेफाइट के रूप में पाया जाता है । संयुक्त अवस्था में कार्बन निम्नलिखित यौगिकों के रूप में होता है।

- 1. कार्बन डाइऑक्साइड, कार्बोनेट के रूप में उदाहरणार्थ कैल्शियम कार्बोनेट, संगमरमर (मार्बल), कैलामाइन (ZnCO₂)
- 2. जीवाश्म इंधन-पत्थर कोयला, पेट्टोलियम,प्राकृतिक गैस
- कार्बनिक पोषक पदार्थ कार्बोज पदार्थ, प्रथिन, वसायुक्त पदार्थ
- 4. प्राकृतिक धागे रूई, ऊन, रेशम

विज्ञान कुपी

पृथ्वी के कवच में लगभग 0.27% कार्बन, कार्लोनेट, कोयला, पेट्रोलियम के रूप में होता है तथा वातावरण में कार्बन का अनुपात लगभग 0.03% है, जो कार्बन डाइऑक्साइड के रूप में पाया जाता है।

महासागरों की तह/तलहट में पाई जाने वाली कुछ वनस्पतियाँ पानी के कार्बन का रूपांतरण कैल्शियम कार्बोनेट मे करती है।

कार्बन के ग्णधर्म (Properties of Carbon)

कार्बन की अपरूपता

अपरूपता (Allotropy) - प्रकृति में कुछ तत्त्व एक से अधिक रूपों में पाए जाते हैं। इनके रासायनिक गुणधर्म तो समान होते हैं परंतु इनके भौतिक गुणधर्म भिन्न होते हैं। तत्त्वों के इस गुणधर्म को अपरूपता कहते हैं। कार्बन की तरह सल्फर, फॉस्फोरस तत्त्व भी अपरूपता दर्शाते हैं।

कार्बन-अपरूप (Allotropes of Carbon)

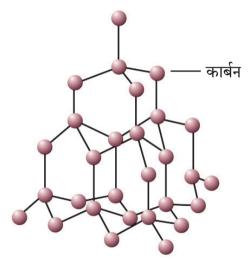
अ. केलासीय रूप (Crystalline forms)

- 1. केलासीय रूप में परमाणुओं की रचना नियमित तथा निश्चित होती है।
- 2. इनका गलनांक तथा क्वथनांक उच्च होता है।
- केलासीय रूप के कार्बनिक पदार्थों की निश्चित
 भूमितीय रचना, तेज सिरे तथा समतल पृष्ठभाग होते हैं।

कार्बन के तीन केलासीय अपरूप हैं।

1. हीरा (Diamond)

भारत में हीरा प्रमुख रूप से गोवलकोंडा (कर्नाटक) और पन्ना (मध्य प्रदेश) में पाया जाता है। भारत की तरह दक्षिण अफ्रीका, ब्राजील, बेल्जिअम, रशिया, अमेरिका इन देशों में भी हीरा पाया जाता है।



13.1 हीरा

रचना : हीरे के केलास में कार्बन का प्रत्येक परमाणु सह संयोजकीय बंध द्वारा चार अन्य पड़ोसी कार्बन परमाणुओं से बंधा होता है । इस दृढ रचना के कारण हीरा कठोर होता है ।

गुणधर्म

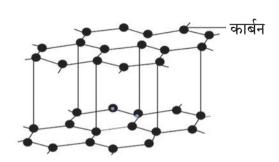
- 1. तेजस्वी तथा शुद्ध हीरा यह प्राकृतिक पदार्थों में सबसे कठोर पदार्थ है।
- 2. हीरे की घनता 3.5 g/cm³ है।
- 3. गलनांक 3500 °C है।
- 4. आक्सीजन की उपस्थिति में 800° C के तापमान पर हीरे को गर्म किया जाए तो $CO_{_2}$ गैस मुक्त होती है । इस प्रक्रिया में सिवाय $CO_{_3}$ के अन्य कोई उत्पाद नहीं होते ।
- 5. किसी भी विलेयक में हीरा नहीं घुलता।
- 6. अम्लों तथा क्षारकों का हीरे पर कोई प्रभाव नहीं पड़ता।
- 7. हीरे में मुक्त इलेक्ट्रॉन न होने के कारण वह विद्युतधारा का कुचालक है।

13.2 हीरे में कार्बन परमाणुओं की रचना

इतिहास के पन्नों से

किसी समय भारत 'कोहिनूर' हीरे के कारण प्रसिद्ध था। यह हीरा गुंटुर (आंध्र प्रदेश) स्थित कोल्गुर खदान में 13 वीं सदी में पाया गया था। इसका वजन 186 कैरट है।

उपयोग

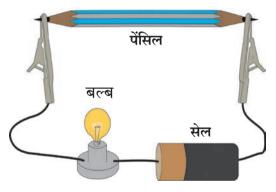

- 1. काँच काटने तथा चट्टानों में छिद्र बनाने के लिए उपयोग में लाए जाने वाले उपकरणों में हीरे का उपयोग किया जाता है।
- 2. अलंकारों में हीरों का उपयोग किया जाता है।
- 3. आँखों की शल्यचिकित्सा करने वाले उपकरणों में हीरे का उपयोग किया जाता है।
- 4. हीरे के ब्रादे का उपयोग दूसरे हीरों में चमक लाने के लिए किया जाता है।
- 5. हीरे का उपयोग अवकाश में तथा कृत्रिम उपग्रहों में प्रारणों से संरक्षण देने वाली खिड़कियाँ बनाने में करते हैं।

2. ग्रेफाइट (Graphite)

प्राकृतिक रूप में ग्रेफाइट रशिया, न्यूजीलैंड, अमेरिका और भारत में पाया जाता है। निकोलस जैक्स कॉन्टी ने 1795 में ग्रेफाइट की खोज की। पेंसिल में उपयोग में लाया जाने वाला लेड, ग्रेफाइट और मिट्टी से बनता है।

रचना : ग्रेफाइट में प्रत्येक कार्बन परमाणु अन्य तीन कार्बन परमणुओं से इस प्रकार जुड़ा होता है कि उसकी षट्कोणीय

समतल रचना बनती है। ग्रेफाइट का केलास कई परतों का या परमाणुओं के स्तरों का होता है। दाब डालने पर ग्रेफाइट की परतें एक-दूसरे पर फिसलती हैं। ग्रेफाइट की एक परत को ग्राफीन कहते हैं।



13.3 ग्रेफाइट में कार्बन परमाणुओं की रचना

सामग्री: पेंसिल, विद्युतचालक तार, सेल, छोटा बल्ब, पानी, मिट्टी का तेल, परखनलियाँ, पेंसिल का लेड इत्यादि।

13.4 ग्रेफाइट से विद्युतधारा प्रवाहित होती है।

कृति :

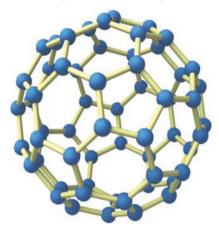
- 1. पेंसिल से लेड निकालें। हाथों में उसके स्पर्श का अनुभव करें। उसका रंग देखें। उसे हाथ से तोडकर देखें।
- 2. आकृति में दर्शाए अनुसार साहित्य की रचना करें। परिपथ में विद्युतप्रवाह शुरू करें। प्रेक्षण करें। क्या दिखता है ?
- 3. एक परखनली में पानी लें, दूसरी परखनली में मिट्टी का तेल लें । दोनों परखनलियों में पेंसिल के लेड का बुरादा बनाकर डालें । क्या हुआ ?

ग्रेफाइट के गुणधर्म

- 1. प्राकृतिक रूप में पाया जाने वाला ग्रेफाइट काला, मृद्, भंगुर तथा चिकना होता है।
- 2. ग्रेफाइट में मुक्त इलेक्ट्रॉन पूर्ण आंतरिक सतह में घूमते हैं, अतः यह विद्युत का सुचालक है।
- 3. इससे कागज पर लिखा जा सकता है।
- 4. ग्रेफाइट का घनत्व 1.9 से 2.3 g/cm^3 है ।
- 5. ग्रेफाइट अधिकांश विलेयकों में नहीं घुलता।

ग्रेफाइट के उपयोग

- 1. ग्रेफाइट का उपयोग स्नेहक के रूप में किया जाता है।
- 2. कार्बन इलेक्ट्रोड बनाने में ग्रेफाइट का उपयोग किया जाता है।
- 3. लिखने की पेंसिल में ग्रेफाइट का उपयोग करते हैं।
- 4. रंग और पॉलिश में भी ग्रेफाइट का उपयोग करते हैं।
- 5. अत्यधिक प्रकाश देने वाले आर्क लैंप में ग्रेफाइट का उपयोग करते है।


बकीट्युब (कार्बन नैनो ट्युब)

3. फुलरिन (Fullerene)

फुलरिन यह कार्बन का अपरूप प्रकृति में कम अनुपात में पाया जाता है। फुलरिन काजल में, तारों के बीच की जगहों में बादलों में तथा भूगर्भ की रचना होते समय बीच की जगहों में पाया जाता है। बकिमन्स्टर फुलरिन (C_{60}) यह फुलरिन का पहला उदाहरण है। रिचर्ड बकिमन्सटर फुलर नामक वास्तुशास्त्री द्वारा बताई गई गोलाकार गुंबज की रचना के आधार पर कार्बन के इस अपरूप का नाम फुलरिन रखा गया है।

 C_{60} फुलिरन के कार्बनी अपरूप की खोज के कारण वर्ष 1996 का रसायन विज्ञान का नोबेल पुरस्कार हेराल्ड क्रोटो, रॉबर्ट कर्ल तथा रिचर्ड स्मॉली को प्रदान किया गया ।

 $C_{_{60}}$, $C_{_{70}}$, $C_{_{76}}$, $C_{_{82}}$ तथा $C_{_{86}}$ ये फुलिरन के कुछ अन्य उदाहरण हैं । यह अणु प्रकृति में थोड़ी मात्रा में काजल में पाए जाते हैं ।

बकीबॉल (C_{60})

13.5 फुलरिन की रचना

गुणधर्म

- फुलरिन के अणु बकीबॉल, बकीट्युब्ज के रूप में पाए जाते हैं।
- 2. फुलरिन के एक अणु में लगभग 30 से 900 कार्बन के परमाणु होते हैं।
- 3. फुलिरन कार्बनिक विलेयकों में घुलनशील होते हैं। उदा. कार्बन डाइसल्फाइड और क्लोरोबेंजिन।

उपयोग

- 1. फुलरिन का उपयोग विद्युतरोधी के रूप में किया जाता है।
- 2. जलशुद्धीकरण में फुलरिन का उपयोग उत्प्रेरक के रूप में किया जाता है।
- 3. एक विशिष्ट तापमान पर फुलरिन अतिवाहकता का गुणधर्म प्रदर्शित करते हैं।

ब. अकेलासीय अपरूप (Non- crystalline / Amorphous forms)

इस रूपवाले कार्बन परमाणुओं की रचना अनियमित होती है । पत्थर कोयला, कोक कार्बन के अकेलासीय रूप हैं ।

- 1. पत्थर कोयला : पत्थर कोयला एक जीवाश्म इंधन है । इसमें कार्बन, हाइड्रोजन तथा ऑक्सीजन होता है । इसमें थोड़ी मात्रा में नाइट्रोजन, फॉस्फोरस, सल्फर होता है । ये ठोस रूप में पाया जाता है । इसके चार प्रकार हैं ।
- अ. पीट: कोयला बनने की प्रक्रिया का प्रथम चरण पीट तैयार होना। इसमें पानी की मात्रा अधिक होती है तथा कार्बन का अनुपात लगभग 60 % होता है। अतः इससे कम उष्मा प्राप्त होती है।
- आ. लिग्नाइट : भूगर्भ में बढ़ता हुआ अत्यधिक दाब और तापमान के कारण पीट का रूपांतरण लिग्नाइट में हुआ । इसमें कार्बन का अनुपात लगभग 60 से 70% होता है । यह कोयला बनने की प्रक्रिया का दसरा चरण है ।
- **इ. बीटुमिनस** : कोयले के निर्माण के तीसरे चरण में बिटुमिनस बना । इसमें कार्बन का अनुपात लगभग 70 से 90 % होता है ।
- **ई** .एन्थ्रेसाईट : एन्थ्रेसाइट कोयले का शुद्ध रूप माना जाता है । यह कोयला कठोर होता है । इसमें कार्बन का अनुपात लगभग 95 % होता है ।
- 2. चारकोल: प्राणियों के अवशेषों से बनने वाला चारकोल हिड्डियाँ, सींग आदि से तैयार करते हैं जबिक वनस्पतियों से बनने वाला चारकोल लकड़ी के कम हवा में किए गए अपूर्ण ज्वलन से बनाया जाता है।

कोयले के उपयोग

- 1. कारखानों में तथा घरों में कोयला ईंधन के रूप में उपयोग में लाया जाता है।
- 2. कोक, कोल गैस तथा कोलतार प्राप्त करने के लिए कोयले का उपयोग किया जाता है।
- 3. विद्युत निर्मिति के लिए तापीय विद्युत केंद्र में कोयले का उपयोग किया जाता है।
- 4. चारकोल का उपयोग जलशुद्धीकरण तथा कार्बनिक पदार्थों के शुद्धीकरण में किया जाता है।
- 3. कोक: पत्थर कोयले से कोल गैस निकालने पर बचे हुए शुद्ध कोयले को कोक कहते हैं। कोक के उपयोग
- 1. घरेलू इंधन के रूप में उपयोग किया जाता है।
- 2. अपचयक के रूप में कोक का उपयोग किया जाता है।
- 3. वॉटर गैस ($CO+H_2$) तथा प्रोड्यूसर गैस ($CO+H_2+CO_2+N_2$) इन गैसीय इंधनों की निर्मिति में कोक का उपयोग किया जाता है।

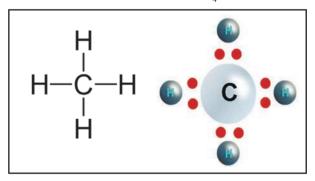
पीट

लिग्नाइट

बिट्रमिनस

एन्थ्रेसाइट

कोक


13.6 कार्बन के अकेलासीय रूप

हाइड़ोकार्बन: मूलभूत कार्बनिक यौगिक (Hydrocarbons: Basic Organic Compounds)

अधिकांश कार्बनिक यौगिकों में कार्बन के साथ हाइड्रोजन समाविष्ट होता है। ये मूलभूत कार्बनिक यौगिक 'मूल यौगिक' के नाम से पहचाने जाते हैं। इन्हें हाइड्रोकार्बन्स भी कहते हैं।

कार्बन का इलेक्ट्रॉनिक संरूपण 2, 4 है। अत: कार्बन परमाणु की दूसरी कक्षा में चार इलेक्ट्रॉन मिलने पर बाहरी कक्षा में अष्टक पूर्ण होकर वह समीपस्थ निष्क्रिय तत्त्व (निऑन 2, 8) की तरह स्थिर होता है। यह होते समय इलेक्ट्रॉन की लेन-देन न होकर साझेदारी होती है। कार्बन की संयोजकता 4 है अर्थात वह दूसरे कार्बन के साथ या अन्य तत्त्व के परमाणु के साथ चार अधिकतम सह संयोजकीय बंध (Covalent Bond) बना सकता है।

जब एक कार्बन परमाणु के चारों इलेक्ट्रॉनों की हाइड्रोजन के चार परमाणुओं के इलेक्ट्रॉनों के साथ साझेदारी करने पर चार C-H बंध बनते हैं तब मिथेन CH, का अणु बनता है।

सह संयोजकीय यौगिकों के गुणधर्म

- सहसंयोजकीय यौगिकों का गलनांक तथा क्वथनांक कम होता है।
- 2. ये प्राय: पानी में अविलेय तथा कार्बनिक विलायकों में विलेय होते हैं।
- 3. ये उष्मा तथा विद्युत के मंद चालक होते हैं।

13.7 मिथेन का संरचनासूत्र और इलेक्ट्रॉन डॉट प्रतिकृति

संतृप्त तथा असंतृप्त हाइड्रोकार्बन (Saturated and Unsaturated Hydrocarbons)

कार्बन का परमाणु एक विशिष्ट गुणधर्म दर्शाता है । वह आपस में तथा अन्य तत्त्वों के परमाणुओं से बंध बनाकर शृंखला बना सकते हैं । जिस हाइड्रोकार्बन के C-C सभी कार्बन परमाणुओं में केवल एकल बंध होता है उसे संतृप्त हाइड्रोकार्बन कहते हैं। उदाहरणार्थ, इथेन (C_3H_6) अर्थात (CH_3-CH_3) , प्रोपेन $(CH_3-CH_3-CH_3)$

कुछ हाइड्रोकार्बन में दो कार्बन परमाणुओं के बीच बहुबंध होता है। बहुबंध द्विबंध या त्रिबंध होता है। जिन हाइड्रोकार्बन में कम-से-कम एक बहुबंध होता है, उन्हें असंतृप्त हाइड्रोकार्बन कहते हैं। उदाहरणार्थ इथिन ($H_2C=CH_2$), इथाइन ($HC\equiv CH$), प्रोपीन (CH_3 - $CH=CH_2$), प्रोपाइन (CH_3 - $C\equiv CH$)

कार्बन के दो परमाणुओं में सहसंयोजकीय बंध होता है, तब क्या परमाणुओं पर आवेश निर्माण होता है? दो कार्बन परमाणुओं के बीच के एकल बंध मजबूत और स्थिर क्यों होते हैं?

कार्बन की विलेयता (Solubility of Carbon)

सामग्री: 3 शंक्वाकार पात्र, विडोलक

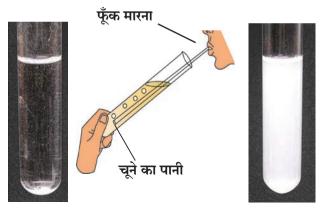
रसायने: पानी, मिट्टी का तेल, खाद्य तेल, कोयले का बुरादा, इत्यादि। कृति: 3 शंक्वाकार पात्र लेकर उनमें क्रमश: खाद्य तेल, पानी तथा मिट्टी का तेल लें। हर शंक्वाकार पात्र में आधा चम्मच कोयले का बुरादा डालें और विडोलक की सहायता से हिलाएँ। तीनों शंक्वाकार पात्रों के विलयनों का प्रेक्षण कीजिए।

13.8 कोयले की पानी में विलेयता

- 1. पानी, मिट्टी का तेल तथा खाद्य तेल इनमें से कौन-कौन-से विलायकों में कोयले का बुरादा घुलता है?
- 2. कार्बन की विलेयता के बारे में आप क्या अनुमान लगाएँगे?
- 3. कार्बन किसी भी विलायक में क्यों नहीं घुलता ?

कार्बन की ऑक्सीजन के साथ अभिक्रिया (Reaction of Carbon with Oxygen)

13.9 कार्बन की ऑक्सीजन के साथ अभिक्रिया


सामग्री: परखनली, स्ट्रॉ, चूने का पानी इत्यादि। कृति: एक परखनली में चूने का ताजा पानी लें। स्ट्रॉ की सहायता से चूने के पानी में थोड़े समय तक फूँक मारें। चूने के पानी का निरीक्षण कीजिए।

क्या दिखा? बदलाव का क्या कारण हो सकता है?

सामग्री: कोयला, माचिस, गीला नीला लिटमस कागज इत्यादि।

कृति: कोयला जलाएँ। कोयले के जलने पर उससे निकलने वाली गैस पर गीला नीला लिटमस कागज पकड़ें। प्रेक्षण नोट कीजिए।

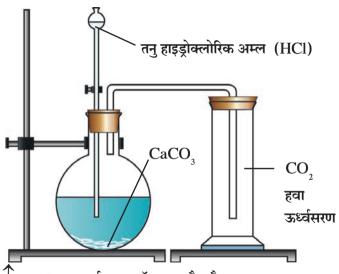
- कोयला जलने पर उसकी हवा की कौन-सी गैस के साथ अभिक्रिया होती है?
- 2. कौन-सा पदार्थ बनता है?
- 3. लिटमस कागज में क्या बदलाव आता है?
- 4. ऊपर दी गई कृति में होने वाली रासायनिक अभिक्रिया लिखें।

13.10 चूने के पानी की CO, के साथ अभिक्रिया

कार्बन डाइऑक्साइड

अणुसूत्र : CO_2 , अणु द्रव्यमान : 44 , गलनांक : -56.6 $^{\circ}\mathrm{C}$,

उपस्थिति : हवा में कार्बन डाइऑक्साइड मुक्त रूप में पाया जाता है। उच्छ्वास द्वारा बाहर निकलने वाली हवा में लगभग $4\%\ {\rm CO_2}$ होता है। खिड़याँ, संगमरमर में ${\rm CO_2}$ यौगिक के रूप में उपस्थित होता है। ${\rm CO_2}$ यौगिक के रूप में उपस्थित होता है। लकड़ी, कोयला जैसे जीवाश्म इंधनों के ज्वलन से भी उत्सर्जित किया जाता है।


सामग्री: स्टैंड, गोल पेंदीवाला फ्लास्क, थिसल कीप, गैसवाहक नली, गैसजार।

रसायने : कैल्शियम कार्बोनेट (चूना पत्थर/ संगमरमर के टुकड़े, चूने का पत्थर), तनु हाइड्रोक्लोरिक अम्ल ।

कृति :

- 1. आकृति में दर्शाए अनुसार उपकरणों का विन्यास कीजिए। विन्यास करते समय गोल पेंदीवाले फ्लास्क में CaCO्र डालें।
- 2. थिसल कीप से तन HCl फ्लास्क में डालें। कीप का सिरा अम्ल में डुबा रहे इसका ध्यान रखें।
- 3. $CaCO_3$ और तनु HCl के बीच अभिक्रिया होने से CO तैयार होती है। यह गैस चार से पाँच गैस जारों में एकत्र कीजिए। इस अभिक्रिया का रासायनिक समीकरण निम्नानुसार है।

 $CaCO_3 + 2 HCl \rightarrow CaCl_2 + H_2O + CO_2 \uparrow$

13.11 कार्बन डाइऑक्साइड गैस तैयार करना

कार्बन डाइऑक्साइड के भौतिक तथा रासायनिक गुणधर्म

- 1. ऊपर दिए गए प्रयोग में तैयार हुई गैस का रंग देखें।
- 2. गैसजार की गैस की गंध लें।

(कृति 3 से 7 के लिए स्वतंत्र गैसजार का उपयोग कीजिए।)

- 3. गैसजार का ढक्कन निकालकर उसमें चूने का पानी थोड़ा डालें।
- 4. एक जलती हुई मोमबत्ती गैसजार में रखें।
- 5. वैश्विक सूचक का थोड़ा विलयन CO से भरी गैसजार में डालें और हिलाएँ।
- 6. गैसजार में थोडा पानी डालकर गैसजार हिलाएँ।
- 7. नीला तथा लाल लिटमस कागज गीला कीजिए और CO्र वाले गैसजार में डालें। उपर्युक्त सभी कृतियों के निरीक्षण नीचे दी गई तालिका में लिखें।

CO के भौतिक गुणधर्म

जाँच	प्रेक्षण
गंध	
रंग	
स्वाद	

CO के रासायनिक गुणधर्म

जाँच	प्रेक्षण
जलती हुई मोमबत्ती	
वैश्विक सूचक	
चूने का पानी	
पानी	
लिटमस कागज	

CO गैस का ठोसत्व हवा की तुलना में अधिक है या कम?

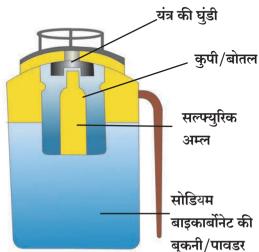
अ. उपर्युक्त प्रयोग में पानी और कार्बन डाइऑक्साइड के बीच होने वाली अभिक्रिया का समीकरण लिखिए। आ. CO_2 वाले गैसजार में कली चूने का पानी डालने पर होने वाली रासायनिक अभिक्रिया का समीकरण लिखिए। कार्बन डाइऑक्साइड के कछ और रासायनिक गणधर्म

- सोडियम हाइड्रॉक्साइड के जलीय विलयन में कार्बन डाइऑक्साइड गैस प्रवाहित करने पर सोडियम कार्बोनेट प्राप्त होता है। (सोडियम कार्बोनेट - धोवन सोडा)
 रासायनिक अभिक्रिया का समीकरण 2NaOH + CO₂→ Na₂CO₃ + H₂O
- सोडियम कार्बोनेट के जलीय विलयन में कार्बन डाइऑक्साइंड गैस प्रवाहित करने पर सोडियम बाइकार्बोनेट प्राप्त होता है। (सोडियम बाइकार्बोनेट - खाने का सोडा)
 रासायनिक अभिक्रिया का समीकरण Na,CO₃ + H₂O + CO₂ → 2NaHCO₃

कार्बन डाइऑक्साइड के उपयोग

- 1. फुसफुसाहट वाले शीतपेयों के उत्पादन में CO, का उपयोग करते हैं।
- 2. ठोस कार्बन डाइऑक्साइड (शुष्क बर्फ) का उपयोग फ्रीज में तथा दूध और दुग्धजन्य पदार्थों को ठंडा करने के लिए किया जाता है। फिल्मों-नाटक में कोहरे का परिणाम दिखाने के लिए भी इसका उपयोग किया जाता है।
- 3. अग्निशामक संयंत्र में रासायनिक अभिक्रिया से बनने वाली या संपीडित CO का उपयोग किया जाता है।
- 4. कॉफी से कैफिन निकालने के लिए द्रवरूप CO का उपयोग करते हैं।
- 5. द्रवरूप ${\rm CO}_2$ का उपयोग विलायक के रूप में आधुनिक पर्यावरण पूरक ड्राइक्लीनिंग में किया जाता है।

6. हवा के CO का उपयोग वनस्पतियाँ प्रकाश संश्लेषण के लिए करती हैं।


पारंपरिक अग्निशामक यंत्र(Regular Fire Extinguisher)

पारंपरिक अग्निशामक यंत्र में सोडियम बाइकार्बोनेट का पावडर होता है। काँच की एक कुपी में तनु सल्फ्लुरिक अम्ल होता है। यंत्र की घुंडी दबाने पर कुपी टूटकर बोतल का सल्फ्युरिक अम्ल सोडियम बाइकार्बोनेट पर गिरता है। उनमें रासायनिक अभिक्रिया होकर CO_2 मुक्त हो जाती है और बाहर निकलती है।

CO₂ अग्निशामक यंत्र जंग न लगने वाले तथा विद्युत अवरोधक होते हैं। इसलिए विद्युत उपकरणों व यंत्रों में आग लगने पर इनका उपयोग किया जाता है।

 ${\rm CO}_2$ अग्निशामक यंत्र का उपयोग छोटे स्तर से की आग बुझाने के लिए किया जाता है । बड़े पैमाने पर लगी आग रोकने के लिए ${\rm CO}_2$ अग्निशामक पूरे नहीं पड़ते । आधुनिक अग्निशामक यंत्रों में द्रव व ठोस रूप में ${\rm CO}_2$ संपीडित कर भरी होती है। दाब कम करने पर वह गैसीय अवस्था में आती है और जोर से वक्राकार नली से बाहर निकलती है।

रासायनिक अभिक्रिया

 $2 \text{NaHCO}_{_3} + \text{H}_2 \text{SO}_4 \longrightarrow \text{Na}_2 \text{SO}_4 + 2 \text{ H}_2 \text{O} + 2 \text{ CO}_2 \uparrow$

13.12 अग्निशामक यंत्र की आंतरिक रचना

आजकल अलग–अलग प्रकार के अग्निशामक यंत्रों का उपयोग किया जाता है। इनके बारे में अधिक जानकारी प्राप्त कीजिए।

मिथेन-अण्सूत्र CH अण् द्रव्यमान-16

उपस्थिति

- 1. प्राकृतिक गैस में लगभग 87% मिथेन गैस पाई जाती है।
- 2. जैविक पदार्थों की हवा की अनुपस्थिति में होने वाले विघटन से मिथेन की निर्मिति होती है।
- 3. बायोगैस में भी मिथेन की उपस्थिति होती है।
- 4. कोयले की खदानों में मिथेन गैस पाई जाती है।
- 5. दलदल की सतह पर मिथेन गैस पाई जाती है। इसलिए इसे मार्श गैस कहते हैं।
- 6. प्रयोगशाला में हाइड्रोजन तथा कार्बन मोनॉक्साइड के मिश्रण को उत्प्रेरक निकल की उपस्थिति में 300°C तापमान तक गरम करने पर मिथेन गैस प्राप्त होती है।
- 7. प्राकृतिक गैस के भंजक आसवन से शुद्ध मिथेन गैस प्राप्त की जा सकती है।

मिथेन के भौतिक गुणधर्म

- 1. मिथेन का गलनांक (-182.5 °C) है।
- 2. मिथेन का क्वथनांक (-161.5 °C) है।
- 3. यह गैस रंगहीन है।
- 4. द्रवरूप मिथेन का धनत्व पानी के घनत्व से कम होता है।
- 5. पानी में मिथेन बहुत कम मात्रा में घुलती है। गैसोलिन, ईथर, अल्कोहल जैसे कार्बनिक विलेयकों में यह अधिक विलेय है।
- 6. कमरे के तापमान पर मिथेन गैसीय अवस्था में होती है।

मिथेन के रासायनिक गुणधर्म

1. मिथेन अत्यधिक ज्वलनशील है। आक्सीजन के संपर्क में आने पर नीली ज्वाला दिखती है। इस अभिक्रिया से 213 kcal/mol उष्मा उत्सर्जित की जाती है। मिथेन गैस संपूर्ण रूप से जल जाती है।

रासायनिक अभिक्रिया
$$CH_1+2O_2 \rightarrow CO_2+2 H_2O_3+3$$
ष्मा

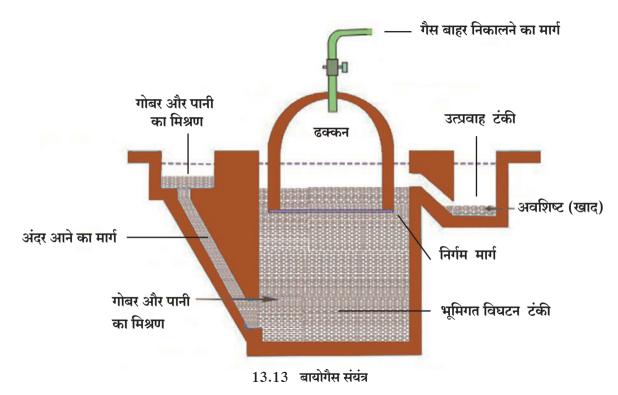
2. क्लोरिनेशन (Chlorination)

पराबैंगनी किरणों की उपस्थिति में 250°C से 400°C तापमान पर मिथेन और क्लोरीन गैस में अभिक्रिया होती है और प्रमुख रूप से मिथिल क्लोराइड (क्लोरोमिथेन) तथा हाइड्रोजन क्लोराइड बनते हैं। इस अभिक्रिया को मिथेन का क्लोरिनेशन कहते हैं।

रासायनिक अभिक्रिया
$$CH_4+Cl_2 \xrightarrow{\text{yan}} CH_3Cl + HCl$$

मिथेन के उपयोग

- 1. प्राकृतिक गैसीय रूप में मिथेन का उपयोग, वस्त्रोद्योग, कागज निर्मिति, अन्नप्रक्रिया उद्योग, पेट्रोल शुद्धिकरण जैसे उद्योगों में होता है।
- 2. सबसे कम लंबाईवाला हाइड्रोकार्बन होने के कारण मिथेन के ज्वलन से उत्सर्जित होने वाले CO_2 का अनुपात बहुत कम होता है। इसलिए इसका उपयोग घरेलू इंधन के रूप में किया जाता है।
- 3. इथेनॉल, मेथिल क्लोराइड, मिथिलिन क्लोराइड तथा अमोनिया और ऐसिटिलीन इन कार्बनिक यौगिकों की निर्मिति में मिथेन का उपयोग किया जाता है।


1776 से 1778 के दौरान ऐलेजेन्ड्रो व्होल्टा को दलदल की गैस का अध्ययन करते समय मिथेन का पता चला।

सुचना और संप्रेषण प्रौदयोगिकी के साथ

कार्बन तथा उसकी विस्तृत जानकारी के संदर्भ में अहवाल तैयार कीजिए। इसके लिए नोट पैड, वर्ड इत्यादि संगणकीय प्रणालियों का उपयोग कीजिए। तैयार किए अहवाल अन्य लोगों को भेजें।

संकेतस्थल-https://www.boundless.com/chemistry/,www.rsc.org/learn-chemistry

बायोगैस संयंत्र: बायोगैस संयंत्र में जानवरों का गोबर, खरपतवार, गीले कूड़े, इनका अनॉक्सी सूक्ष्मजीवों द्वारा विघटन होता है। इससे मिथेन गैस की निर्मिति होती है। इसे ही बायोगैस कहते हैं। बायोगैस रसोई के लिए लगने वाले इंधन की आपूर्ति करने वाला सस्ता विकल्प है। बायोगैस संयंत्र का उपयोग बिजली के निर्माण में भी किया जाता है। जैव वायु में लगभग 55 ते 60% मिथेन और बाकी भाग कार्बन डाइऑक्साइड होता है। बायोगैस यह एक सुविधाजनक इंधन तो हैं ही, साथ ही इस प्रक्रिया में अच्छे उर्वरक की निर्मिति भी होती है।

बायोगैस निर्मिति प्रक्रिया

बायोगैस निर्मिति प्रक्रिया अनॉक्सी (Anaerobic) प्रकार की होती है। यह दो स्तरों में होती हैं।

1. अम्लिनिर्मिति (Production of Acids)

कूड़े के जैव विघटन योग्य जटिल कार्बनिक यौगिकों पर जीवाणुओं द्वारा अभिक्रिया की जाती है और कार्बनिक अम्लों (Organic Acids) की निर्मिति होती है।

2. मिथेन वायु निर्मिति (Methane Gas Production)

मिथेनोजेनिक जीवाणु कार्बनिक अम्लों पर अभिक्रिया कर मिथेन गैस तैयार करते हैं।

 $CH_3COOH \rightarrow CH_4 + CO_2\uparrow$

जानकारी प्राप्त कीजिए

जहाँ जैव वायु संयंत्र है वहाँ जाकर संयंत्र के प्रत्यक्ष कार्य की जानकारी प्राप्त कीजिए तथा उसकी मदद से कौन-कौन-से विद्युत उपकरण काम करते हैं, इसकी जानकारी लें।

स्वाध्याय

दिए गए विकल्पों में से उचित विकल्प चुनकर वाक्य पूर्ण कीजिए।

(एकल, सभी द्विबंध, आयनिक, कार्बन, लेन-देन, हाइड्रोजन, बहुबंध, साझेदारी, कार्बनिक, सहसंयोजी)

- अ. कार्बन का परमाणु अन्य परमाणुओं के साथ बंध निर्माण करता है। इस बंध में दो परमाणुओं में इलेक्ट्रॉन की होती है।
- आ. संतृप्त हाइड्रोकार्बन में सभी कार्बन-कार्बन बंध होते हैं।
- इ. असंतृप्त हाइड्रोकार्बन में न्यूनतम एक बंध होता है।
- ई. सभी के कार्बनिक पदार्थों में अत्यावश्यक तत्त्व है।
- ऊ. हाइड्रोजन यह तत्त्व अधिकांश पदार्थों में होता है।

2. निम्नलिखित प्रश्नों के उत्तर लिखिए।

- अ. कार्बन तथा उसके यौगिकों का इंधन के रूप में क्यों उपयोग किया जाता है?
- आ. कार्बन यौगिकों के कौन-कौन-से रूप में पाया जाता है?
- इ. हीरे के उपयोग लिखिए।

3. अंतर स्पष्ट कीजिए।

- अ. हीरा एवं ग्रेफाइट
- आ. कार्बन के केलासीय रूप व अकेलासीय रूप

4. वैज्ञानिक कारण लिखिए।

- अ. ग्रेफाइट विद्युत का सुचालक है।
- आ. ग्रेफाइट का उपयोग अलंकारों में नहीं किया जाता।
- इ. चूने के पानी से CO₂ गैस प्रवाहित करने पर चूने का पानी दूधिया हो जाता है।
- ई. बायोगैस यह पर्यावरण स्नेही इंधन है।

5. स्पष्ट कीजिए।

- अ. हीरा, ग्रेफाइट तथा फुलरिन कार्बन के केलासीय रूप हैं।
- आ. मिथेन को मार्श गैस कहते हैं।
- इ. पेट्रोल, डीजल, पत्थर, कोयला ये जीवाश्म इंधन हैं।
- ई. कार्बन के विविध अपरूपों के उपयोग क्या हैं, यह कारणसहित स्पष्ट करें।
- अग्निशामक यंत्रणा में CO₂ गैस का उपयोग स्पष्ट करें।
- ऊ. CO₂ के व्यावहारिक उपयोग कौन-से हैं, स्पष्ट करें।

6. प्रत्येक के दो भौतिक गुणधर्म लिखिए।

- अ. हीरा आ. चारकोल इ. कार्बन के केलासीय रूप
- 7. निम्नलिखित रासायनिक अभिक्रियाएँ पूर्ण कीजिए।
 -+....→ CO₂ + H₂O + उष्मा
 - 2.+.... \rightarrow CH₃Cl + HCl
 - 3. 2 NaOH + $CO_2 \rightarrow \dots + \dots$

8. निम्नलिखित प्रश्नों के उत्तर विस्तार में लिखिए।

- अ. कोयले के प्रकार बताकर उनके उपयोग लिखिए।
- आ. ग्रेफाइट विद्युत का सुचालक होता है, यह एक छोटे प्रयोग से कैसे सिद्ध करोगे ?
- इ. कार्बन के गुणधर्म स्पष्ट कीजिए।
- ई. कार्बन का वर्गीकरण कीजिए।
- 9. कार्बन डाइऑक्साइड के गुणधर्मों की पड़ताल आप कैसे करेंगे?

उपक्रम:

बायोगैस संयंत्र की प्रतिकृति तैयार कीजिए तथा गैस निर्मिति की प्रक्रिया अपनी कक्षा में प्रस्तृत कीजिए।

14. हमारे उपयोगी पदार्थ

- > दैनिक जीवन के महत्त्वपूर्ण लवण -NaCl, NaHCO₃, Na₂CO₃
- रेडियो सक्रिय पदार्थ
 दैनिक जीवन के कुछ रासायनिक पदार्थ

- 1. दैनिक जीवन में हम कौन-कौन-से महत्त्वपूर्ण पदार्थों का उपयोग करते हैं? क्यों?
- 2. दैनिक उपयोग के विभिन्न पदार्थों का वैज्ञानिक दृष्टि से कैसे वर्गीकरण किया गया है?

दैनिक जीवन में हम विभिन्न पदार्थों का उपयोग करते हैं। पिछली कक्षा में इनमें से कुछ पदार्थों की जानकारी, उपयोग और उनके घटक, निर्मिति के बारे में विस्तारपूर्वक जानकारी प्राप्त की है।

नीचे कुछ दैनिक उपयोगी पदार्थों के नाम दिए गए हैं। उन पदार्थों का अम्ल, क्षारक, धातु, अधातु, लवण जैसे समूहों में वर्गीकरण कीजिए।

पदार्थ: नमक, साबुन, टूथपेस्ट, खाने का सोडा, पानी, दही, दूध, फिटकरी, लोहा, गंधक, कपड़े धोने का पावडर।

दैनिक जीवन में महत्त्व के लवण (Salts)

बताइए तो

लवण का क्या अर्थ है?

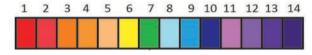
जिस आयनिक यौगिक में H^+ और OH^- आयन नहीं होते है तथा जिनमें एक ही प्रकार के धनायन और ऋणायन होते हैं, उन्हें सामान्य लवण कहते हैं। उदा. $Na_{s}SO_{4}$, $K_{s}PO_{4}$, $CaCl_{s}$

प्रकृति में अकार्बनिक पदार्थ अम्ल और क्षारक के रूप में नहीं मिलते किंतु वे लवणों के रूप में मिलते हैं। समुद्र जल से एक वर्ष में 8 करोड़ टन लवण मिलते हैं इसलिए समुद्र को लवणों का समृद्ध स्रोत कहते हैं। समुद्र क्लोरीन, सोडियम, मैग्नीशियम, पोटैशियम, कैल्शियम, ब्रोमिन जैसे तत्त्वों के विविध लवणों का समृद्ध स्रोत है। इन लवणों के साथ ही दैनिक जीवन में हम अन्य लवणों का भी उपयोग करते हैं। उनके बारे में हम अधिक जानकारी प्राप्त करेंगे।

क्या आप जानते हैं?

समुद्र जल में मिलने वाले प्रमुख लवण

- 1. सोडियम क्लोराइड
- 2. मैग्नीशियम क्लोराइड
- 3. मैग्नीशियम सल्फेट
- 4. पौटेशियम क्लोराइड
- 5. कैल्शियम कार्बोनेट
- 6. मैग्नीशियम ब्रोमाइड



लवणों के संतृप्त विलयन बनाकर उनमें सार्वित्रिक सूचक की 2-3 बूँदे डालें और निरीक्षण लिखें। निरीक्षण लिखने के लिए संलग्न तालिका का उपयोग कीजिए।

लवण	मूल रंग	सार्वत्रिक सूचक	рН	स्वरूप
	(विलयन का)	डालने पर रंग	मान	
सादा नमक	रंगहीन	हरा (शैवालीय)	7	उदासीन
साबुन				
धोने का सोडा				
बेकिंग सोडा				
ब्लिचिंग पावडर				
Pop				

- 1. नीचे दी गई पट्टी क्या है? उसका उपयोग किसलिए किया जाता है?
- 2. यह कैसे निश्चित किया जाता है कि, पदार्थ अम्ल, क्षारक और उदासीन है?
- 3. घर में इस्तेमाल किए जाने वाले पदार्थों की 1 से 14 मान के अनुसार सूची बनाइए।

हमने पिछले पाठ में पढ़ा है कि जब लवण का pH मान 7 होता है तो वह लवण उदासीन होता है तथा वह प्रबल अम्ल और प्रबल क्षार से निर्मित होता है। प्रबल अम्ल और दुर्बल क्षार से निर्मित होने वाला लवण अम्लीय होता है तथा इसका pH मान 7 से कम होता है। दुर्बल अम्ल और प्रबल क्षार से निर्मित होने वाला लवण क्षारीय होता है। अब हम दैनिक जीवन के कुछ लवणों की जानकारी प्राप्त करेंगे।

सोडियम क्लोराइड (सादा नमक - Table Salt - NaCl)

भोजन को नमकीन स्वाद देने वाला नमक हमारे दैनिक जीवन में सर्वाधिक उपयोग किया जाने वाला लवण हैं। इस लवण का रासायनिक नाम सोडियम क्लोराइड है। सोडियम हायड्रॉक्साइड और हाइड्रोक्लोरिक अम्ल के जलीय विलयनों की अभिक्रिया होने से उदासीनीकरण अभिक्रिया द्वारा सोडियम क्लोराइड प्राप्त होता है।

यह लवण उदासीन होता है तथा इसके जलीय विलयन का pH मान 7 होता है, यह हमने पहले देखा है।

गणधर्म और उपयोग

- 1. यह रंगहीन और केलासीय आयनिक यौगिक हैं। इसकी केलासीय रचना में केलासन जल नहीं होता है।
- 2. यह उदासीन लवण है, इसका स्वाद नमकीन होता है।
- 3. इस यौगिक का उपयोग Na_2CO_3 , $NaHCO_3$ जैसे लवणों की निर्मिति के लिए किया जाता है।
- 4. सोडियम क्लोराइड के संतृप्त जलीय विलयन (ब्राइन) में से विद्युत धारा प्रवाहित करने पर उसका अपघटन होता है। ऋणाग्र पर हाइड्रोजन गैस और धनाग्र पर क्लोरीन गैस मुक्त होती है। क्लोरीन गैस की निर्मिति के लिए इस विधि का उपयोग किया जाता है। इस विधि द्वारा NaOH एक महत्त्वपूर्ण क्षारीय यौगिक बनता है।

$$2NaCl + 2H_2O \rightarrow 2NaOH + Cl_2\uparrow + H_2\uparrow$$

- 5. उच्च तापमान पर नमक को गर्म करने पर वह पिघलता है। इसे नमक की संगलित अवस्था (Fused state) कहते हैं।
- 6. संगलित नमक का अपघटन करने से धनाग्र पर क्लोरीन गैस और ऋणाग्र पर द्रवरूपी सोडियम धातु प्राप्त होती है।

कुछ विशेष प्रकार की चट्टानों से नमक की निर्मिति होती है। ऐसे नमक को रॉक सॉल्ट कहते हैं। हेलाईट खनिज और हिमालयी रॉक सॉल्ट (सेंधा नमक) इसके कुछ उदाहरण हैं। इस नमक का अनेक प्रकार की व्याधियों के निवारण के लिए उपयोग किया जाता है।

नमक के 25% जलीय विलयन को संतृप्त ब्राइन (Saturated Brine) कहते हैं। इस विलयन का $\frac{1}{5}$ भाग वाष्पीकृत करने पर घुले हुए नमक का केलास में रूपांतरण होने से विलयन में से नमक पृथक होता है।

सोडियम बाडकार्बोनेट

(खाने का सोडा - NaHCO)

आपके जन्मदिन पर केक लाया जाता है या आपकी माँ केक बनाती है। इसी प्रकार माँ खस्ते पकौडे भी बनाती है। आपने कभी माँ से केक के रंधमय और पकौडों के खस्ता होने का कारण पछा है?

इसका कारण यह है कि माँ आटे में खाने का सोडा डालती है। श्वेत अकेलासीय चूर्ण रूप के सोडे को बेकिंग सोडा कहा जाता है। इसका रासायनिक नाम सोडियम हाइडोजन कार्बोनेट या सोडियम बाइकार्बोनेट है। उसका अणुसूत्र NaHCO, है।

गणधर्म और उपयोग

- 1. NaHCO, की गीले लिटमस के साथ अभिक्रिया होने से लाल लिटमस पत्र नीला हो जाता है अत: यह क्षारीय प्रकृति का लवण है।
- 2. इसका उपयोग पाव, केक, ढोकला बनाने के लिए किया जाता है।
- क्षारीय प्रकृति का होने के कारण इसका उपयोग पेट की अम्लता को कम करने के लिए किया जाता है।
- अग्निशामक यंत्र का मुख्य घटक CO तैयार करने के लिए NaHCO का उपयोग किया जाता है।
- 5. ओवन को स्वच्छ करने के लिए बेकिंग सोडे का उपयोग किया जाता है।

बेकिंग पावडर के घटक कौन-से हैं? उनका उपयोग किसलिए किया जाता है?

ब्लिचिंग पावडर (विरंजक चूर्ण- CaOCl.) (कैल्शियम ऑक्सिक्लोराइड)

रंगीन कपड़े का एक टुकड़ा लीजिए। उसके थोड़े से भाग पर विरंजक चूर्ण का संतृप्त विलयन करें और देखें थोड़ी सी मात्रा में डालिए। क्या होता है, उसका निरीक्षण कीजिए। कपड़े के रंग में क्या परिवर्तन होता है?

बरसात में नल के पानी से एक विशिष्ट तीक्ष्ण गंध आती है। इसका आपने कभी अनुभव लिया है?

तैरने के तालाब के पानी से भी यही गंध आती है। यह गंध क्लोरीन गैस की होती है जिसका उपयोग पानी के जंतुओं को नष्ट करने के लिए किया जाता है। क्लोरीन गैस प्रबल ऑक्सीकारक होने के कारण जंतू नष्ट होते है और विरंजन क्रिया भी घटित होती है।

गैसीय अवस्था में होने के कारण क्लोरीन गैस का उपयोग असुविधाजनक होता है। उसके बदले वैसा ही परिणाम देने वाला ठोस अवस्था का विरंजक चूर्ण सामान्य उपयोग के लिए सुविधाजनक होता है। हवा की कार्बन डाइऑक्साइड के कारण विरंजक चूर्ण का मंद गति से अपघटन होने से क्लोरीन गैस मुक्त होती है। इस मुक्त क्लोरीन के कारण विरंजक चूर्ण को यही गुणधर्म प्राप्त होता है।

CaOCl₂ + CO₂
$$\rightarrow$$
 CaCO₃ + Cl₂ \uparrow

शुष्क बुझे हुए चूने पर क्लोरीन गैस की अभिक्रिया होने से विरंजक चूर्ण प्राप्त होता है।

$$Ca(OH)_{,} + Cl_{,} \rightarrow CaOCl_{,} + H_{,}O$$

- 1. बाजार में मिलने वाले विरंजक चूर्ण के विभिन्न प्रकार।
- 2. ये प्रकार किस पर निर्भर करते हैं ?

गणधर्म और उपयोग

- 1. विरंजक चर्ण पीला-सफेद रंग का ठोस पदार्थ है।
- 2. इसका रासायनिक नाम कैल्शियम ऑक्सीक्लोराइड है।
- 3. इससे बड़ी मात्रा में क्लोरीन की गंध आती है।
- 4. जलशुद्धिकरण केंद्रों में पीने के पानी के निर्जंतकीकरण तथा तैरने के तालाबों में पानी के निर्जंतकीकरण के लिए इसका उपयोग किया जाता है।
- 5. कपडों का विरंजन करने के लिए इसका उपयोग किया जाता है।
- 6. रास्तों के किनारे और कचरे की जगहों के निर्जंतुकीकरण के लिए इसका उपयोग किया जाता है।
- 7. तन् सल्फ्य्रिक अम्ल और तन् हाइड्रोक्लोरिक अम्ल के साथ विरंजक चूर्ण की तीव्र अभिक्रिया होकर क्लोरीन गैस पुर्ण रूप से मुक्त होती है।

$$CaOCl_2 + H_2SO_4 \rightarrow CaSO_4 + Cl_2 \uparrow + H_2O$$

8. कैल्शियम ऑक्सीक्लोराइड की कार्बन डाइऑक्साइड के साथ अभिक्रिया होने से कैल्शियम कार्बोनेट और क्लोरीन निर्मित होते हैं।

धोने का सोडा (Washing Soda) (Na,CO, 10 H,O)

कृति : कुएँ या बोरवेल के पानी को बीकर में लेकर साबुन का झाग बनाइए। बाद में उसमें एक करें और देखें चम्मच धोने का सोडा एक चम्मच डालकर पुन: साबुन का झाग बनाइए। आपके द्वारा की गई कृति का निरीक्षण कीजिए। कौन-कौन-से परिवर्तन दिखाई दिए? क्यों?

कुएँ या बोरवेल का दृष्फेन (कठोर) पानी धोने का सोडा डालने पर सुफेन (मृद) हो जाता है, यह उस पर आने वाले झाग दवारा स्पष्ट होता है। कैल्शियम और मैग्नीशियम फ्लोराइड्स और सल्फेटस की उपस्थिति के कारण पानी दुष्फेन होता है। ऐसे पानी को सुफेन और उपयोग में लाए जाने योग्य बनाने के लिए $\mathrm{Na_2CO_3}$ का उपयोग किया जाता है।

$$\mathsf{MgCl}_{_{2}}(\mathsf{aq}) + \mathsf{Na}_{_{2}}\mathsf{CO}_{_{3}}(\mathsf{s}) \to \mathsf{MgCO}_{_{3}}(\mathsf{s}) + 2\ \mathsf{NaCl}\,(\mathsf{aq})$$

सोडियम कार्बोनेट पानी में घुलनशील सोडियम का लवण होता है। केलासीय सोडियम कार्बोनेट को खुला छोड़ने पर सरलतापूर्वक उसके केलासन का जल उड़ जाता है और उसका श्वेत चूर्ण प्राप्त होता है, इसे ही धोने का सोडा कहते हैं।

$$Na_2CO_3.10 H_2O \xrightarrow{-H_2O} Na_2CO_3.H_2O$$
 श्वेत चूर्ण (धोने का सोडा)

गुणधर्म और उपयोग

- 1. कमरे के तापमान पर धोने का सोडा भूरे रंग का गंधहीन चूर्ण होता है।
- 2. इसके जलीय विलयन में लिटमस का रंग नीला होता है।
- 3. यह आर्द्रताशोषक होता है अर्थात् हवा में खुला रहने पर हवा की वाष्प को अवशोषित करता है।
- 4. इसका उपयोग प्रमुख रूप से कपडे धोने के लिए किया जाता है।
- 5. काँच, कागज उद्योग और पेट्रोलियम के शुद्धिकरण के लिए सोडियम कार्बोनेट का उपयोग किया जाता है।

 $\mathrm{Na}_{,}\mathrm{CO}_{,}$ की $\mathrm{H}_{,}\mathrm{SO}_{_{4}}$ के साथ होने वाली अभिक्रिया लिखिए।

कुछ केलासीय लवण (Some Crystalline Salts)

पिछले पाठ में आपने केलासन जल के बारे में जानकारी प्राप्त की है। केलासन जलयुक्त विविध लवणों का हम उपयोग करते हैं।

हमारे दैनिक उपयोग के केलासन जल युक्त पदार्थ

- 1. फिटकरी (Potash Alum K,SO,Al,(SO,), .24H,O)
- 2. बोरेक्स (Borax Na B,O,.10H,O)
- 3. इप्सम सॉल्ट (Magnesium Sulphate- MgSO₄.7H₂O)
- 4. बेरियम क्लोराइड (Barium Chloride BaCl₂,2 H₂O)
- 5. सोडियम सल्फेट (Sodium Sulphate Glauber's Salt Na2SO4.10 H2O)

ऊपर बताए गए विविध पदार्थों के गुणधर्म और उपयोगों के बारे में अधिक जानकारी प्राप्त करें।

जलशुद्धिकरण प्रक्रिया में फिटकरी का उपयोग किया जाता है, आपने यह पढ़ा है। फिटकरी के स्कंदन (Coagulation) गुणधर्म के कारण गंदले पानी की मिट्टी एकत्र जमा होने के कारण भारी हो जाती है और नीचे बैठ जाती है। इस प्रकार पानी स्वच्छ होता है।

एनीमिया का निदान करते समय रक्त की जाँच करने के लिए नीले थोथे का उपयोग किया जाता है। बोर्डो मिश्रण में नीला थोथा और चूना होता है जिसका उपयोग अँगूर, खरबूज इन फलों के लिए फफूँदी नाशक रूप में होता है।

साबुन (Soap)

- 1. अपमार्जक का क्या अर्थ है?
- 2. प्रयोगशाला में साबुन तैयार करते समय कौन-कौन-से रसायन और सामग्री का उपयोग करेंगे?

साबण: तेल या प्राणियों की चर्बी को सोडियम या पोटैशियम हाइड्रॉक्साइड के साथ उबालने पर कार्बोक्सिलिक अम्ल के (तेलाम्ल के) सोडियम या पोटैशियम लवण निर्मित होते हैं, इन लवणों को साबुन कहते हैं। साबुन को दुष्फेन पानी में मिश्रित करने पर सोडियम का विस्थापन होकर तेलाम्ल के कैल्शियम और मैग्नीशियम के साथ लवण निर्मित होते हैं। ये लवण पानी में अघुलनशील होने के कारण उनकी तलछट निर्मित होती है, उसके कारण झाग नहीं तैयार होता।

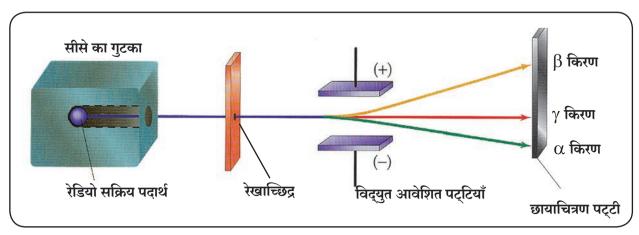
नहाने के साबुन और कपड़े धोने के साबुन के बीच अंतर लिखकर तालिका पूर्ण कीजिए।

नहाने का साबुन	कपड़े धोने के साबुन
1. कच्ची सामग्री में उच्च दर्जे के वसा और तेल का उपयोग	1. कम दर्जे के वसा और तेल का उपयोग किया जाता है।
किया जाता है।	
2.	2.

रेडियोधर्मी पदार्थ (Radioactive Substances)

यूरेनियम, थोरियम, रेडियम जैसे उच्च परमाणु क्रमांक के तत्त्वों से अदृश्य, अत्यंत भेदक और उच्च दर्जे वाली किरणों के स्वयंप्रेरणा से उत्सर्जित होने के गुणधर्म को रेडियो सिक्रयता (Radiation) कहते हैं। यह गुणधर्म प्रदर्शित करने वाले पदार्थों को रेडियोधर्मी पदार्थ कहते हैं। रेडियोधर्मी तत्त्वों के नाभिक अस्थिर होते हैं, उनके नाभिक से ही किरणें उत्सर्जित होती हैं। रेडियो सिक्रय पदार्थों का हमारे दैनिक जीवन से संबंध है। आइए हम इन पदार्थों के बारे में थोड़ी जानकारी प्राप्त करें।

रेडियोधर्मी पदार्थ से उत्सर्जित किरणें तीन प्रकार की होती हैं, उन्हें अल्फा, बीटा और गामा किरणें कहते हैं।


विज्ञान के झरोखे से

हेनरी बेक्वेरल जब युरेनियम के पिचब्लेंड यौगिक पर संशोधन कर रहे थे तब उन्होंने डावर में फोटोग्राफी की उपयोग न हए काँच एक कार्डबोर्ड के डब्बे में रखा था और उनपर एक चाबी रखी हुई थी। उसपर ये यरेनियम के यौगिक रख दिए गए और वे वहाँ पर वैसे ही रहे। कुछ दिनों के बाद इन काँचों को धोने पर पता चला कि ये काँच धुँधले हो गए है और उन पर चाबी का आकार दिखाई दिया। अंधेरे में यह घटना घटित होने के कारण बेक्वेरल ने निष्कर्ष प्राप्त किया कि पटार्थों को भेदकर जाने वाली क्ष-किरणों जैसी किरणें यरेनियम यौगिक अपने आंतरिक भाग से उत्सर्जित करता होगा। इन किरणों को बेक्वरेल किरणें कहते हैं। कुछ दिनों बाद मादाम क्यूरी को भी थोरियम यौगिक में ऐसे गुणधर्म दिखाई दिए।

रेडियोमकिय किरणों के स्वरूप

रूदरफोर्ड ने (1899) में रेडियम दो भिन्न प्रकार की किरणें उत्सर्जित करता है, इसकी खोज की। उन किरणों को अल्फा और बीटा किरण कहते हैं। विलार्ड ने तीसरी गामा किरण की खोज की।

दो विपरीत विद्युत आवेश वाली पिट्ट्यों में से ये किरणें प्रवाहित करने पर वे अलग हो जाती हैं। यह पद्धित रुद्रफोर्ड ने 1902 में बताई। रुद्रफोर्ड और विलार्ड ने विभिन्न रेडियोसक्रिय पदार्थों से उत्सर्जित होने वाली किरणों का अध्ययन करने के लिए किरणों को विद्युतीय क्षेत्र से प्रवाहित होने दिया। उनके मार्ग में छायाचित्रण पट्टी रखी, तब उन्हें तीन प्रकार की किरणें विभाजित होती हुई दिखी। एक किरण ऋणावेशिन पट्टी की ओर थोड़ी-सी विचलित हुई दिखी, तो दूसरी किरण धनावेशित पट्टी की ओर अधिक परिमाण में विचलित हुई दिखी। परंतु तीसरी किरण का विद्युत क्षेत्र में बिलकुल विचलन हुआ ही नहीं। ऋणावेशित पट्टी की ओर थोड़ी विचलित होने वाली किरणों को अल्फा किरणें, धनावेशित पट्टी की ओर अधिक परिमाण में विचलित होने वाली किरणों को गमा किरणें कहते हैं।

14.1 अल्फा, बीटा और गामा किरणें

वैज्ञानिकों का परिचय: भौतिकशास्त्र के ब्रिटिश वैज्ञानिक अर्नेस्ट रुद्रफोर्ड (1871–1937) ने जे. जे. थॉमसन के मार्गदर्शन में केवेंडीश की प्रयोगशाला और केनडा के मेकिंगल विश्वविद्यालय में रेडियोसक्रियता पर संशोधन किए। अल्फा कणों की बौछार कर उन्होंने नाइट्रोजन परमाणु को विभाजित करके दिखाया। इस प्रयोग के कारण भौतिक विज्ञान क्षेत्र में एक नए युग का आरंभ हुआ।

अल्फा, बीटा और गामा किरणों के गुणधर्म

	अस्या, बाटा आर् नामा विरुग वर्ग नुगवम			
अ.क्र.	गुणधर्म	अल्फा किरणें (α)	बीटा किरणें (β)	गामा किरणें (γ)
1.	स्वरूप	अल्फा कणों का प्रवाह	बीटा कणों का प्रवाह (e⁻)	विद्युत चुंबकीय किरणें
		(He ⁺⁺)		
2.	द्रव्यमान	4.0028 u	0.000548 u	द्रव्यमान रहित
3.	आवेश	+2	-1	आवेश रहित
4.	वेग	प्रकाश के वेग का	प्रकाश के वेग का	प्रकाश के वेग के बराबर
		$\frac{1}{5}$ ते $\frac{1}{20}$ गुना होता है।	$\frac{1}{5}$ ते $\frac{9}{10}$ गुना होता है।	होता है ।
5.	विद्युतीय क्षेत्र में	ऋणावेशित पट्टी की ओर	धनावेशित पट्टी की ओर	आकर्षित नहीं होते हैं।
	विचलन	आकर्षित होते हैं।	आकर्षित होते हैं।	
6.	भेदन शक्ति	कम 0.02 मोटी एल्युमीनियम	अल्फा कणों से लगभग 100	अल्फा कणों से 10,000
		की चादर को भेद सकती हैं।	गुना अधिक, 2 मिमी मोटी	गुना अधिक, 15 सेमी
			एल्युमीनियम की चादर को भेद	मोटाई का सीसे का पर्दा
			सकती हैं।	भेद सकती हैं।
7.	आयनीकरण शक्ति	अति उच्च	कम	अत्यंत कम
8.	स्फुरदीप्ति निर्माण	अधिक परिमाण में	अल्प	अत्यंत अल्प
	करने की शक्ति			

रेडियो सिक्रिय समस्थानिकों के उपयोग: हमारी गलतफहमी है कि रेडियोसिक्रिय तत्त्वों का केवल परमाणु बम बनाने के लिए उपयोग किया जाता है। रेडियोसिक्रिय समस्थानिकों का उपयोग वैज्ञानिक अनुसंधान, कृषि, उद्योग, औषिध, वनस्पित इत्यादि अनेक क्षेत्रों में किया जाता है। रेडियो सिक्रिय पदार्थ का उपयोग दो प्रकार से किया जाता है

- अ. केवल किरणों का उपयोग करके
- आ. रेडियोसक्रिय तत्त्व का प्रत्यक्ष उपयोग करके

प्राकृतिक रेडियोसक्रिय तत्त्व – साधारणतः प्रकृति में 82 से 92 परमाणु क्रमांक के तत्त्व स्वयंप्रेरणा से किरणें उत्सर्जित करते हैं। उन्हें प्राकृतिक रेडियोसक्रिय तत्त्व कहते हैं। कृत्रिम रेडियोसक्रिय तत्त्व – फ्रेडिरिक जॉलियो क्यूरी और आयरीन जॉलियो क्यूरी नाम के दंपत्ति ने सर्वप्रथम कृत्रिम रेडियोसक्रिय तत्त्व की खोज की। प्रयोगशाला में कणों की बौछारों द्वारा किए जाने वाले परमाणुनाभिक के विघटन क्रिया से उत्पन्न होने वाले रेडियोसक्रिय तत्त्व को कृत्रिम रेडियोसक्रिय तत्त्व कहते हैं। इस खोज के कारण उन्हें 1935 में नोबल पुरस्कार दिया गया।

रेडियो सक्रिय समस्थानिकों के विभिन्न क्षेत्रों में उपयोग निम्नानुसार हैं

1.औदयोगिक क्षेत्र

रेडियोग्राफी- ढलुए लोहे की वस्तु या लोहे के वेल्डिंग की दरारों, रिक्त स्थानों का गामा किरणों की सहायता से पता लगाया जाता है। इसके लिए कोबाल्ट-60, इरिडियम- 192 जैसे समस्थानिकों का उपयोग रेडियोग्राफी करने के कैमरे में किया जाता है। धात-कार्यों के दोष पता करने के लिए इस यंत्र का उपयोग किया जाता है।

मोटाई, घनत्व, स्तर का मापन करना- एल्युमीनियम, प्लास्टिक, लोहे जैसे पदार्थों से कम-अधिक मोटाई की चादरों का उत्पादन करते समय उनकी मोटाई जितनी चाहिए उतनी लेना आवश्यक होता है। उत्पादन करते समय एक पक्ष में रेडियोसक्रिय पदार्थ और दूसरे पक्ष में रेडियोसक्रिय मापन यंत्र होता है। मापन यंत्र द्वारा दर्शाई गई उत्सर्जित किरणें चादर की मोटाई के आधार पर कम ज्यादा होती हैं। इस तकनीक की सहायता से पैकिंग के माल की भी जाँच की जा सकती है।

दैदीप्यमान रंग और रेडियोसक्रिय दीप्त रंग – पहले घड़ी के काँटे और विशिष्ट वस्तु अंधेरे में भी दिखने के लिए उसपर रेडियम के यौगिक लगाए जाते हैं। इससे अल्फा और गामा किरणें उत्सर्जित होती हैं।

HID (High Intensity Discahrge) घड़ी में क्रिप्टॉन -85 और प्रोमेशियम X-ray युनिट में प्रोमेथियम-147 समस्थानिकों का उपयोग किया जाता है।

सिरामिक की वस्तुओं में होने वाला उपयोग – सिरामिक से बनाई जाने वाली टाइल्स, बर्तन, प्लेट, रसोई के बर्तन आदि में चमकदार रंग का उपयोग किया जाता है। इस रंग में पहले यूरेनियम ऑक्साइड का उपयोग किया जाता था।

2. कृषि क्षेत्र

- 1. पौधों की वृद्धि शीघ्र होने के लिए और अधिक उत्पादन प्राप्त करने के लिए बीज को गुणधर्म देने वाले जनुक और गुणसूत्रों पर रेडियो सक्रिय किरणों के प्रभाव से उनमें मूलभूत परिवर्तन किए जा सकते हैं।
- 2. रेडियोसक्रिय समस्थानिक कोबाल्ट-80 का उपयोग खाद्य परिक्षण के लिए किया जाता है।
- 3. प्याज, आलू को अंकुर न आए, इसलिए उनपर कोबाल्ट-60 की गामा किरणों की बौछार की जाती है।
- 4. विविध फसलों पर संशोधन करने के लिए स्टॉन्शियम-90 का उपयोग किया जाता है।

3. चिकित्सा शास्त्र

- 1. **पॉलिसायथेमिआ** इस रोग में लाल रक्त कणों की रक्त में मात्रा बढ़ती है। इस रोग के उपचार के लिए फॉस्फोरस-32 का उपयोग किया जाता है।
- 2. **हड्डियों का कैंसर** इसका उपचार करते समय स्ट्रॉंशियम- 89, स्ट्रॉंशियम- 90, समारियम -153 और रेडियम -223
- 3. **हाइपर थायरॉइंडिजम** गले की ग्रंथि का बड़ा होना, भूख लगने के बावजूद वजन कम होना, नींद न आना, यह सब गले की ग्रंथि में से ज्यादा मात्रा में हार्मोन्स बनने के कारण होता है। इसे ही हाइपर थायरॉइंडियम रोग कहते हैं। इसके उपचार के लिए आयोडिन–123 का उपयोग किया जाता है।
- 4. **मस्तिष्क का टयूमर** मस्तिष्क के टयूमर का उपचार करने के लिए बोरॉन –10, आयोडिन–131, कोबाल्ट– 60 का उपयोग किया जाता है तथा शरीर के छोटे टयूमर पहचानने के लिए आर्सेनिक–74 का उपयोग किया जाता है।

रेडियोसक्रिय पदार्थों व किरणों के दृष्परिणाम

- 1. रेडियोसक्रिय किरणों के कारण मध्यवर्ती तंत्रिका तंत्र को हानि पहुँचती हैं।
- 2. शरीर के डी. एन. ए. पर किरणों के हमले से आनुवंशिक दोष निर्मित होते हैं।
- 3. रेडियोसक्रिय किरणें त्वचा को भेदकर अंदर जा सकती हैं, इस कारण त्वचा का कर्क रोग, ल्यूकेमिया जैसे रोग होते हैं।
- 4. विस्फोट से उत्पन्न होने वाले रेडियोसक्रिय प्रदूषक हवा द्वारा शरीर में प्रवेश करते हैं। इसलिए उनपर नियंत्रण रखना कठिन है।
- 5. रेडियोसक्रिय प्रदूषक समुद्र में डाले जाने के कारण वे मछिलयों के शरीर में जाते हैं तथा उनके माध्यम से मानव के शरीर में प्रवेश करते हैं।
- 6. घड़ी पर लगाए गए रेडियासक्रिय रंगद्रव्य के कारण कर्क रोग होने की संभावना होती है।
- 7. वनस्पति, फल, फूल, अनाज, गाय का दूध इत्यादि के माध्यम से स्ट्रॉशियम-90 नामक रेडियोसक्रिय समस्थानिक शरीर में प्रवेश करने से अस्थियों का कैंसर, ल्यूकेमिया जैसे रोग होते हैं।

इतिहास के पन्ने से

चेनोंबिल दुर्घटना: 26 एप्रिल 1986 में चर्नोबिल परमाणु ऊर्जा केंद्र के ग्रेफाइट रिएक्टर का विस्फोट होने के कारण उससे रेडियोसक्रिय समस्थानिक और किरणें अचानक बाहर आईं। इस घटना के कारण पानी और जमीन के माध्यम से रेडियोसक्रिय समस्थानिकों के मनुष्य शरीर में प्रवेश होने के कारण आनुवंशिक दोष निर्मित हुए और वे आगे की पीढ़ी में संक्रमित हुए। छोटे से बड़े बहुतायत में गलगंड के शिकार हुए। इस कारण गले की बीमारियों का प्रमाण वहाँ ज्यादा है।

दैनिक जीवन के कुछ रासायनिक पदार्थ

हम जो अन्न खाते हैं, जिन वस्तुओं का उपयोग करते हैं, उदा. कपड़े, बर्तन, घड़ी, औषधि और अन्य वस्तुएँ, ये सभी विभिन्न द्रव्यों से बनी होती हैं। इसका प्रत्यक्ष या अप्रत्यक्ष रूप से हमारे स्वास्थ्य पर परिणाम होता है, ऐसे पदार्थों की जानकारी हम प्राप्त करेंगे।

- 1. मिठाई की दुकान में जाने पर आपको विविध रंगों की मिठाइयों से दुकान सजी हुई दिखाई देती है। उन पदार्थों में कौन-से रंगों का उपयोग किया जाता है?
- 2. बीमार होने पर डॉक्टर आपको विभिन्न औषधियाँ देते हैं, वे किससे निर्मित होती हैं?

खाद्य रंग और सुगंधित द्रव्य (Food colours and Essence)

बाजार में मिलने वाले बहुत से पेय और भोज्यपदार्थों में खाद्य रंग मिश्रित किए हुए होते हैं। ये खाद्यरंग पावडर, जेल और पेस्ट के स्वरूप में होते हैं। इन खाद्यरंगों का उपयोग घरेलू और व्यावसायिक उत्पादनों द्वारा किया जाता है। आइसक्रीम, सॉस, फलों के रस, शीत पेय, अचार, जैम, जेली, चाय पावडर में संबंधित रंग व सुगंधित द्रव्य डाले गए होते हैं।

बाजार में पैकिंग में मिलने वाले मांस (चिकन, मटन), लाल मिर्च, हल्दी, मिठाई जैसे अन्य पदार्थों का भी रंग उठावदार हो इसलिए अधिकतर खाद्यरंग मिश्रित किए जाते हैं।

14.2 विविध रंगी खाद्यपदार्थ

खाद्य रंगों के दुष्परिणाम

- 1. अचार, जैम और सॉस में डाले जाने वाले रंगों में सीसा, पारा कम मात्रा में इस्तेमाल किया गया होता है। हमेशा इन उत्पादनों को खाने वाले लोगों को वह घातक साबित हो सकता है।
- 2. खाद्य रंग युक्त पदार्थों के अतिरिक्त सेवन के कारण छोटे बच्चों को ADHD जैसी बीमारियाँ हो सकती हैं। (Attention Deficit Hyperactivity Disorder)

ैइसे सदैव ध्यान में रखिए

खाद्य रंग प्राकृतिक तथा कृत्रिम होते हैं। बीजों, शलजम, फूलों और फलों के अर्क से निर्मित खाद्य रंग प्राकृतिक होते हैं। टेट्राजिन, सनसेट येलो, हेक्जेन, एिमटोन ये बड़े पैमाने पर उपयोग मे लाए जाने वाले कृत्रिम खाद्य रंग हैं परंतु अतिसेवन से कृत्रिम खाद्य रंग घातक साबित हो सकते हैं। इसलिए हमेशा प्राकृतिक खाद्य रंगों का उपयोग करना उचित होता है।

डाय (Dve)

वह रंगीन पदार्थ जिसे किसी वस्तु पर लगाने से उस वस्तु को वह रंग प्रदान करता है उसे डाय कहते हैं। सामान्यत: डाय पानी में घुलनशील और तेल में अघुलनशील होते हैं। कई बार कपड़ा रँगने के बाद दिया गया रंग पक्का होने के लिए रंगबंधक का उपयोग किया जाता है।

प्राकृतिक डाय बनाने के लिए वनस्पित मुख्य स्रोत है। जड़ें, पित्तयाँ, फूल, छाल, बीजें, फफूँद, केसर इन सबका उपयोग डाय बनाने के लिए किया जाता है। कश्मीर में केसर से उत्तम डाय बनाकर उससे धागे रँग कर उससे साड़ियाँ, शॉल, ड्रेस बनाए जाते हैं। वे अत्यंत मँहगे होते हैं। इस व्यवसाय पर बहुत से लोगों की आजीविका चलती है। बाल रँगने के लिए मेहंदी की पित्तयाँ का उपयोग स्वास्थ्य की दृष्टि से सुरक्षित होता है।

कृत्रिम डाय की खोज 1856 में विल्यम हेनरी पर्किन ने की। रासायनिक गुणधर्म और घुलनशीलता के अनुसार कृत्रिम रंग के विभिन्न प्रकार होते हैं। इनमें पेट्रोलियम के उप-उत्पादों और खनिजों का उपयोग किया गया होता है।

उपयोग

- 1. कपड़े, बाल रँगने के लिए इसका उपयोग किया जाता है।
- 2. रास्ते के तख्ते (बोर्ड), रात्रि के समय दिख सकें इसके लिए स्फुरदीप्त रंगों का उपयोग किया जाता है।
- 3. चमड़े के जूते, पर्स, चप्पल को चमकदार बनाने के लिए रंग का उपयोग किया जाता है। दुष्परिणाम
- बालों को रंग लगाने पर बालों का झड़ना, बालों की पोत का खराब होना, त्वचा मे जलन होना, आँखो को नुकसान पहुँचना जैसे खतरे हो सकते हैं।
- 2. लिपस्टिक में कारमाइन (Carmine) नामक रंग होता है। इससे ओठों को नुकसान नही होता परंतु पेट में जाने पर पेट के विकार होते हैं।
- 3. प्राकृतिक रंग बनाने के लिए वनस्पति का अति-उपयोग करने के कारण पर्यावरण का हास होता है।

कृत्रिम रंग (Artificial Colours)

- रंग पंचमी के दिन रंग खेलने के बाद आपको कौन-कौन-सी तकलीफ होती है? क्यों?
- 2. यह तकलीफ न हो इसलिए आप कौन-से रंगों का उपयोग करेंगे?
- 3. घर को, फर्निचर को रँग करने के बाद उनकी गंध से आपको क्या तकलीफ होती है?

रंगपंचमी पर रंग खेलने, घरों को रँगने सजाने आदि में हम कृत्रिम रंगों का अत्यधिक उपयोग करते हैं। रंग पंचमी पर इस्तेमाल किया जाने वाला लाल रंग सबसे घातक होता है, उसमें पारे की मात्रा अधिक होती है। इसके कारण अंधापन, त्वचा का कैंसर, अस्थमा, त्वचा की खुजली, त्वचा के रंध्र हमेशा के लिए बंद होना जैसे खतरे उत्पन्न होते हैं। इसलिए कृत्रिम रंग का उपयोग सावधानीपूर्वक करना आवश्यक है।

14.3 कृत्रिम रंगों के दुष्परिणाम

कृत्रिम रंगों में उपस्थित घातक रसायनों के नाम और होने वाले परिणामों को ज्ञात कीजिए।

शलजम, पलाश के फूल, पालक, गुलमोहर इन प्राकृतिक विविध-रंगी स्रोतों से रंगपंचमी के लिए रंग तैयार कर उनका उपयोग करके अपना स्वास्थ्य संभालें।

दर्गंधनाशक (Deodorant)

शरीर पर आने वाले पसीने का सूक्ष्मजीवाणुओं द्वारा किए गए विघटन के कारण दुर्गंध आती है। इस दुर्गंध को रोकने के लिए दुर्गंधनाशक पदार्थ का उपयोग किया जाता है। दिन भर प्रफुल्लित रहने के लिए प्रत्येक को सुगंधित डिओडरंट पसंद आता है। बड़े पैमाने पर शालेय विद्यार्थी डिओ का उपयोग करते हैं। किशोरवयीन बच्चों में डिओ के इस्तेमाल करने का प्रमाण टी.वी. पर दिखाए जाने वाले विज्ञापनों के कारण अधिक होता है। इसमें पॅराबेन्स (मिथाइल, इथाइल, प्रोपाइल, बेन्जाइल और ब्युटाइल अल्कोहल) का अनुपात अधिक होता है। एल्युमीनियम के यौगिक और सिलिकॉन का इसमें इस्तेमाल किया जाता है।

- 1. सामान्य डिओ इसमें एल्युमीनियम के यौगिकों का अनुपात कम होता है। यह पसीने की दर्गंध कम करता है।
- 2. **पसीना रोकने वाले डिओ** पसीना स्रवित करने वाली ग्रंथियों का प्रमाण कम करता है। इसमें एल्युमीनियम क्लोरोहायडे्रटस का अनुपात 15% होता है। इसके कारण पसीना आने वाली ग्रंथियाँ पूर्णत: बंद हो जाती है।
- 3. वैद्यकीय डिओ जिस व्यक्ति को बहुत पसीना आता है और उसके घातक प्रभाव त्वचा पर होते हैं, ऐसे व्यक्तियों के लिए वैद्यकीय डिओ बनाया गया है। इसमें 20 से 25% एल्युमीनियम होता है। इसे केवल रात में ही इस्तेमाल किया जाता है। डिओ ठोस, गैस अवस्था में मिलते हैं।

दष्परिणाम

- 1. एल्युमीनियम जिरकोनियम यह यौगिक डिओडरंट में सबसे घातक रसायन है। इसके कारण सिरदर्द, अस्थमा, श्वसन के विकार, हृदय विकार जैसी व्याधियाँ हो सकती हैं।
- 2. एल्युमीनियम क्लोराहायड्रेटस के कारण त्वचा के विभिन्न प्रकार के विकार और त्वचा का कर्क रोग होने की संभावना होती है।

टेफ्लॉन (Teflon)

चिपकने की प्रक्रिया टालने के लिए रसोई के बर्तन, औद्योगिक उपकरणों में मुलम्मा देने के लिए टेफ्लॉन का उपयोग किया जाता है। यह ट्रेटाफ्लोरोइथिलीन का बहुलक है। इसकी खोज रॉय जे. प्लंकेट ने 1938 में की। इसका रासायनिक नाम पॉलिटेट्राफ्लोरोइथिलीन (C_2F_4) है।

14.4 टेफ्लॉन कोटिंग

टेफ्लॉन में ऐसा कौन–सा गुणधर्म है जिसके कारण उसे नॉनस्टिक वेयर में इस्तेमाल किया जाता है।

ग्णधर्म

- 1. वातावरण और रासायनिक पदार्थों का टेफ्लॉन पर परिणाम नहीं होता।
- पानी और तेल ये दोनों पदार्थ टेफ्लॉन कोटेड वस्तुओं पर चिपकते नहीं हैं।
- 3. उच्च तापमान का टेफ्लॉन पर परिणाम नहीं होता है क्योंकि टेल्फॉन का द्रवणांक 327° C होता है।
- 4. टेफ्लॉन कोटेड वस्तु को सरलता से साफ किया जा सकता है।

उपयोग

- 1. सुचालकता के गुणधर्म के कारण उच्च तकनीक के इलेक्ट्रॉनिक उपकरणों में और टेफ्लॉन के आवरण वाले विद्युत के तार और वस्तु बनाने के लिए टेफ्लॉन का उपयोग किया जाता है।
- 2. रसोई के नॉनस्टिक वेयर तैयार करने के लिए इसका उपयोग किया जाता है।
- 3. दुपहिया और चार पहिया वाहनों के रंगीन पतरे पर तापमान, बरसात का परिणाम होने से वे खराब न हों इसलिए टेफ्लॉन कोटिंग की जाती है।

पावडर कोटिंग (Powder Coating)

लोहे की वस्तु पर ज़ंग न लगे इसलिए वस्तु के पृष्ठभाग पर रंग की अपेक्षा अधिक दृढ़ परत देनें की पद्धित को पावडर कोटिंग कहते हैं। इस पद्धित में पॉलिमर रेजिन रंग और अन्य घटक एकत्र करके पिघलाए जाते हैं और फिर ठंडा करके उस मिश्रण का बारीक चूर्ण बनाया जाता है। इलेक्ट्रोस्टेटिक स्प्रे डिपोजिशन (ESD) करते समय धातु के घिसे हुए भाग पर इस पावडर का फौवारा डालते हैं। इसमें पावडर के कणों को स्थिर विद्युत आवेश दिया जाता है। इस कारण उसकी एक जैसी परत धातु के पृष्ठभाग पर चिपकती है। इसके बाद इस परत के साथ वस्तु को भट्टी में गर्म करते हैं। तब परत में रासायनिक अभिक्रिया होने से अधिक लंबाई के बहुलक जाल निर्मित होते हैं। यह पावडर कोटिंग अत्यंत टिकाऊ, दृढ़ और आकर्षक होती है। दैनिक उपयोग के प्लास्टिक और मीडियम डेन्सिटी फायबर (MDF) बोर्ड पर पावडर कोटिंग की जा सकती है।

एनोडिकरण (Anodizing)

एल्युमीनियम की धातु के पृष्ठभाग पर हवा की ऑक्सीजन के साथ अभिक्रिया होने से प्राकृतिक रूप से एक संरक्षक परत निर्मित होती है। एनोडीकरण प्रक्रिया द्वारा यह परत वांछित मोटाई की बनाई जा सकती है। विद्युत अपघटन पद्धित का उपयोग करके एनोडीकरण िकया जाता है। विद्युत अपघटन सेल में तनु अम्ल लेकर उसमें एल्युमीनियम की वस्तु को धनाग्र के रूप में डुबाते हैं। विद्युत प्रवाह शुरू करने पर ऋणाग्र के पास हाइड्रोजन गैस तो धनाग्र के पास ऑक्सीजन गैस मुक्त होती है। ऑक्सीजन के साथ अभिक्रिया होने से एल्युमीनियम वस्तु रूपी धनाग्र पर हाइड्रेटेड एल्युमीनियम ऑक्साइड की परत तैयार होती है। इस बीच सेल में रंग डालकर इस परत को आकर्षक बनाया जा सकता है। एनोडीकरण किए गए तवे, कुकर जैसे रसोई के विभिन्न बर्तनों को हम क्यों इस्तेमाल करते हैं? वह क्यों?

मृत्तिका (Ceramic)

मृत्तिका का अर्थ अकार्बनिक पदार्थ को पानी में मिश्रित करके, आकार देकर, भून कर तैयार किया गया उष्मारोधी पदार्थ है।

कुम्हार द्वारा बनाई गई छोटी मटकी, मटकी, मटका जैसे बर्तन और घर की छत पर लगाने वाले खपरैल, निर्माण-कार्य की ईंटें, कप-प्लेट, टेरिकोटा की वस्तु सभी हमारे आस-पास दिखाई देने वाली मृत्तिका के उदाहरण हैं।

ऐसे तैयार होती है मृत्तिका

मिट्टी को पानी में मिश्रित कर उसे आकार देकर भट्टी में 1000 से 1150°C से. तापमान पर भूनने से रंध्रमय मृत्तिका तैयार होती है। रंध्रमयता निकालने के लिए भूने गए बर्तन पर मिश्रित किया गया काँच का चूर्ण (ग्लेझ) लगाते है और बर्तन पुन: भूनते हैं। इस कारण सिरेमिक के पृष्ठभाग की रंध्रमयता निकल जाने से वह चमकीला बनता है।

14.5 मृत्तिका

पोर्सेलिन: यह कठोर, अद्ध्पारदर्शक और सफेद रंग की मृत्तिका होती है। इसे बनाने के लिए चीन में मिलने वाली सफेद मिट्टी केओिलन का उपयोग करते हैं। काँच, ग्रेनाइट, फेल्ड्सपार जैसे खिनज केओिलन में मिश्रित करके उसमें पानी डालकर मलते हैं। तैयार हुए मिश्रण को आकार देकर भट्टी में $1200 \text{ से } 1450 \, ^{\circ}\text{C}$ से. तापमान पर भूनते हैं। उसके बाद आकर्षक ग्लेज लगाकर पुन: भूनने पर पोर्सेलिन के सुंदर बर्तन बनते हैं। प्रयोगशाला में ऐसे कौन–कौन–से बर्तन हैं?

बोन चायना: केओलिन (चिनी मिट्टी), फेल्ड्सपार खनिज, बारीक सिलिका के मिश्रण में प्राणियों के हिड्डियों की राख मिश्रित करके आगे की प्रक्रिया की जाती है। यह मृत्तिका पोर्सेलिन से भी कठोर होती है।

प्रगत मृत्तिका : प्रगत मृत्तिका बनाते समय मिट्टी के स्थान पर एल्युमिना (Al_2O_3) , जिर्कोनिया (ZrO_2) , सिलिका (SiO_2) ऐसे कुछ ऑक्साइड्स और सिलिकॉन कार्बाइड (SiC), बोरान कार्बाइड (B_4C) जैसे कुछ अन्य यौगिकों का उपयोग किया जाता है। इस मृत्तिका को भूनने के लिए 1600 से $1800\,^{\circ}C$ तापमान और ऑक्सीजनरिहत वातावरण की आवश्यकता होती है। इस प्रक्रिया को सिटिरंग कहते हैं।

सिरामिक पदार्थ का उच्च तापमान पर विघटन नहीं होता है। सिरामिक भंगर, विदयतरोधी और जलरोधी होता है। इसलिए इसका उपयोग विदयुत उपकरणों में. भटटी की आंतरिक सतह पर लेप. जहाज के विलेपन के लिए. जेट इंजिन के पत्तों के विलेपन के लिए करते हैं। स्पेस शटल के बाहरी परत पर विशिष्ट सिरामिक टाइल्स लगाए जाते हैं। कुछ सिरामिक का उपयोग अतिसंवाहक(Super Conductors) के रूप में किया जाता है।

स्वाध्याय 💐 🥨

रिक्त स्थानों में उचित शब्द लिखिए।

- अ. धोने के सोडे में केलासन जल अणु की संख्याहै।
- आ. बेकिंग सोडे का रासायनिक नाम है।
- इ. हाइपरथायरॉइडिजम रोग के उपचार के लिए का उपयोग किया जाता है।
- ई. टेफ्लॉन का रासायनिक नाम है।

उचित जोडियाँ बनाइए।

'अ' गट

'**ਗ**' ਸਟ

- 1.संतुप्त ब्राइन अ. सोडियम धातु मुक्त
- 2.संगलित नमक
- ब. क्षारीय लवण
- 3.CaOCl
- क. नमक का केलासन
- 4. NaHCO₂
- ड. रंग का ऑक्सीकरण

नीचे दिए गए प्रश्नों के उत्तर लिखिए।

- अ. रेडियो सक्रियता का क्या अर्थ है?
- आ. नाभिक अस्थिर है ऐसा कब कहा जाता है?
- इ. कृत्रिम खाद्यरंग के कारण कौन-सी व्याधियाँ होती हैं?
- ई. औद्योगिक क्षेत्र में रेडियोसक्रियता का उपयोग कहाँ-कहाँ करते हैं?
- उ. टेफ्लॉन के गुणधर्म लिखिए।
- पर्यावरणपुरक रंगपंचमी मनाने के लिए कौन-से प्रकार के रंगों का उपयोग करेंगे? क्यों?
- ए. टेफ्लॉन विलेपन जैसी पद्धति का उपयोग खूब क्यों बढा है?

स्पष्टीकरण सहित लिखिए।

- अ. विरंजक चूर्ण से क्लोरीन की गंध आती है।
- आ. कुएँ का दष्फेन पानी धोने के सोडे के कारण सुफेन होता है।
- इ. दुष्फेन पानी में साबुन की तलछट जमा होती है।
- ई. पावडर कोटिंग में फौवारा डालते समय पावडर कणों को विद्युत आवेश दिया जाता है।
- उ. एनोडीकरण में एल्युमीनियम की वस्तु को धनाग्र के रूप में लिया जाता है।

- ऊ. कुछ रेडियोसक्रिय पदार्थों से आने वाली किरणों को विद्युतीय क्षेत्र में प्रवाहित करने पर उनके मार्ग की फोटोग्राफिक पट्टी पर तीन स्थानों पर स्फ्रदीप्ती दिखाई देती है।
- ए. स्पेस शटल के बाहर की परत पर विशिष्ट सिरामिक टाइल्स लगाए जाते हैं।

नीचे दिए गए प्रश्नों के उत्तर लिखिए।

- अ. कृत्रिम खाद्य रंग व उसमें इस्तेमाल किए जाने वाले पदार्थों के नाम लिखकर उनके दष्परिणाम लिखिए।
- आ. केलासन के जल का क्या अर्थ है, यह बताकर केलासन जल युक्त लवण और उनके उपयोग लिखिए।
- इ. सोडियम क्लोराइड के विद्युत अपघटन करने की तीन पद्धतियाँ कौन-सी हैं?

6. उपयोग लिखिए।

- अ. एनोडीकरण
- आ. पावडर कोटिंग
- रेडियोसक्रिय पदार्थ ई. सिरामिक
- दुष्परिणाम लिखिए।
 - अ. कृत्रिम डाय
- आ. कृत्रिम खाद्यरंग
- इ. रेडियो सक्रिय पदार्थ
- ई. दुर्गंधनाशक

8. रासायनिक सूत्र लिखिए।

विरंजक चूर्ण, नमक, बेकिंग सोडा, धोने का सोडा

9. नीचे दिए गए चित्र के बारे में स्पष्टीकरण लिखिए।

उपक्रम:

पावडर कोटिंग, टेफ्लॉन कोटिंग किए जाने वाले स्थानों पर जाकर जानकारी प्राप्त कीजिए और कक्षा में प्रस्तृत कीजिए।

15. सजीवों की जीवनप्रक्रियाएँ

> वनस्पतियों में परिवहन > उत्सर्जन : वनस्पति, प्राणी और मानव

समन्वय : वनस्पति और मानव

थोड़ा याद करें

पाचन संस्थान (पाचन तंत्र) और श्वसन (श्वसन तंत्र) संस्थान इनका कार्य कैसे चलता है?

मानव शरीर द्वारा पाचन किया हुआ अन्न या फेफड़ों द्वारा शरीर में श्वसन की हुई ऑक्सीजन गैस शरीर की प्रत्येक कोशिका तक किस प्रकार पहुँचाई जाती है, इसका अध्ययन हमने किया है। इसी प्रकार कुएँ तथा बाँधों के पानी को नहरों द्वारा किसान खेत में पहुँचाने का प्रयत्न करता है। मनुष्य के पाचन संस्था द्वारा हमारे ग्रहण किए भोजन का ऊर्जा में रूपांतरण होता है। यह ऊर्जा तथा ऑक्सीजन रक्त द्वारा संपूर्ण शरीर में पहुँचाया जाता है।

परिवहन (Transportation)

परिवहन क्रिया द्वारा एक भाग में संश्लेषित या अवशोषित किया हुआ पदार्थ दूसरे भाग तक पहुँचाया जाता है।

वनस्पतियों में परिवहन (Transportation in Plants)

- . हम फल व हरी सब्जियाँ क्यों खाते हैं? क्या वनस्पतियों को भी हमारी तरह खनिजों की आवश्यकता होती है?
- वनस्पतियों को कार्बन डाइऑक्साइड व ऑक्सीजन के अतिरिक्त अन्य अकार्बनिक पदार्थ कहाँ से मिलते हैं ?

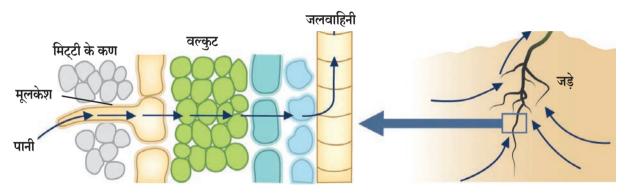
बहुसंख्य प्राणी हलचल करते हैं परंतु वनस्पतियाँ स्थिर रहती हैं। इनके शरीर में अनेक मृतकोशिकाएँ होती हैं। प्राणियों की तुलना में वनस्पतियों को ऊर्जा की कम आवश्यकता होती है। वनस्पतियों को नाइट्रोजन फॉस्फरस, मैग्नीशियम, मैगनीज, सोडियम जैसे अकार्बनी पदार्थों की आवश्यकता होती है। इन पदार्थों का सबसे नजदीकी व समृद्ध स्रोत जमीन है। वनस्पतियों की जड़ें जमीन से इन पदार्थों का अवशोषण कर इनका परिवहन करती है। ये कार्य विशेष प्रकार के ऊतकों द्वारा किया जाता है। जलवाहिनियाँ जल का तथा रसवाहिनियाँ अन्न का वहन करती हैं। वनस्पतियों के सभी भाग इस संवहनी ऊतक से जुड़े.

वनस्पतियों में पानी का वहन

होते हैं।

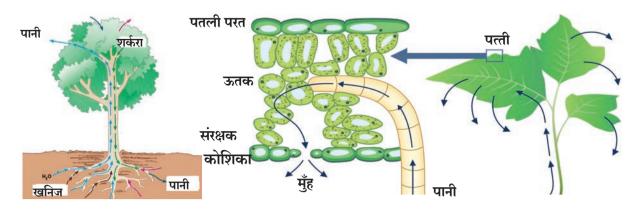
मूलीय दाब (Root Pressure)

गुलमेहंदी या रजनीगंधा जैसी छोटी वनस्पतियाँ उनकी जड़ों सिहत लें। इनकी जड़ों को स्वच्छ धोएँ तथा आकृति में दिखाए अनुसार सेफ्रानीन या इओसिन के रंजकद्रव मिलाए हुए पानी में रखें। 2 से 3 घंटो के पश्चात वनस्पतियों के तनों तथा उनकी पत्तियों की शिराओं का निरीक्षण कीजिए।



जलवाहिनी व रसवाहिनी ये वनस्पतियों के कौन-से प्रकार के ऊतक है?

वनस्पति के तनों का पतला अनुप्रस्थ काट लेकर रंगीन हुई जलवाहिनियों का संयुक्त सुक्ष्मदर्शी की सहायता से प्रेक्षण कीजिए।


15.2 जडों दुवारा होने वाला अवशोषण

जड़ों की कोशिकाएँ ये जमीन के पानी व खनिज के संपर्क में रहती हैं। सांद्रता में होने वाले अंतर के कारण पानी व खनिज जड़ों की पृष्ठभाग की कोशिकाओं में प्रवेश करते हैं। इसके कारण ये कोशिकाएँ उससे सटी हुई कोशिकाओं पर दाब निर्माण करती हैं। इसे मूलीय दाब कहते हैं। इस दाब के कारण पानी तथा खनिज जड़ों की जलवाहिनियों तक पहुँचती हैं तथा सांद्रता का अंतर मिटाने के लिए वे आगे ढकेले जाते हैं। इस सातत्यपूर्ण हलचल द्वारा पानी का एक स्तंभ तैयार होता है। यह दाब झाड़ियों, छोटी वनस्पतियों तथा छोटे वृक्षों में पानी ऊपर चढ़ाने के लिए पर्याप्त होता है।

वाष्पोत्सर्जन (Transpiration Pull)

थोड़ा याद करें

पिछली कक्षा में आपने वनस्पतियों की टहनी में प्लास्टिक की थैली बाँधकर उसका निरीक्षण करने की कृति की है। इसमें आपको क्या दिखाई दिया था?

15.3 पत्तियों द्वारा होने वाला वाष्पोत्सर्जन

वनस्पितयाँ पित्तयों पर उपस्थित पर्णरंध्रों की सहायता से वाष्प के रूप में पानी का उत्सर्जन करती है। पर्णरंध्र के चारों ओर बगल में दो बाह्य आवरणयुक्त कोशिकाएँ होती हैं, जिन्हें रक्षक कोशिका कहते हैं। ये कोशिकाएँ पर्णरंध्रों के खुलने व बंद होने पर नियंत्रण करती हैं। इन पर्णरंध्रों द्वारा वाष्पोत्सर्जन होता है। इस क्रिया को वाष्पोच्छवास कहते है। पित्तयों से वाष्पीकरण की क्रिया द्वारा पानी वातावरण में उत्सर्जित होता है। इस कारण पित्तयों की अपीत्वचा में पानी की मात्रा कम हो जाती है। पानी के इस अनुपात को सही रखने के लिए जलवाहिनियों द्वारा पानी पित्तयों तक पहुँचाया जाता है। वाष्पीच्छ्वास की क्रिया पानी व खिनज को अवशोषित करने तथा उसे सभी भागों में पहुँचाने में मदद करती है तथा मूलीय दाब के पिरणामस्वरूप रात के समय पानी ऊपर की ओर चढ़ाने का महत्त्वपूर्ण कार्य होता है।

विज्ञान के झरोखे से!

ओक नामक वनस्पति अपनी पत्तियों द्वारा एक वर्ष में लगभग 1,51,000 लीटर पानी वाष्पोत्सर्जित करती है। उसी प्रकार एक एकड़ क्षेत्र में उगाई हुई मक्के की फसल दिन में लगभग 11,400 से 15,100 लीटर पानी का उत्सर्जन करती है।

वनस्पतियों में अन्न और अन्य पदार्थों का परिवहन

पत्तियों में तैयार किया हुआ भोजन वनस्पितयों की प्रत्येक कोशिका तक पहुँचाया जाता है। अमिनो अम्ल को छोड़कर अतिरिक्त भोजन जड़ों, फलों व बीजों में संग्रहित होता है। इस क्रिया को पदार्थ का स्थानांतरण (Translocation) कहते हैं। यह क्रिया रसवाहिनियों द्वारा ऊपर तथा नीचे की दिशा में की जाती है। पदार्थों का स्थलांतर सामान्य भौतिक क्रिया नहीं है अपितु इसके लिए ऊर्जा की आवश्यकता पड़ती है तथा यह ऊर्जा ATP से प्राप्त होती है। जिस समय सुक्रोज जैसे अन्नद्रव्य का रसवाहिनियाँ ATP की सहायता से वहन करती है, उस समय उस भाग में पानी की संहती कम हो जाती है जिसके कारण परासरण क्रिया द्वारा पानी कोशिका के अंदर प्रवेश करता है। कोशिकाओं के घटकों में वृद्धि के कारण कोशिका की दीवारों पर दाब बढ़ता है। इस दाब के कारण अन्नद्रव्य सटी हुई कम दाबवाली कोशिका में भेज दिए जाते हैं। यह क्रिया रसवाहिनी को वनस्पित की आवश्यकतानुसार द्रव्यों का वहन करने में सहायता करती है। फूल उगने की जलवायु में जड़ों या तनों में संग्रहित की हुई शर्करा कली का फूल में रूपांतरण करने के लिए कलियों में भेजी जाती है।

उत्सर्जन (Excretion)

थोड़ा सोचिए

प्रत्येक घर में प्रतिदिन थोड़े कचरे तथा व्यर्थ पदार्थों का निर्माण होता है। अगर आपने यह कचरा अनेक दिनों तक अपने घर में रहने दिया तो क्या होगा?

सजीवों में अनेक अवांछित घातक पदार्थ जैसे यूरिया, यूरिक अम्ल, अमोनिया तैयार होते है। यह पदार्थ अगर शरीर में संचित रहें या शरीर में ज्यादा समय तक रहें तो गंभीर हानि पहुँचा सकते हैं अथवा कभी-कभी इससे मृत्यु भी हो सकती है। इसलिए इन घातक पदार्थों को शरीर से बाहर निकालना आवश्यक है। इस प्रक्रिया के लिए अलग-अलग सजीवों में अलग-अलग पद्धति होती है। अपशिष्ट घातक पदार्थों को शरीर में बाहर निकालने की प्रक्रिया को उत्सर्जन कहते हैं। एक कोशकीय सजीवों में अपशिष्ट पदार्थ कोशिका के पृष्ठभाग से सीधे बाहर विसर्जित होता है जबिक बहुकोशकीय सजीवों में उत्सर्जन की क्रिया जिटल होती है।

इसे सदैव ध्यान में रखिए

अनावश्यक व अपिशष्ट पदार्थों को संग्रहित करना घातक है । इसिलए जिस प्रकार सजीवों में उत्सर्जन की क्रिया होती है उसी तरह हमारे लिए भी अपने परिसर तथा घर के कचरे का योग्य निपटारा करना आवश्यक है । इसी से आरोग्य संपन्न जीवन की शुरुआत होगी ।

वनस्पतियों में होने वाला उत्सर्जन (Excretion in Plants)

ऐसा क्यों होता है ?

- 1. विशिष्ट ऋतु में वनस्पतियों के पत्ते झड जाते हैं ?
- 2. वनस्पतियों के फल, फूल कुछ समय के बाद झड़ जाते है।
- 3. गोंद जैसे पदार्थ भी वनस्पतियों के शरीर से उत्सर्जित कर दिए जाते हैं।

वनस्पतियों की उत्सर्जन क्रिया, प्राणियों के उत्सर्जन क्रिया की अपेक्षा सरल होती है। वनस्पतियों में बाहर निकाले जाने वाले (अपिशष्ट) पदार्थों के लिए विशेष उत्सर्जक अवयव या उत्सर्जक संस्था नहीं होते । विसरण क्रिया द्वार गैसीय पदार्थ बाहर निकाले जाते हैं । वनस्पतियों में बहुत से बाहर फेंके जाने वाले पदार्थ उनकी पत्तियों की रिक्तिका, फूल, फल व तने की छालों में संग्रहित होते हैं। कुछ समय बाद ये अवयव झड़ जाते हैं । अन्य व्यर्थ पदार्थ राल व गोंद के रूप में जीर्ण जलवाहिनियों में संग्रहित किए जाते हैं । वनस्पतियाँ अपनी जड़ों द्वारा भी आसपास की जमीन में व्यर्थ पदार्थ उत्सर्जित करती हैं ।

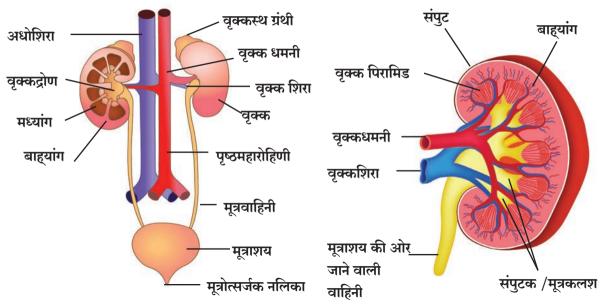
15.4 पत्ते झड़ना

प्रेक्षण कीजिए और खोजिए

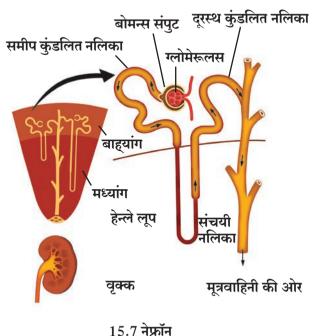
माँ जब सूरन या अरूई के पत्तों को काटती है उस समय निरीक्षण करें। अगर आपने भी सूरन या अरूई के पत्तों को काटने का प्रयत्न किया तो आपके हाथों में खुजली होती है। ऐसा क्यों होता है? इसकी खोज कीजिए। ऐसा ना हो इसके लिए माँ क्या करती है, ये माँ से पूछिए।

कुछ वनस्पतियों में अपशिष्ट द्रव्य कैल्शियम ऑक्सिलेट के स्फटिक के रूप में होती है। उन्हें रफाइड्स कहा जाता है। ये सुई के आकार की होने के कारण त्वचा पर चुभती हैं और हमें खुजली होती है। वनस्पतियों के कुछ अपशिष्ट पदार्थ मानव के लिए काफी उपयोगी हैं, उदाहरण के लिए रबड़, गोंद या राल इत्यादि।

15.5 गोंद, रबड़ का चिक

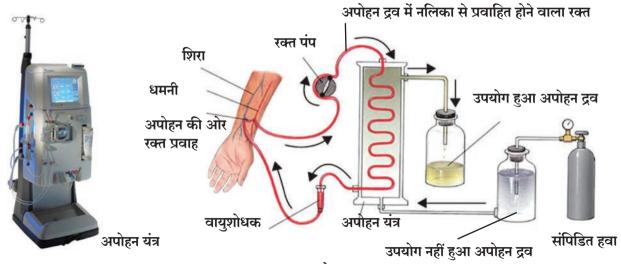

मानव में होने वाला उत्सर्जन (Excretion in human beings)

- 1. हमारे शरीर में उपापचय क्रिया दवारा कौन-कौन से अपशिष्ट पदार्थ तैयार होते हैं?
- 2. मानवी शरीर में उत्सर्जन क्रिया किस प्रकार होती है?


मानव शरीर में विविध क्रियाओं को संपन्न करने के लिए अलग-अलग इंद्रियसंस्थान कार्यरत होते हैं। जैसे भोजन के पाचन के लिए पाचनसंस्था, श्वासोच्छ्वास के लिए श्वसन संस्था इत्यादि। हमारे शरीर में भोजन का पाचन व उससे ऊर्जा की निर्मिति होती है। उस समय शरीर में विविध अपशिष्ट पदार्थों का निर्माण होता है। इन अपशिष्ट पदार्थों को शरीर से बाहर निकालना आवश्यक होता है। इसलिए इस कार्य के लिए उत्सर्जन संस्थान (Excretory system) कार्य करता है।

मानवीय उत्सर्जन संस्थान में वृक्क की जोड़ी (Pair of kidneys), मूत्रवाहिनी की जोड़ी (Pair of Ureters) मूत्राशय (Urinary bladder) व मूत्रोत्सर्जक निलका (Urethra) का समावेश होता है। वृक्क द्वारा रक्त के अपशिष्ट पदार्थ व अतिरिक्त तथा अनावश्यक पदार्थों को पृथक कर मूत्र तैयार किया जाता है।

15.6 उत्सर्जन संस्था और वृक्क


उदर के पीछे की ओर में मेरूदण्ड के दोनों ओर सेम के बीज के आकार के दो वृक्क होते हैं। वृक्क में छानने की मूलभूत क्रिया करने वाले घटक को नेफ्रॉन कहते हैं। प्रत्येक नेफ्रॉन में कप के आकार की पतली भित्तिका वाला ऊपर का भाग होता है जिसे बोमन्स संपुट कहते हैं। उसमें उपस्थित रक्तकोशिकाओं की जाली को ग्लोमेरूलस कहते हैं। यकृत में तैयार किया हुआ यूरिया रक्त में आता है। जब यूरियायुक्त रक्त ग्लोमेरूलस में आता है उस समय ग्लोमेरूलस में उपस्थित रक्तकोशिकाओं द्वारा इस रक्त का छनन होता है व यूरिया व तत्सम पदार्थ अलग किए जाते हैं।

बोमन संपुट के चयनशील पटल से पानी के अणु और अन्य पदार्थ के महीन अणु छिद्र से बाहर निकल सकते हैं। बोमन संपुट का द्रव बाद में नेफ्रॉन निलका में जाता है। पानी तथा उपयुक्त अणुओं का रक्त में पुनः अवशोषण किया जाता है। बचे हुए अपशिष्ट पदार्थ वाले द्रव्य से मूत्र तैयार किया जाता है। यह मूत्र मूत्रवाहिनियों द्वारा मूत्राशय में संग्रहित किया जाता है। तत्पश्चात वह मूत्रोत्सर्जन मार्ग द्वारा बाहर निकाल दिया है। मूत्राशय पेशीमय होते हुए भी उस पर तंत्रिकाओं का नियंत्रण होता है। इसलिए हम हमेशा मूत्र विसर्जन पर नियंत्रण कर सकते हैं। मानव में वृक्क ये उत्सर्जन का प्रमुख अवयव है, परंतु त्वचा व फेफड़े भी उत्सर्जन क्रिया में मदद करते हैं।

दायाँ वृक्क बाएँ वृक्क की अपेक्षा थोड़ा नीचे होता है। प्रत्येक वृक्क में साधारणत: दस लाख नेफ्रॉन्स होते हैं। साधारण व्यक्ति के शरीर में लगभग 5 लीटर रक्त होता है जो प्रतिदिन वृक्क में 400 बार छाना जाता है। वृक्क प्रतिदिन लगभग 190 लीटर रक्त छानता है जिसमें 1 से 1.9 लीटर मूत्र तैयार होता है। बचा हुआ द्रवपदार्थ पुन: अवशोषित कर लिया जाता है।

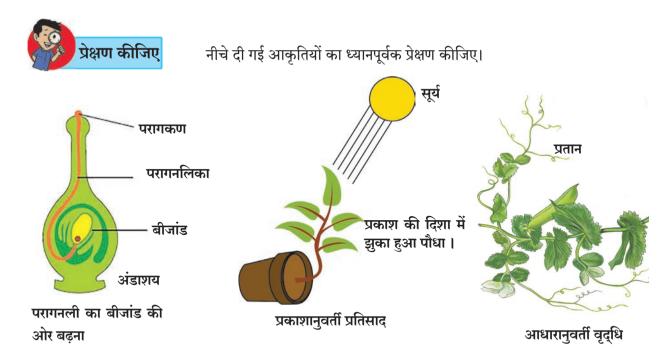
रक्त अपोहन (Dialysis)

15.8 रक्त अपोहन

संसर्ग या कम अनुपात में रक्त की पूर्ति होने पर वृक्क की कार्यक्षमता कम हो जाती है जिसके कारण विषैले पदार्थों का शरीर में अधिक संचय होता है जिससे मृत्यु भी हो सकती है। वृक्क के निष्क्रिय होने पर कृत्रिम उपकरण का उपयोग कर रक्त से नाइट्रोजन युक्त पदार्थ अलग किया जाता है। रक्त से नाइट्रोजन युक्त पदार्थ बाहर निकालने के लिए कृत्रिम यंत्र का उपयोग किया जाना है। इस क्रिया को अपोहन कहते हैं। एक बार में इस उपकरण में 500 मिली रक्त भेजा जा सकता है। शुद्ध किया हुआ रक्त पुन: रोगी के शरीर में भेज दिया जाता है।

- 1. गर्मियों में वर्षा व ठंड की अपेक्षा मूत्र तैयार होने का अनुपात कम होता है। ऐसा क्यों?
- 2. प्रौढ़ व्यक्तियों में मूत्रविसर्जन की क्रिया नियंत्रण में होती है, परंतु कुछ छोटे बच्चों में यह क्रिया नियंत्रण में नहीं रहती । ऐसा क्यों?

समन्वय (Co-ordination)


- 1. कभी-कभी भोजन करते समय अचानक हाथ की उंगलियाँ या जीभ दाँतों के नीचे आने से हमें वेदना होती है।
- 2. भोजन जल्दबाजी में खाते समय कभी-कभी ठस्का लग जाता है।

किसी भी बहुकोशिकीय सजीव में विविध अवयव संस्थान कार्यरत होते हैं। इन विविध संस्थानों या अंगों और उनके आसपास के परिसर के विविध उद्दीपनों में योग्य समन्वय होगा तभी वह सजीव अपने जीवन को सुचारू रूप से चला सकता है। इससे हम यह कह सकते हैं कि विविध क्रियाओं का क्रमबद्ध नियमन अर्थात नियंत्रण तथा विविध क्रियाओं को क्रमानुसार करना अर्थात समन्वय।

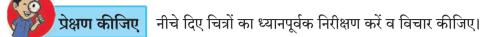
किसी भी प्रक्रिया को यशस्वी रूप से पूर्ण करने के लिए उस प्रक्रिया में विविध स्तर पर सहभागी होने वाले विविध संस्थान व अंगों में सुयोग्य समन्वय होना आवश्यक है। समन्वय का अभाव या अन्य किसी भी घटना के कारण किसी भी स्तर पर गड़बड़ी होने से अपेक्षित प्रक्रिया अपूर्ण रह सकती है। प्रक्रिया के प्रत्येक िकसी भी स्तर पर किसी भी प्रकार की यादृच्छिकता (Randomness) नहीं होनी चाहिए। किसी भी सजीव के शरीर का तापमान, जल का अनुपात, प्रकिण्व का अनुपात इत्यादि कारण व बाह्य पर्यावरण में उद्दीपन के कारण होने वाली आंतरिक प्रक्रिया में सुयोग्य समन्वय होना अत्यावश्यक है। इष्टतम कार्यशीलता के लिए सजीवों के विविध संस्थानों में सुयोग्य समन्वय से स्थिर अवस्था रखी जाती है, इसे समस्थित (Homeostasis) कहते हैं।

वनस्पतियों में समन्वय (Co-ordination in Plants)

प्राणियों में पाए जाने वाले तंत्रिका तंत्र या पेशीय तंत्र जैसे तंत्र वनस्पतियों में नहीं होते। ऐसे में वनस्पतियाँ किस प्रकार गतिविधि दर्शाती हैं। वनस्पतियों में गतिविधि प्रमुख रूप से उद्दीपन को दिए जाने वाले प्रतिसाद के फलस्वरूप होती है।

15.9 वनस्पतियों में समन्वय

बाह्य उतेजना से प्रेरित पौधे के किसी हिस्से की गतिविधि अथवा वृद्धि को अनुवर्तन (Tropism) या अनुवर्ती गतिविधि (Tropic movement) कहते हैं।


किसी भी वनस्पति का प्ररोह तंत्र (Shoot System) प्रकाश उद्दीपन को प्रतिसाद देता है अर्थात वृद्धि सूर्यप्रकाश की दिशा में होती है। पौधे द्वारा प्रदर्शित इस गति को प्रकाशानुवर्ती गति (Phototropic movement) कहते हैं।

वनस्पतियों के जड़ संस्थान (Root System) गुरुत्वाकर्षण और पानी इन उद्दीपनों को प्रतिसाद देते हैं। इस प्रतिसाद को क्रमशः गुरुत्वानुवर्तीय गतिविधि (Gravitropic Movement) और जलानुवर्तीय गतिविधि (Hydrotropic movement) कहते हैं।

विशिष्ट रसायनों द्वारा पौधे के किसी भाग में होने वाले प्रतिसाद को रसायन-अनुवर्तन (Chemotropism) कहते हैं। उदा. परागनली का बीजाण्ड की ओर बढ़ना। ऊपर दिखाई गई प्रत्येक गतिविधि, वनस्पतियों की वृद्धि से संबंधित है इसलिए इस गति को वनस्पतियों में होने वाली वृद्धि-संलग्न गति कहते हैं।

विज्ञान के झरोखे से

- लता का प्रतान स्पर्श संवेदी होता है।
- प्ररोह के अग्रभाग में तैयार होने वाला ऑक्जिन (Auxin) नामक संप्रेरक कोशिका विवर्धन (Cell Enlargement) में सहायक होता है।
- तनों की वृद्धि के लिए जिब्बेरिलन्स एवं कोशिका विभाजन में सायटोकायनिन्स सहायक होते हैं। तनों की वृद्धि के लिए जिब्बरेलिन्स, कोशिका विभाजन के लिए साय टोकायनिन्स ये संप्रेरक मदद करते हैं।
- एबसेसिक अम्ल यह संप्रेरक वनस्पतियों की वृद्धि रोकने, वृद्धि की क्रिया मंद होने या पित्तयों के मुरझाने जैसी स्थितियों पर असरदार सिद्ध होता है।
- एबसेसिक अम्ल यह वनस्पित संप्रेरक जो वृद्धि को कम या रोक देता है। इसी प्रभाव के कारण पित्तयाँ सिकुड़ या मुरझा जाती हैं।

छूई-मूई

व्हीनस फ्लायट्रॅप

कमल

गुलमेहंदी

15.10 विविध वनस्पति

बारीकी से निरीक्षण करने पर पता चलता है कि छूई-मूई जैसी वनस्पतियाँ को जिस जगह स्पर्श करते है; उसके अतिरिक्त दूसरी जगहों पर भी गित होती है। इससे हम ये अनुमान लगा सकते हैं कि वनस्पतियों में जानकारी एक स्थान से दूसरे स्थान तक प्रसारित की जा सकती है। यह जानकारी एक स्थान से दूसरे तक पहुँचाने के लिए वनस्पतियाँ रासायनिक आदेश का उपयोग करती हैं। वनस्पति कोशिका गितविधि के दौरान अपने आकार को पानी की मात्रा में परिवर्तन करके बदलती है।

विशिष्ट गतिविधियों द्वारा वनस्पतियों की वृद्धि नहीं होती । ऐसी गतिविधि को वृद्धि – असंलग्न गति कहते हैं । आसपास के परिसर के परिवर्तन स्वरूप वनस्पतियों के संप्रेरक वनस्पतियों में विविध प्रकार की गतिविधि का निर्माण करते हैं ।

क्या आप जानते हैं?

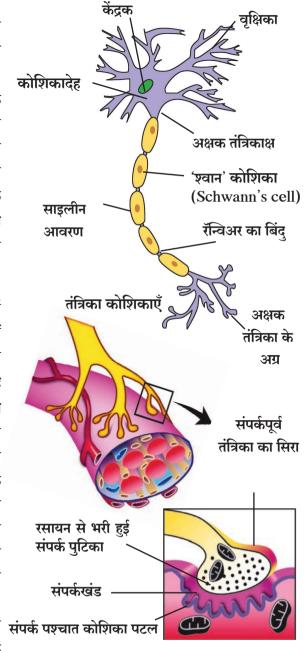
व्हीनस फ्लायट्रेप इस वनस्पति में कीटकों को फँसाने के लिए फूल जैसा दिखने वाला फूलवेधी सुगंधवाला एक पिंजरा होता है। जब कीटक उस पर बैठते हैं तब वह पिंजरा बंद हो जाता है व वनस्पति दवारा उस कीटक का पचन कर लिया जाता है।

कमल का फूल सुबह तो निशिगंधा का फूल रात में खिलता है।

कीटक का स्पर्श होते ही ड्रासेरा इस कीटकभक्षी वनस्पति के पत्तों के तंतु अंदर की तरफ मुड़ जाते हैं वह कीटक को चारों ओर से घेर लेते है।

गुलमेंहदी (Balsam)इस वनस्पति में योग्य समय आने पर फल आते हैं व उनका बीज सर्वत्र फैल जाता है।

मनुष्य में समन्वय (Co-ordination in human being)


आपके स्कूल के मैदान में खेले जाने वाला मैच देखते समय खिलाड़ियों की गतिविधियों में नियंत्रण व समन्वय परिलक्षित होगा । ऐसी अलग-अलग कृतियों की सूची बनाएँ ।

मानव शरीर में एक ही समय पर अनेक गतिविधियाँ होती रहती हैं। इन गतिविधियों का श्रेष्ठतम और प्रभावी नियंत्रण होना आवश्यक होता है। यह दो व्यवस्थाओं दवारा किया जाता है।

अ. तांत्रिकी नियंत्रण (Nervous Control): पर्यावरण में होने वाले परिवर्तनों पर प्रतिक्रिया करने की क्षमता मानव को तंत्रिका नियंत्रण दवारा प्राप्त होती है । परिवेश में आने वाले बदलावों के कारण मानव शरीर में आवेग निर्मित होते हैं । कोशिकाओं में इन आवेगों पर प्रतिक्रिया व्यक्त करने की क्षमता निर्माण करने का महत्त्वपूर्ण कार्य तंत्रिका नियंत्रण दवारा किया जाता है। आवेगों पर प्रतिक्रिया देने पर कार्य सजीवों की शरीररचना की जटिलता पर निर्भर करता है। अमीबा जैसे एककोशिकीय सजीव में इस प्रकार के आवेग तथा प्रतिक्रिया निर्मित करने वाला तंत्रिका संस्थान नहीं होता. परंतु मानव जैसे बहकोशिकीय प्राणियों में इस प्रकार के आवेगों पर प्रतिक्रिया करने हेत् तंत्रिका संस्थान जैसी व्यवस्था कार्यरत होती है। यह नियंत्रण शरीर में स्थित विशिष्ट प्रकार की कोशिकाओं दवारा किया जाता है। इन कोशिकाओं को हम तंत्रिका कोशिकाएँ कहते हैं।

तंत्रिका कोशिका (Neuron): शरीर में एक जगह से दूसरी जगह तक संदेश वहन का कार्य करने वाली विशेष प्रकार की कोशिकाओं को तंत्रिका कोशिका (Neurons) कहते हैं। मानवीय तंत्रिका कोशिकाएँ तंत्रिका संस्थान की संरचनात्मक और कार्यात्मक इकाइयाँ हैं। मानवीय तंत्रिका कोशिकाओं की लंबाई कुछ मीटर तक होती है। तंत्रिका कोशिकाओं में विद्युत रासायनिक आवेग निर्माण करने तथा उनका संवहन करने की क्षमता होती है। तंत्रिका कोशिकाओं को आधार देना तथा उनके कार्य में मदद करने वाली कोशिकाओं को तंत्रिका श्लैष्म (Neuroglia) कहते हैं । तंत्रिका कोशिकाएँ और तंत्रिका श्लैष्म की सहायता से तंत्रिकाएँ (Nerves) बनती हैं।

अपने परिवेश की संपूर्ण जानकारी तंत्रिका कोशिकाओं के विशिष्टता पूर्ण अंगों दवारा ग्रहण की जाती है। वहीं रासायनिक प्रक्रिया शुरू होकर विद्युत आवेगों की निर्मिति होती है। उनका वहन वृक्षिकाओं (Dendrite) से कोशिका देह (Cell body) की ओर, कोशिका देह से अक्षक तंत्रिकाक्ष (Axon) की ओर अक्षक तंत्रिकाक्ष से उसके अग्रतक होता है। ये आवेग एवं तंत्रिका कोशिका से दूसरी तंत्रिका कोशिका तक भेजे जाते हैं। इस हेत् पहले अक्षक तंत्रिकाक्ष के अग्रतक पहँचा हुआ विदयत आवेग तंत्रिका कोशिका को कुछ रसायन स्रवित करने के लिए उद्युक्त करता है। ये रसायन दो तंत्रिका कोशिकाओं के बीच होने वाली अतिसूक्ष्म दरार अर्थात संपर्कस्थान (Synapse) से गुजरते हैं और वैसा ही आवेग अगदल तंत्रिका कोशिका की वृक्षिकाओं में निर्माण करते हैं। इस प्रकार आवेगों का शरीर में संवहन होता हैं और ये आवेग संपर्क पश्चात कोशिका पटल तंत्रिका कोशिकाओं से अंतिमत: मांसपेशियों या ग्रंथियों तक पहुँचाए जाते हैं।

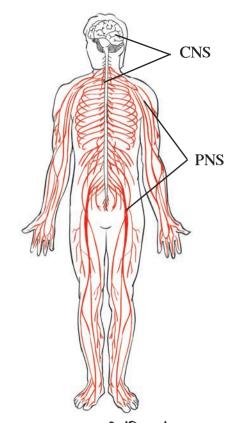
15.11 तंत्रिका कोशिक और तंत्रिका-स्नाय संस्थान

जब कोई कृति करनी हो या गतिविधि करानी हो तब सबसे अंतिम कार्य मांसपेशियों का होता है। कोई भी कार्य घटित होने के लिए मांसपेशियों की गतिविधि होना आवश्यक होता है। जब मांसपेशियाँ सिकुड़ने हेतु अपना आकार बदलती हैं। तब कोशिकास्तर पर गतिविधि होती है। मांसपेशियों में होने वाले विशिष्ट प्रकार के प्रथिनों के कारण उन्हें अपना आकार बदलने की क्षमता प्राप्त होती है। उसी प्रकार इन्हीं प्रथिनों के कारण तंत्रिकाओं से आने वाले विद्युत आवेगों को प्रतिक्रिया देने की क्षमता कोशिकाओं में निर्माण होती है।

इससे हम यह कह सकते हैं कि विद्युत आवेश के स्वरूप की किसी जानकारी का शरीर के एक भाग से दूसरे भाग तक संवहन करने की क्षमता रखने वाले तंत्रिकाओं के सुसंगठित जाल से तंत्रिका संस्थान बनता है।

- 1. सजीवों की ज्ञानेंद्रियाँ कौन-सी हैं ? उनके कार्य क्या है?
- 2. रूचिग्राही और गंधग्राही तंत्रिकाएँ कहाँ पाई जाती है?
- 3. ऊपर निर्दिष्ट सभी की कार्य संबंधी जानकारी प्राप्त कीजिए और उसे कक्षा में प्रस्तृत कीजिए।

तंत्रिका कोशिकाओं के प्रकार (Types of Nerve cells/Neurons)

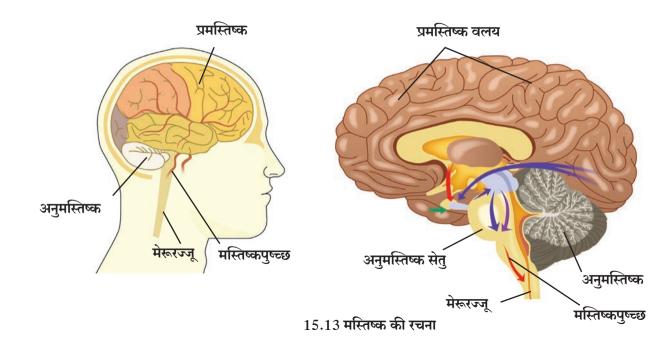

तंत्रिका कोशिकाओं के कार्य के आधार पर उनका वर्गीकरण तीन प्रकारों में किया जाता है।

- 1. संवेदी तंत्रिका कोशिकाएँ (Sensory Neurons) : संवेदी तंत्रिका कोशिकाएँ आवेगों का संवहन ज्ञानेंद्रियों से मस्तिष्क और मेरूरज्जू तक करती हैं।
- 2. प्रेरक तंत्रिका कोशिकाएँ (Motor Neurons) : प्रेरक तंत्रिका कोशिकाएँ आवेगों का संवहन मस्तिष्क और मेरूरज्जू से मांसपेशी या ग्रंथियों जैसे प्रभावी अंगों की ओर करती हैं।
- 3. **सहयोगी तंत्रिका कोशिकाएँ** (Association Neurons) : सहबंध तंत्रिका कोशिकाएँ तंत्रिका तंत्र के एकीकृत संकलन का कार्य करती हैं।

मानवीय तंत्रिका तंत्र (The Human Nervous System)

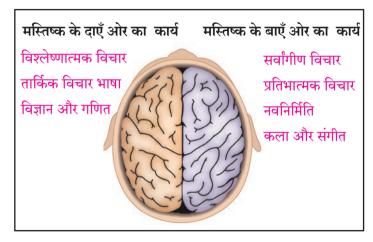
मानवीय तंत्रिका तंत्र निम्नानुसार तीन भागों में विभाजित किया गया है।

- 1. मध्यवर्ती तंत्रिका तंत्र (Central Nervous System)
- 2. परिधीय तंत्रिका तंत्र (Peripheral Nervous System)
- 3. स्वंयनिर्देशक तंत्रिका तंत्र (Autonomic Nervous System)



15.12 मानवी तंत्रिका तंत्र

केंद्रीय तंत्रिका तंत्र (Central Nervous System or CNS)


केंद्रीय तंत्रिका तंत्र मस्तिष्क और मेरूरज्जू से बनता है।

मस्तिष्क की रचना अत्यंत मृदु परंतु उतनी ही विकसित होती है। मस्तिष्क तंत्रिका संस्थान का प्रमुख नियंत्रण करने वाला अंग है तथा यह कोटर (खोपड़ी) में संरक्षित होता है। मेरूरज्जू (Spinal cord) को कशेरूदण्ड (रीढ़ की हड्डी (Vertebral column) से संरक्षण मिलता है। केंद्रीय तंत्रिका तंत्र के अस्थि और मृदु ऊतकों के बीच की खोखली जगह में संरक्षक मस्तिष्काच्छद होते हैं। मस्तिष्क के विभिन्न भागों की गुहाओं को मस्तिष्क विवर कहते हैं जबिक मेरूरज्जू की लंबी गुहा को केंद्रीय वाहिनी (Central Canal) कहते हैं। मस्तिष्क विवर (Meninges), केंद्रीय वाहिनी तथा मस्तिष्काच्छद अंतर्गत अंतरिक्ष में प्रमस्तिष्क मेरूद्रव (Cerebro-Spinal Fluid) होता है। यह द्रव केंद्रीय तंत्रिका तंत्र संस्थान को पोषक द्रव्यों की आपूर्ति करता है तथा आघातों को अवशोषित कर उसे संरक्षित करता है।

एक वयस्क मानव मस्तिष्क का भार लगभग 1300 से 1400 ग्राम तक होता है और यह लगभग 100 खरब तंत्रिकाओं से मिलकर बना होता है।

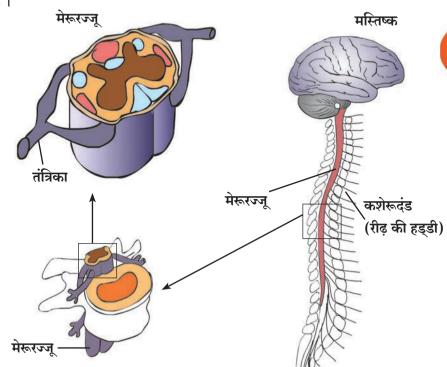
अपने मस्तिष्क का बायाँ भाग शरीर के दाएँ जबिक मस्तिष्क का दाहिना भाग शरीर के बाएँ भाग को नियंत्रित करता है। इसके अतिरिक्त मस्तिष्क का बायाँ भाग हमारे वार्तालाप, लेखन-कार्य तथा तर्कसंगत विचार नियंत्रित करता है और दाँया भाग हमारी कला-क्षमताएँ नियंत्रित करता है।

15.14 मस्तिष्क का दायाँ और बायाँ भाग

प्रमस्तिष्क (Cerebrum)

यह मस्तिष्क का सबसे बड़ा भाग है। यह दो प्रमस्तिष्किय अर्धगोलों से बना होता है। दृढ तंतु और नाड़ी (Nerve track) क्षेत्र इन दो अर्ध गोलों को जोड़ते हैं। मस्तिष्क का दो तिहाई $\frac{2}{3}$ प्रमस्तिष्क से व्याप्त होता है। इसी कारण प्रमस्तिष्क को बड़ा मस्तिष्क कहा जाता है। प्रमस्तिष्क की बाह्य सतह अत्यधिक मुड़े हुए अनियमित घेरों से युक्त और रोएँदार होती है जिन्हें संवलन अथवा लपेट कहते हैं। इनके कारण प्रमस्तिष्क के पृष्ठभाग का क्षेत्रफल बढ़ता है तथा तंत्रिका कोशिकाओं को पर्याप्त जगह प्राप्त होती है।

अनुमस्तिष्क (Cerebellum)


यह मस्तिष्क का छोटा भाग होता है तथा यह मस्तिष्क कोटर (खोपड़ी) के पीछे की ओर तथा प्रमस्तिष्क के नीचे के ओर होता है। इसका पृष्ठभाग घेरों के बदले शीर्ष ओर गर्त के रूप में होता है।

मस्तिष्कपुच्छ (Medulla- oblongata)

यह मस्तिष्क का पश्चतम भाग है। इसके उर्ध्वतल में दो त्रिभुजाकार सम्मुखीय रचनाएँ होती हैं। उन्हें पिरामिड कहते हैं। इसके पश्चभाग का आगे मेरूरज्जू में रूपांतरण होता है। लंब नाड़ी को क्षति पहुँचने से व्यक्ति की मृत्यु होने की संभावना होती है। ऐसा क्यों?

मेरूरज्जू (Spinal Cord)

यह केंद्रीय तंत्रिका तंत्र संस्थान का भाग है तथा यह कशेरूदण्ड में स्थिर होता है। इसका अग्र और पश्च हिस्सा कुछ चपटे आकार का होता है तथा पिछला हिस्सा तंतुमय धागे जैसा होता है। इसे तंतुमय पुच्छ (Filum terminale) कहते हैं।

जानकारी प्राप्त करें

मद्यपान किए हुए व्यक्ति को अपना संतुलन खोते हुए/लडखडाते हुए चलते आपने देखा होगा। शरीर में अधिक मात्रा में अल्कोहल जाने पर शरीर पर से नियंत्रण खो जाता है। ऐसा क्यों होता होगा? इसकी इंटरनेट के आधार से जानकारी प्राप्त कीजिए।

15.15 मस्तिष्क और मेरूरज्जू

मस्तिष्क के विविध भाग और उनके कार्य

मिलिष्क के भाग	कार्य
प्रमस्तिष्क (Cerebrum)	ऐच्छिक गतिविधियों का नियंत्रण, मन की एकाग्रता, आयोजना, निर्णयक्षमता, स्मरणशक्ति, बुद्धिमत्ता तथा बुद्धिविषयक क्रियाएँ।
अनुमस्तिष्क (Cerebellum)	 ऐच्छिक गतिविधियों में समन्वय स्थापित करना । शरीर का संतुलन बनाए रखना ।
मस्तिष्कपुच्छ (Medulla-oblongata)	लंब नाड़ी : हृदय की गति, रक्तप्रवाह, श्वासोच्छ्वास, छींकना, खाँसना, लार निर्मिति आदि अनैच्छिक क्रियाओं का नियंत्रण ।
मेरूरज्जू (Spinal cord)	 त्वचा, कान जैसे संवेदी अंगों से मस्तिष्क की ओर आवेगों का संवहन करना । मस्तिष्क से मांसपेशियों और ग्रंथियों की ओर आवेगों का संवहन करना । प्रतिवर्ति क्रियाओं के समन्वयक केंद्र के रूप में कार्य करना ।

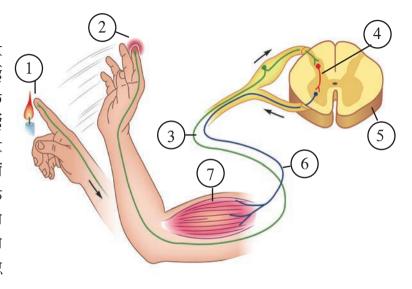
परिधीय तंत्रिका तंत्र (Peripheral Nervous System)

परिधीय तंत्रिका तंत्र में केंद्रीय तंत्रिका तंत्र से उभरनेवाली तंत्रिकाओं का समावेश होता है। ये तंत्रिकाएँ केंद्रीय तंत्रिका तंत्र को शरीर के सभी भागों के संपर्क में लाती हैं। इसमें दो प्रकार की तंत्रिकाएँ होती है।

अ. मस्तिष्किय तंत्रिकाएँ (Cranial Nerves)

मस्तिष्क से उभरनेवाली तंत्रिकाओं को मस्तिष्कय तंत्रिकाएँ कहते हैं। सिर, छाती तथा पेट के विभिन्न भगों से ये संलग्न होती हैं। मस्तिष्क तंत्रिकाओं की 12 जोडियाँ होती हैं।

ब. मेरू तंत्रिका (Spinal Nerves)


मेरूरज्जू से उभरनेवाली तंत्रिकाओं को मेरूतंत्रिका कहते हैं। ये हाथ-पैर, त्वचा तथा शरीर के अन्य भागों से संलग्न होती हैं। मेरूतंत्रिका की 31 जोडियाँ होती हैं।

3. स्वयंशासित तंत्रिका तंत्र (Autonomic Nervous System)

हृदय, फेफड़े, उदर जैसे अनैच्छिक अंगों को तंत्रिकाओं द्वारा स्वयंशासित तंत्रिका तंत्र बनता है। अपनी इच्छानुसार हम इसे नियंत्रित नहीं कर सकते।

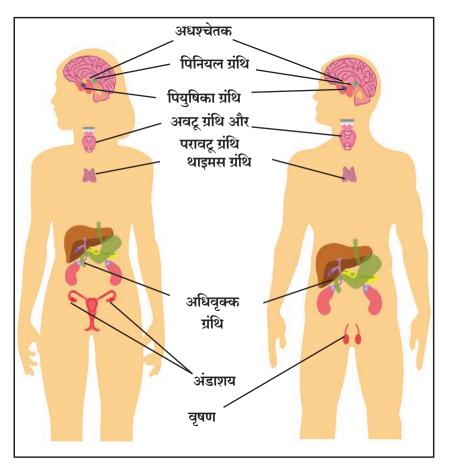
प्रतिवर्ती क्रिया (Reflex action)

अपने आसपास की किसी घटना पर अनैच्छिक रूप से क्षणमात्र में दी हुई प्रतिक्रिया को प्रतिवर्ती क्रिया कहते हैं। कुछ घटनाओं पर हम बिना सोचे प्रतिक्रिया देते हैं या ऐसा कह सकते हैं। उस प्रतिक्रिया पर हमारा किसी प्रकार का कोई नियंत्रण नहीं रहता। यह कृतियाँ याने पर्यावरण के उद्दीपनों पर दी हुई प्रतिक्रिया है। ऐसी परिस्थितियों में मस्तिष्क के बिना भी नियंत्रण और समन्वय उचित रूप से बनाए रखा जाता है।

15.16 प्रतिवर्ती क्रिया

ऊपर दी हुई आकृति का बारीकी से निरीक्षण कीजिए और उसमें दिए गए क्रमांकों के अनुसार दिए हुए प्रश्नों के उत्तर खोजें।

- अ. 1 और 2 में निश्चित तौर पर क्या हो रहा है?
- आ. चित्र में दर्शाए 3 में कौन-सी तंत्रिका द्वारा उद्दीपन का संवहन हुआ ? यह संवहन किस दिशा में हुआ ?
- इ. 4 यह कौन-सी तंत्रिका है ?
- ई. 5 यह कौन-सा अंग है ?
- प्रतिक्रिया 6 का संवहन कौन-सी तंत्रिका कर रही है ?
- ऊ. प्रतिक्रिया 7 निश्चित तौर पर कहाँ तक पहुँची है ? इससे क्या हुआ ?



- 1. ऊपर दी हुई आकृति बनाइए और योग्य नाम दीजिए।
- 2. ऐसी ही किसी प्रतिवर्ती क्रिया का चित्र बनाने का प्रयास कीजिए।

आ. रासायनिक नियंत्रण (Chemical Control)

हमारे शरीर में संप्रेरक नामक रासायनिक पदार्थ द्वारा भी समन्वयन और नियंत्रण किया जाता है। संप्रेरकों का स्नाव अंत:स्नावी ग्रंथियों से होता है। इन्हें निलकाविहीन ग्रंथियों के नाम से भी जाना जाता है। इन ग्रंथियों के पास उनके स्नाव का संग्रह करने या उसका वहन करने के लिए किसी भी प्रकार की निलकाएँ नहीं होती। इसी कारण संप्रेरक बनने के तुरंत बाद रक्त में मिश्रित हो जाती है। अंत:स्नावी ग्रंथियाँ (Endocrine glands) शरीर में निर्धारित स्थान पर होती हैं फिर भी उनके संप्रेरक शरीर के सभी भागों में रक्तद्वारा पहुँचाए जाते हैं।

अंत:स्रावी ग्रंथि तंत्रिका तंत्र के साथ नियंत्रण और समन्वय का उत्तरदायित्व पूर्ण करती है। शरीर की विभिन्न क्रियाओं का नियंत्रण और एकात्मीकरण करने का कार्य ये दोनों संस्थान एक-दूसरे के सहयोग से करते हैं। इन दोनों तंत्रों में महत्त्वपूर्ण अंतर है कि तंत्रिका आवेग बहुत ही शीघ्र गतिवाला और अल्पकालीन होता है जबकि संप्रेरकीय क्रियाएँ बहुत ही मंद गित से होने वाली: फिर भी दीर्घकालीन होती हैं।

आवश्यकता के अनुपात में संप्रेरकों का स्नाव होना बहुत महत्त्वपूर्ण है। इसलिए एक विशेष व्यवस्था कार्यरत होती है। स्नावित संप्रेरक की आवश्यक मात्रा और स्नावण होने के समय इनका नियमन पुनर्विवेश यांत्रिकी द्वारा किया जाता है।

उदा: जब रक्त में चीनी की मात्रा बढ़ जाती है तब स्वादुपिंड की कोशिकाओं को इसकी अनुभूति होती है और इस उद्दीपन के प्रतिसाद के परिणाम स्वरूप ये कोशिकाएँ अधिक मात्रा में इन्सुलिन का स्नाव करती हैं।

15.17 (अंतः स्रावी नलिकाविहीन ग्रंथि)

सूचना और संचार प्रौद्योगिकी के साथ

नीचे दिए गए संकेत स्थलों से मानवीय उत्सर्जन संस्थान, मानवीय मस्तिष्क की रचना इन विषयों पर शिक्षकों के मार्गदर्शन पर Power point presentation बनाकर कक्षा में प्रस्तुत कीजिए।

www.nationalgeographic.com/science/health-and-humanbody/humanbody

www.webmed.com/brain

www.livescience.com/human brain

अंत:स्रावी ग्रंथि – स्थान और कुछ महत्त्वपूर्ण कार्य

ग्रंथि	топт		कार्य
	स्थान		
अधश्चेतक (Hypothalmus)	मस्तिष्क के प्रमस्तिष्क के नीचे पियुषिका ग्रंथि के ऊपर	पियुषिका की स्त्राव निर्माण करने वाली कोशिकाओं को नियंत्रित करने वाले स्त्राव तैयार करना ।	– पियुषिका ग्रंथि का नियंत्रण
पियुषिका (Pituitary)	मस्तिष्क के नीचे	वृद्धि संप्रेरक अधिवृक्क ग्रंथि संप्रेरक अवटु ग्रंथी संप्रेरक प्रोलैक्टिन ऑक्सीटोसिन ल्युटिनायजिंग हार्मोन प्रतिमूत्रल संप्रेरक पुटीका ग्रंथि संप्रेरक	 हिड्डयों की वृद्धि को बढ़ावा अधिवृक्क ग्रंथि के रिसाव को बढ़ावा अवटु ग्रंथि के स्त्राव स्रवित होने को बढ़ावा माता को दुग्धोत्पादन करने के लिए प्रवृत्त करना बच्चे का जन्म होते ही गर्भाशय का संकुचन करना ऋतुस्राव का नियंत्रण अंडोत्सर्ग करना शरीर में पानी का अनुपात संतुलित रखना जननग्रंथि विकास नियंत्रित रखना
अवटु (Thyroid)	गर्दन के मध्यभाग में सामने से श्वासनली (Trachea) के दोनो ओर	थायरॉक्जिन कैल्सिटोनिन	शरीर की वृद्धि और उपापचय क्रिया नियंत्रित करनाकैल्शियम के उपापचय का और रक्त के कैल्शियम का नियंत्रण
परावटु (Parathyroid)	अवटु ग्रंथि की पिछली ओर ये चार ग्रंथियों होती है।	पैराथोर्मोन/पैराथोरमोन	शरीर के कैल्शियम तथा फॉस्फोरस के उपापचय का नियंत्रण करना
स्वादुपिंड (Pancreas)	आमाशय के पीछे चार प्रकार की कोशिकाएँ अल्फा कोशिका (20%) बीटा कोशिका (70%) डेल्टा कोशिका (5%) पी. पी. कोशिका या F Cells (5%)	ग्लुकॅगॉन इन्सुलिन सोमॅटोस्टेटिन पेन्क्रिएटिक पॉलिपेप्टाइड	 यकृत को ग्लाइकोजन का ग्लुकोज में रूपांतरण करने के लिए उद्युक्त करता है । यकृत को रक्त की बढ़ी हुई शर्करा का ग्लाइकोजन में रूपांतरण करने के लिए प्रवृत्त करता है । ऑत की गतिविधि/हलचल तथा उसके द्वारा ग्लुकोज के अवशोषण का नियंत्रण करता है । स्वादुरस के रिसाव पर नियंत्रण ।
अधिवृक्क ग्रंथि (Adrenal gland)	दोनों वृक्कों के ऊपरी भाग में	एँड्रेनलिन नॉरएँड्रेनलिन कॉर्टिकोस्टेरॉइड	- आपातकालीन परिस्थिति तथा भावुक प्रसंगों में व्यवहार नियंत्रण करना । - हृदय और संवहन संस्थान परिसंचरण उद्दीपन करना तथा उपापचय क्रियाओं को उत्तेजन देना - Na, K का संतुलन तथा उपापचय क्रिया को उत्तेजन ।
अंडाशय (Ovary)	स्त्रियों में गर्भाशय के दोनों ओर	इस्ट्रोजेन प्रोजेस्टेरॉन	- स्त्रियों में गर्भाशय अंतःस्तर की वृद्धि, स्त्रियों के द्वितियक लैंगिक गुणों का विकास । - गर्भाशय के अंतःस्तर को गर्भधारणा के लिए तैयार करना, गर्भधारणा के लिए मदद करना।
वृषण (Testis)	वृषणकोष में (Scrotum)	टेस्टेस्टेरॉन	- पुरूषों के द्वितियक लैंगिक लक्षणों का विकास; जैसे, दाढ़ी-मूँछ आना, आवाज कर्कश होना।
थाइमस ग्रंथि (Thymus)	हृदय के पास, वक्ष पंजर में	थाइमोसीन	- प्रतिरक्षा क्षमता की निर्मिति करने वाली कोशिकाओं पर नियंत्रण ।

स्वाध्याय 💐

1. योग्य जोडियाँ मिलाकर उनके संदर्भ में स्पष्टीकरण लिखिए।

'अ' स्तंभ	'ब' स्तंभ
1. बीजांड को दिशा में होने वाली परागनलिका की वृद्धि	a. गुरुत्वानुवर्ती गतिविधि
2. प्ररोह संस्थान की होने वाली वृद्धि	b. रसायन अनुवर्ती गतिविधि
3. जड़ संस्थान की होने वाली वृद्धि	c. प्रकाश अनुवर्ती गतिविधि
4. पानी की दिशा में होने वाली वृद्धि	d. वृद्धि असंलग्न
	e. जलानुवर्ती गतिविधि

2. परिच्छेद पूर्ण कीजिए।

अंगीठी पर दूध उबालने के लिए रखा था। रिसका टीवी देखने में मग्न थी। इतने में उसे कुछ जलने की बू आई। वह दौड़ते हुए रसोईघर में आई। दूध उफनकर पतीले से बाहर आ रहा था। क्षणमात्र में उसने पतीला हाथ से पकड़ा। तुरंत चिल्लाई और पतीला छोड़ दिया। यह क्रिया कोशिकाओं द्वारा नियंत्रित की गई। इस कोशिका के के वैशिष्ट्यपूर्ण अग्र से जानकारी ग्रहण की गई। वहाँ से यह जानकारी की ओर और वहाँ से के अग्रतक भेजी गई। निर्मित हुए रसायन तंत्रिका कोशिका की अतिसूक्ष्म खोखली जगह से अर्थात से जाते हैं। इस प्रकार का शरीर में संवहन होता है और आवेग से किया पूर्ण होती है।

(तंत्रिका कोशिका, मांसपेशी, आवेग, वृक्षिका, अक्षक तंत्र, संपर्कस्थान, प्रतिवर्ती क्रिया, कोशिका काया)

3. टिप्पणी लिखिए।

मूलीय दाब, वाष्पोच्छवास, तंत्रिका कोशिका, मानवीय मस्तिष्क, प्रतिवर्ती क्रिया।

- 4. नीचे दी हुई ग्रंथियों द्वारा स्रवित किए जाने वाले संप्रेरक और उनके कार्य स्पष्ट कीजिए। पियुषिका, अवटु, अधिवृक्क, थाइमस, वृषण, अंडाशय
- 5. स्वच्छ एवं नामांकित आकृतियाँ बनाएँ । मानवीय अंत:स्रावी ग्रंथि, मानवीय मस्तिष्क, नेफ्रॉन, तंत्रिका कोशिका, मानवीय उत्सर्जन संस्थान

निम्नलिखित प्रश्नों के उत्तर लिखें।

- अ. मानव शरीर में रासायनिक नियंत्रण कैसे होता है, ये बताकर कुछ संप्रेरकों के नाम तथा उनके कार्य विशद कीजिए।
- आ. मानवीय उत्सर्जन और वनस्पति उत्सर्जन संस्थान में अंतर स्पष्ट कीजिए।
- इ. वनस्पतियों में किस प्रकार का समन्वय होता है इसका उदाहरणसहित स्पष्टीकरण लिखें।

7. अपने शब्दों में उदाहरणसहित स्पष्टीकरण लिखें।

- अ. समन्वय क्या है?
- आ. मानवीय उत्सर्जन प्रक्रिया कैसे होती है?
- इ. वनस्पतियों का उत्सर्जन मानवीय जीवन के लिए क्या उपयोग है?
- ई. वनस्पतियों में परिवहन कैसे होता है?

उपक्रम:

- पृष्ठवंशीय प्राणियों में मस्तिष्क कैसे विकसित होता गया । इस विषय में अधिक जानकारी प्राप्त कीजिए और एक पोस्टर बनाइए और कक्षा में प्रस्तुत कीजिए।
- 'मेरा महत्त्व' शीर्षक के अंतर्गत विभिन्न अंत:स्रावी ग्रंथियों का कार्य समूह बनाकर कक्षा में प्रस्तुत कीजिए।
- 'मानवप्राणी अन्य प्राणियों की अपेक्षाकृत अलग तथा बुद्धिमान है' इस वाक्य के समर्थन में जानकारी प्राप्त कीजिए और प्रस्तुत कीजिए ।

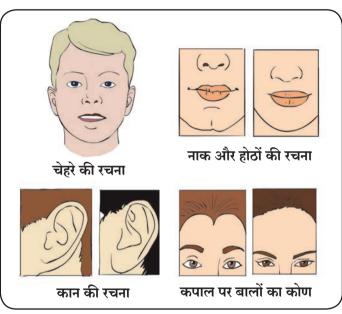
16. आनुवंशिकता और परिवर्तन

- ֊ वंशागति 👚 ≽ आनुवंशिकता : लक्षण और लक्षणों का प्रकटीकरण
- > मेंडेल के आनुवांशिकता के सिद्धांत > गुणसूत्रों की अपसामान्यता के कारण होने वाले रोग

- 1. क्या आपकी कक्षा के सभी लड़के या लड़कियाँ क्या एक जैसे दिखते हैं?
- 2. निम्नलिखित मुद्दों के आधार पर विचार कीजिए और समानता और अंतर नोट कीजिए। (शिक्षक कृपया विद्यार्थी की सहायता करें।)

अ.क्र	व्यक्ति विशेष	आप स्वयं	दादा जी	दादी	पिता जी	माँ
1	त्वचा का रंग					
2	चेहरे की रचना (गोल/लंबित)					
3	ऊँचाई					
4	आँखों का रंग					
5	हाथ के अँगूठे की रचना					

अपने परिवेश में एकही प्रजाति में बहुत विविधता होती है, यह हमने पहले सीखा है परंतु यह विविधता निश्चित रूप से किस कारण होती है इसपर हम इस पाठ में विचार करने वाले हैं।


वंशागति (Inheritance)

सजीवों के गुणधर्म एक पीढ़ी से दूसरी पीढ़ी तक कैसे संक्रमित होते हैं, इसका सामान्य तौर पर तथा विशेष रूप से जनुकों (Genes) का अध्ययन करने वाली जीवविज्ञान की एक शाखा है, इस शाखा को आनुवंशिक विज्ञान (Genetics) कहते हैं।

पुनरुत्पादन प्रक्रिया से नई संतित की निर्मिति होती है। यह संतित अपने जनकों से कुछ सूक्ष्म भेदों को छोड़कर लगभग मिलती–जुलती होती है। अलैंगिक पुनरुत्पादन प्रक्रिया से निर्मित संजीवों में सूक्ष्म भेद होता है, जबिक लैंगिक प्रजनन से पुनरुत्पादित सजीवों के बीच तुलनात्मक रूप से अधिक अंतर होता है।

- अपनी कक्षा के मित्रों के कानों का बारीकी से प्रेक्षण कीजिए।
- 2. हम सभी मनुष्य प्राणी हैं फिर भी हम सबकी त्वचा के रंग में आपको क्या अंतर दिखाई देता है?
- 3. आप सभी 9 वीं कक्षा में हो। एक ही कक्षा में कुछ विद्यार्थी लंबे जबिक कुछ विद्यार्थी औसत कम ऊँचाई के क्यों होते हैं?

16.1 चेहरे के कुछ रचनात्मक अंतर

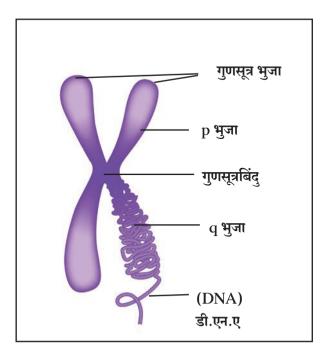
आनुवंशिकता (Heredity)

माता और पिता के शारीरिक अथवा मानसिक लक्षण संतित में संक्रमित होने की प्रक्रिया को आनुवंशिकता कहते हैं। इसलिए कृत्ते के बच्चे कृत्ते के समान, कबूतर के बच्चे कबूतर के समान तो मानव की संतान मानव के समान होती है।

आनुवंशिक लक्षण और लक्षणों का प्रकटीकरण (Inherited traits and Expression of traits)

सजीवों में विशिष्ट लक्षण या विशेषताओं का प्रकटीकरण कैसे होता है?

माता-पिता और संतान में बहुत अधिक समानता होती है फिर भी इनमें छोटे बड़े भेद भी दिखाई देते हैं। यह समानताएँ और भेद आनुवंशिकता के कारण होते हैं। आनुवंशिकी की व्यवस्था क्या होती है और वह कैसे काम करती है, आओ देखें। कोशिकाओं में प्रथिन-संश्लेषण के लिए आवश्यक जानकारी DNA में संग्रहित होती है। DNA के जिस खंड में विशिष्ट प्रथिन संबंधी संपूर्ण जानकारी संग्रहित की होती है, उस खंड को उस प्रथिन का 'जनुक' कहते हैं। इन प्रथिनों का सजीवों के लक्षणों से क्या संबंध होता है, यह जान लेना आवश्यक है।


यह मुद्दा अधिक स्पष्ट होने के लिए वनस्पित की लंबाई इस लक्षण पर विचार करेंगे। वनस्पित में वृद्धि संप्रेरक होते है, यह हम जानते हैं। वनस्पितयों की लंबाई में होने वाली वृद्धि भी वृद्धि संप्रेरकों के अनुपात पर निर्भर करती है।

वनस्पित द्वारा निर्मित होने वाले वृद्धि संप्रेरकों का प्रमाण संबंधित प्रिकण्व की कार्यक्षमता पर निर्भर करता है। कार्यक्षम प्रिकण्व अधिक मात्रा में संप्रेरक की निर्मिति करते हैं। इस कारण वनस्पितयों की लंबाई में वृद्धि होती है किंतु प्रिकण्वों की कार्यक्षमता कम हो तो संप्रेरक कम अनुपात में बनते हैं और वनस्पित की वृद्धि में बाधा आती है।

गुणसूत्र (Chromosomes)

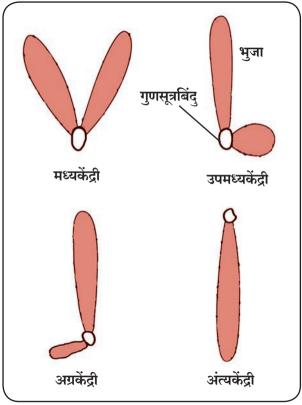
सजीवों के कोशिका केंद्रक में होने वाले तथा आनु— वंशिक गुणधर्म संक्रमित करने वाले घटक को गुणसूत्र कहते हैं। वह प्रमुख रूप से केंद्रकाम्ल और प्रथिनों से बना होता है। कोशिका विभाजन के समय सूक्ष्मदर्शी की सहायता से गुणसूत्र स्पष्ट रूप से दिखाई देते हैं। आनुवंशिक गुणधर्मों का प्रारूप सांकेतिक स्वरूप में धारण करने वाला जनुक गुणसूत्रों पर रहता है। प्रत्येक सजीव में विशिष्ट संख्या में गुणसूत्र होते हैं।

प्रत्येक गुणसूत्र डीएनए से बना होता है। कोशिका विभाजन की मध्यावस्था में वह बेलनाकार दिखता है। प्रत्येक गुणसूत्र पर एक संकीर्ण भाग होता है। उसे प्राथमिक संकीर्णन (Primary centriction) अथवा गुणसूत्र बिंदु (Contromere) कहते हैं। इस कारण गुणसूत्र के दो भाग होते हैं। प्रत्येक भाग को अर्धगुणसूत्र कहते हैं। विशिष्ट गुणसूत्र पर गुणसूत्र बिंदु का स्थान निश्चित होता है। इस कारण गुणसूत्रों के चार प्रकार होते हैं।

16.2 गुणसूत्रों की रचना

गुणसूत्रों के प्रकार

गुणसूत्रों के प्रकार कोशिका विभाजन के मध्यावस्था में स्पष्ट रूप से दिखाई देते हैं।


- 1. मध्यकेंद्री (Metacentric) इन गुणसूत्रों में गुणसू न्त्रबिंदु गुणसूत्र के बीचोबीच होता है यह गुणसूत्र अंग्रेजी अक्षर 'V' की तरह दिखते हैं। इनके अर्धगुणसूत्रों की लंबाई समान होती है।
- 2. उपमध्यकेंद्री (Sub-metacentric) इन गुणसूत्रों में गुणसूत्रबिंदु गुणसूत्र के मध्य के आसपास होता है। यह गुणसूत्र अंग्रेजी अक्षर 'L' जैसा दिखता है। इनमें एक अर्थगुणसूत्र दूसरे से थोड़ा बड़ा होता है।
- 3. अग्रकेंद्री (Acrocentric) -इस गुणसूत्र में गुणसूत्र -बिंदु लगभग गुणसूत्र के सिरे के पास होता है। यह गुणसूत्र अंग्रेजी अक्षर 'J' जैसा दिखता है। इसमें एक अर्धगुणसूत्र बहुत ही बड़ा तो दूसरा बहुत ही छोटा होता है।
- 4. अंत्यकेंद्री (Telocentric) गुणसूत्र में गुणसूत्रबिंदु गुणसूत्र के एक सिरे पर होता है और यह अंग्रेजी अक्षर 'i' जैसा दिखता है। इनमें एक ही अर्ध गुणसूत्र होता है।

सामान्य रूप से कायिक कोशिकाओं में गुणसूत्रों की जोड़ियाँ होती हैं। समान आकार और रचनावाली गुणसूत्रों की जोड़ी को समजात गुणसूत्र (Homologous Chromsomes) कहते हैं। गुणसूत्रों की रचना और आकार समान न हों तो ऐसे गुणसूत्रों को विषमजात गुण-सूत्र (Heterologous Chromosomes) कहते हैं। लैंगिक प्रजनन करने वाले सजीवों में गुणसूत्रों की एक जोड़ी अन्य जोड़ियों की अपेक्षा अलग होती है। इस जोड़ी के गुणसूत्रों को लिंगगुणसूत्र तथा अन्य सभी गुणसूत्रों को अलिंगसूत्र कहते हैं।

डी.एन.ए. (Deoxyribo Nucleic Acid)

नीचे कुछ सजीवों के गुणसुत्रों की संख्या दी गई है।

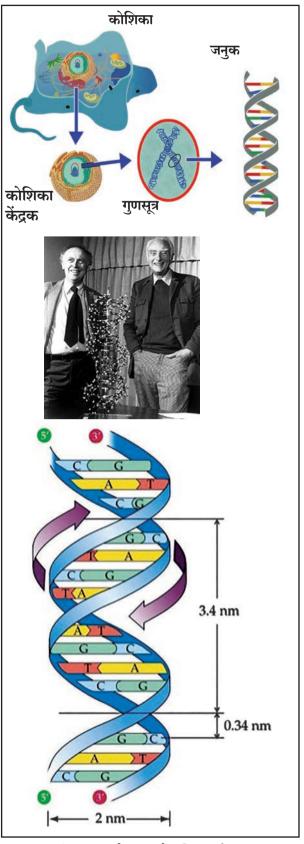
अ.क्र.	सजीव	गुणसूत्रों की संख्या
1	केंकड़ा	200
2	मकई	20
3	मेंढक	26
4	गोलकृमि	04
5	आलू	48
6	मानव	46

16.3 गुणसूत्र के प्रकार

गुणसूत्र प्रमुख रूप से डी.एन.ए से बने होती हैं। सन 1869 में श्वेत रक्त कणिकाओं का अध्ययन करते समय स्विस जैव रसायन वैज्ञानिक फ्रेड्रिक मिशर ने इस अम्ल की खोज की। यह अम्ल प्रथम केंद्रक में मिला इसलिए इसका नाम कें— द्रकाम्ल (Nuclic acid) रखा गया। यह कोशिका के अन्य भागों में भी पाया जाता है। डी.एन.ए. के अणु विषाणु, जीवाणुओं से लेकर मनुष्य तक सभी सजीवों में पाए जाते हैं। यह अणु कोशिकाओं का कार्य, वृद्धि और विभाजन (प्रजनन) नियंत्रित करते हैं। इसी कारण इन्हें प्रधान अणु (Master molecule)कहते हैं।

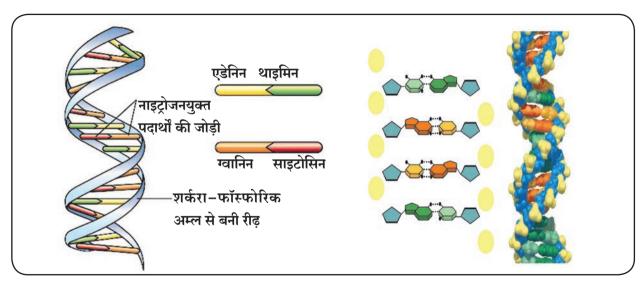
डी.एन.ए अणु का प्रत्येक धागा न्यूक्लिओटाइड नामक अनेक छोटे अणुओं का बना होता है। नाइट्रोजनयुक्त पदार्थ ऐडेनिन, ग्वानिन, साइटोसिन व थाइमिन ऐसे चार प्रकार के होते हैं। इनमें से ऐडेनिन तथा ग्वानिन को प्युरिन्स तो साइटोसिन व थाइमिन को पिरीमिडिन्स कहते हैं।

डी.एन.ए अणु की रचना सभी सजीवों में एक जैसी ही होती है। सन 1953 में वैटसन और क्रीक ने इस अणु की रचना की प्रतिकृति तैयार की। इस प्रतिकृति में न्यूक्लीओटाइड के दो समांतर धागे एक-दूसरे के साथ लपेटे हुए होते हैं। इस द्विसर्पिल रचना कहते हैं। इस रचना की तुलना निचोड़ी हुई लचीली सीढ़ी से की जा सकती है।


न्युक्लिओटाइड की रचना में शर्करा के एक अणु से नाइट्रोजनयुक्त पदार्थ का अणु तथा एक फॉस्फोरिक अम्ल का एक अणु जुड़ा हुआ होता है।

नाइट्रोजनयुक्त पदार्थ चार प्रकार के होने के कारण न्यूक्लीओटाइड भी चार प्रकार के होते हैं।

डी.एन.ए के अणु में न्यूक्लिओटाइड की रचना शृंखला जैसी होती है। डी.एन.ए के दो धागे याने सीढ़ी के नमूने के दो खंभे । प्रत्येक खंभा बारी-बारी से जुड़े हुए शर्करा के अणु और फॉस्फोरिक अम्ल से बनता है। सीढ़ी का प्रत्येक पायदान हाइड्रोजन बंध से जुड़ी हुई नाइट्रोजनयुक्त पदार्थों की जोड़ी होती है। हमेशा एडेनिन की थाइमिन से और ग्वानिन की साइटोसीन से जोड़ी होती है।


जन्क (Gene)

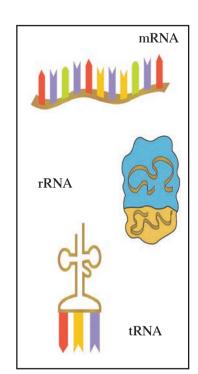
प्रत्येक गुणसूत्र एकही डी.एन.ए. अणु से बने होते हैं। इस डी.एन.ए. अणु के अणुखंडों को जनुक (Genes) कहते हैं। डी.एन.ए. अणु में होने वाली न्यूक्लिओटाइड की विविधतापूर्ण रचना के कारण भिन्न-भिन्न प्रकार के जनुक बनने हैं। यह जनुक एक कतार में रची होती हैं। जनुक कोशिकाओं और शरीर की रचना पर और कार्य पर नियंत्रण रखते हैं। उसी प्रकार वे आनुवंशिक लक्षण माता और पिता से उनकी संतान तक संक्रमित करते हैं। इसलिए उन्हें आनुवंशिकता के कार्यकारी घटक कहते हैं। यही कारण है कि माता-पिता और उनके बच्चों में समानता पाई जाती है। जनुकों में प्रथिनों की निर्मिति के विषय में जानकारी संग्रहित होती है।

16.4 डी.एन.ए. (वैटसन और क्रीक मॉडेल)

डी.एन.ए. – फिंगरप्रिंटिंग : प्रत्येक व्यक्ति में होने वाले डी.एन.ए. प्रारूप की खोज की जाती है। वंश पहचानना अथवा अपराधी की पहचान करने के लिए इसका उपयोग होता है।

16.5 डी.एन.ए. रचना

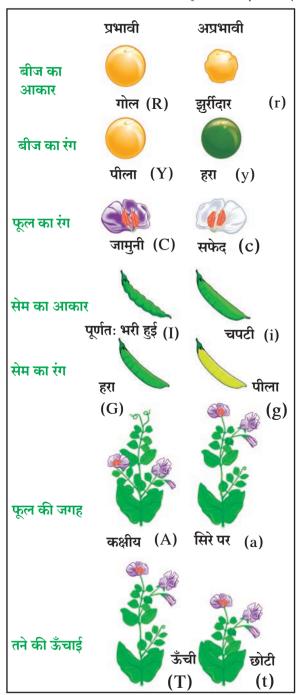
तंत्रज्ञान के बीज

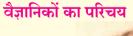

सन 1990 में विश्वभर के जनुक वैज्ञानिकों ने एकसाथ मिलकर मानव जनुक प्रकल्प हाथ में लिया। जून 2000 में इस प्रकल्प के कर्ताओं और सेलोरा जिनोमिक्स कॉपोरेशन (अमेरिका स्थित निजी उद्योग) ने संयुक्त रूप से मानवीय जनुकों के डी.एन.ए. अणुओं का संपूर्ण क्रम और प्रारूप के खोज की घोषणा की। इस प्रकल्प से प्राप्त जानकारी के आधार पर वैज्ञानिकों ने मानवीय जनुकों की संख्या लगभग 20,000 से 30,000 होती है यह निश्चित किया। इसके पश्चात वैज्ञानिकों ने अनेक सूक्ष्मजीवों के जनुकों का क्रम अन्वेषित किया है। जीनोम संशोधन के कारण रोगकारक जनुक खोजे जा सकते हैं। रोगकारक जनुकों की जानकारी प्राप्त होने पर योग्य इलाज रोग का निदान किया जा सकता है।

संकेतस्थल: www.genome.gov

आर.एन.ए. (Ribo Nucleic Acid)

आर.एन.ए. कोशिका का दूसरा महत्त्वपूर्ण न्यूक्लिक अम्ल है। यह अम्ल राइबोज शर्करा, फास्फेट के अणु और ग्वानिन, साइटोसिन, एडेनिन व युरासील इन चार नाइट्रोजनयुक्त पदार्थों का अणु तथा एक नाइट्रोजनयुक्त पदार्थ से बना होता है। राइबोज शर्करा, फास्फेट अणु तथा नाइट्रोजनयुक्त पदार्थ के अणु से बना होता है। इनके यौगिक से न्युक्लिक अम्ल की शृंखला की एक कड़ी अर्थात न्यूक्लिओटाइड बनता है। ऐसी अनेक कड़ियों के जोड़ से आर.एन.ए. का महाअणु बनता है। उनकी कार्यप्रणाली के अनुसार RNA तीन प्रकार होते है।


- 1. **राइबोजोमल आर.एन.ए.** (r RNA) : यह राइबोज के घटक आर.एन.ए. का अणु होता है। राइबोजोम प्रथिन संश्लेषण का कार्य करते हैं।
- 2. मेसेंजर आर.एन.ए. (mRNA): कोशिका केंद्रक में स्थित जनुकों के अर्थात डी.एन.ए. की शृंखला पर प्रथिनों के निर्मिति संबंधी संदेश, प्रथिनों की निर्मिति करने वाले राइबोजोम्स तक लेकर जाने वाला दत अणु।
- 3. ट्रान्सफर आर.एन.ए. (tRNA): mRNA आरएनए से मिलने वाले संदेश के अनुसार अमिनो अम्लों के अणुओं को राइबोजोम्स तक लाने वाला आर.एन.ए. का अणु।


16.6 आर.एन.ए. के प्रकार

मेंडेल का आनवंशिकता का सिद्धांत

माता-पिता से संतान को समान मात्रा में जनुकीय पदार्थ हासिल होते हैं। इस विचार पर लक्षणों की आनुवंशिकता के सिद्धांत आधारित हैं। लक्षणों की आनुवंशिकता में यदि माता-पिता का समान सहभाग हो तो संतान में कौन से लक्षण दिखाई देंगे? मेंडेल ने इसी दिशा में अपना संशोधन किया और इस प्रकार की आनुवंशिकता के लिए उत्तरदायी प्रमुख सिद्धांतो की रचना की। लगभग एक शताब्दी पहले उनके किए गए प्रयोग विस्मयजनक हैं। मेंडल के सभी प्रयोग मटर के पौधे (Pisum sativum) में दिखाई देने वाले दृश्य लक्षणों पर आधारित हैं। ये लक्षण निम्नानुसार हैं। मेंडल के प्रयोगों का निष्कर्ष स्पष्ट होने के लिए नीचे दिए गए दो प्रकार के संकरों पर विचार करना होगा।

16.7 मटर के सात परस्पर विरुद्ध पौधों में दिखाई देने वाले लक्षण

ग्रेगर जोहान्स मेंडेल

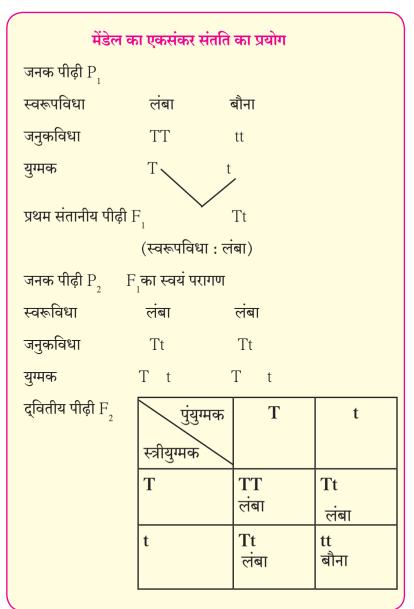
(जन्म : 20 जुलाई 1822, मृत्यु : 6 जनवरी 1884)

ग्रेगर जोहान मेंडेल ऑस्ट्रियन वैज्ञानिक थे। मटर के पौधों पर प्रयोग कर उनके कुछ दृश्य लक्षणों की आनुवंशिकता का अध्ययन उन्होंने किया। मेंडेल ने यह साबित किया कि इन लक्षणों का आनुवंशिकता में कुछ सिद्धांतों का पालन किया जाता है। यह नियम आगे जाकर उन्हों के नाम से प्रचलित हुए। मेंडेल द्वारा किए गए कार्य का महत्त्व लोगों तक पहुँचने में आने तक बींसवी सदी आ गई। इन नियमों के सिद्धांतो का पुन: परीक्षण के पश्चात यह सिद्धांत आज आधुनिक आनुवंशशास्त्र की नींव सिद्ध हुआ है।

क्या आप जानते हैं?

मानव की कुछ प्रभावपूर्ण तथा अप्रभावपूर्ण विशेषताएँ
प्रभावी अप्रभावी
मुड़ने वाली जीभ न मुड़ने वाली जीभ
हाथ पर बालो का होना हाथ पर बालों का न होना
काले-घुँघराले बाल भूरे-सीधे बाल
कान की खुली ललरी कान से चिपकी हुई ललरी

मेंडेल का एकसंकर संतित का प्रयोग (Monohybrid Cross)


मेंडेल ने जो प्रयोग किए उनमें विरुद्ध लक्षणों की एक ही जोड़ी वाले मटर के पौधे में संकर प्रस्थापित किया। इस प्रकार के संकर को एकसंकर कहते हैं।

एकसंकर अनुपात का अध्ययन करने हेतु लंबे और बौने मटर के पौधे का उदाहरण लेते हैं।

जनक पीढ़ी (P_.)

लंबे और बौने पौधों का उपयोग संकर के लिए किया गया। इसलिए यह जनक पीढ़ी (P_1) है। मेंडेल ने लंबे तथा बौने पौधों के लिए क्रमश: प्रभावी और अप्रभावी ऐसे शब्दों का उपयोग किया। मेंडेल ने लंबे पौधों को प्रभावी कहा क्योंकि अगली पीढ़ी के सभी पौधे लंबे थे। बौने पौधों को अप्रभावी कहा क्योंकि ये लक्षण अगली पीढ़ी (F_1) में दिखाई नहीं दिए। यह प्रयोग 'पनेट स्क्वेअर' पद्धति से नीचे दिया है।

इससे मेंडेल ने यह प्रतिपादित किया कि इन लक्षणों के संक्रमण के लिए उत्तरदायी घटक जोड़ी में पाए जाते हैं। आज हम इन घटकों को जनक के नाम से जानते हैं। प्रभावी जनक अंग्रेजी लिपि के बड़े अक्षरों दवारा तथा अप्रभावी जनक छोटे

अक्षरों द्वारा दर्शाए जाते हैं। जनुकों के जोड़ी में पाए जाने के कारण लंबे पौधों (TT) के लिए तथा बौने पौधों (tt) के लिए ऐसे अक्षर लिखे जाते हैं। जनुकों की यह जोड़ी युग्मक निर्मिति के समय अलग हो जाती है। इसलिए T घटक वाले और t घटक वाले; ऐसे दो प्रकार के युग्मक बनते हैं।

प्रथम संतानीय पीढ़ी (F₁)

इस प्रयोग में मेंडेल को यह दिखाई दिया कि प्रथम संतानीय पीढ़ी(F,) के सभी पौधे लंबे थे। अपितु (F.) पीढ़ी के लंबे पौधे P. पीढ़ी के लंबे पौधों से अलग थे क्योंकि F_, पीढ़ी के पौधों के जनक लंबे तथा बौने पौधे हैं। यह मेंडेल ने ध्यान में रखा। F, पीढ़ी के प्रेक्षणों से मेंडेल ने यह प्रतिपादित किया कि लंबे पौधों का जनक बौने पौधों के घटकों से प्रभावी होता है। F पीढ़ी के सभी पौधे लंबे होते हुए भी उन में पौधों के बौनेपन के लिए उत्तरदायी घटक भी थे अर्थात F पीढ़ी के पौधों की स्वरूप विधा लंबी होने पर भी उनकी जनुक विधा मिश्र स्वरूप की है। स्वरूप विधा का अर्थ है सजीवों का बाह्यरूप या सजीवों के दृश्य लक्षण। उदा. लंबे या बौने पौधे जन्कविधा का अर्थ है, दृश्य लक्षणों के लिए उत्तरदायी जनुकों की (घटकों की) जोडी । जनक पीढी के लंबे पौधों की जनुकविधा (TT)है तथा वह जनुकप्रारूप एकही प्रकार के T युग्मक (T) तैयार करती हैं। F, पीढ़ी के लंबे पौधों की जनकविधा(Tt) है और वह T तथा t ऐसे दो प्रकार के युग्मक निर्माण करते हैं। इससे हम यह कह सकते हैं कि F₁ पीढ़ी के लंबे पौधे तथा P₁ पीढ़ी के लंबे पौधों की स्वरूप विधा समान होने पर भी जनुकविधा भिन्न है। मेंडेल ने यह प्रयोग आगे बढ़ाते हुए F, पीढ़ी के पौधों का स्वफलन होने दिया। इससे दूसरी संतानीय पीढ़ी F़ की उत्पत्ति हुई।

द्सरी संतानीय पीढ़ी (F3)

द्वितीय संतानीय पीढ़ी में लंबे तथा बौने दोनों प्रकार के पौधे थे। मेंडेल की संख्या के अनुसार मटर के कुल 929 पौधों में से 705 पौधे लंबे जबिक 224 पौधे बौने थे अर्थात इन पौधों का स्वरूप विधात्मक अनुपात लगभग 3 लंबे : 1 बौना तो जनुकीय अनुपात 1TT:2Tt:1tt, ऐसा है । इससे यह निष्कर्ष मिलता है कि लक्षणों के आधार पर (F_2) पीढ़ी के पौधे दो प्रकार जबिक जनुकीय प्रारूप के आधार पर तीन प्रकार के पौधों की उपज/उत्पत्ति होती है। ये प्रकार सारिणी में दर्शाए गए है।

F ₂ शुद्ध प्रभावी TT - लंबे पौधे	समयुग्मक
F ₂ शुद्ध अप्रभावी (tt) - बौने पौधे	समयुग्मक
F2 मिश्र प्रकार के (Tt) - लंबे पौधे	विषमयुग्मक

मेंडेल की द्विसंकर संतति (Dihybrid cross)

द्विसंकर पद्धित में विरोधी लक्षणों की दो जोड़ियों का समावेश होता है। मेंडेल ने एक से अधिक लक्षणों की जोड़ियाँ पर एकही समय पर ध्यान केंद्रित कर संकर के कुछ और प्रयोग किए। इसमें गोल-पीले बीजोंवाले पौधों (RRYY) का झुर्रीदार-हरे बीजोंवाले पौधों (rryy) से संकर किया। इसमें बीजों का रंग और प्रकार ऐसे दो लक्षण समाविष्ट हैं, इसलिए इसे द्विसंकर पद्धित कहा गया है।

जनक पीढ़ी (P₁)

मेंडेल ने गोल-पीले बीजों वाले तथा झुर्रियोंवाले हरे बीजों वाले मटर के पौधों का चयन किया जो निम्न प्रकार है।

मेंडेल का दुविसंकर संतति का प्रयोग

जनक पीढ़ी P

स्वरूपविधा गोल और पीले मटर झुरींदार और हरे मटर

जनुकविधा RRYY rryy

युग्मक RY ry

पहली पीढ़ी F₁ RrYy

(स्वरूप विधा : गोल, पीले मटर)

जनक पीढ़ी P_2 F1 स्वयं के परागण

स्वरूप विधा गोल-पीले मटर गोल-पीले मटर

जनुकविधा RrYy RrYy

युग्मक RY, Ry, rY, ry RY, Ry, rY, ry

दुसरी पीढ़ी F

पुंयुग्मक	RY	Ry	rY	ry
स्त्रीयुग्मक				
RY	RRYY	RRYy	RrYY	RrYy
Ry	RRYy	RRyy	RrYy	Rryy
rY	RrYY	RrYy	rrYY	rrYy
ry	RrYy	Rryy	rrYy	rryy

P₁ पीढ़ी के युग्मक बनते समय जनुकों की जोड़ियाँ स्वतंत्र रूप से अलग होती हैं अर्थात RRYY पौधों से RR और YY ऐसे युग्मक नहीं बनते तो केवल RY प्रकार के युग्मक बनते हैं । उसी प्रकार rryy पौधों से ry युग्मक बनते हैं । इससे हम यह कह सकते है कि युग्मकों में जनुकों की हर जोड़ी का प्रतिनिधित्व उसके एक घटक द्वारा किया जाता है ।

थोडा सोचिए

स्वरूप विधा अनुपात

- 1. गोल पीले -
- 2. पीले झरींदार -
- गोल हरे -
- 4. हरे झुरींदार -

अनुपात = : : :

जनुकविधा अनुपात

RRYY -

अनुपात

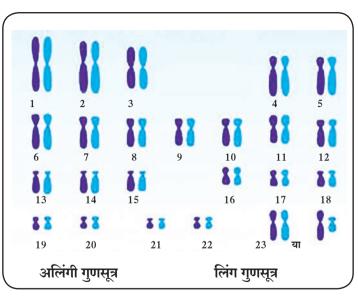
= ::::::::

- 1. (RR) और (rr) का एकसंकर दर्शाएँ और F_2 पीढ़ी का जनुक-विधा और स्वरूप विधा अनुपात लिखिए ।
- 2. F_1 पीढ़ी में पीले गोल और हरे झुरींदार मटर या लक्षणों में से केवल पीले गोल मटर यह एक ही लक्षण क्यों प्रकट हुआ होगा?

एकसंकर प्रयोगों के निष्कर्षों के अनुसार द्विसंकर प्रयोग में F_1 पीढ़ी के पौधों में पीले, गोल मटर उगेंगे ऐसी मेंडेल की अपेक्षा थी। उनका अनुमान सही था। इन मटर के पौधों की जनुकविधा YyRr होते हुए भी स्वरूप विधा पीले, गोल मटर उगनेवाले पौधों की तरह ही थी; क्योंकि पीले रंग का घटक हरे रंग के जनुक से प्रभावी तथा गोल आकार नियंत्रित करने वाला जनुक झुर्रीदार बीज से प्रभावी था। द्विसंकर प्रयोग के पीढ़ी के पौधों को दो लक्षणों के समावेश के कारण दिवसंकरज कहते हैं।

 F_1 पीढ़ी के पौधे चार प्रकार के युग्मक बनाते हैं। इनमें से यह युग्मक RY, Ry, $\, {
m rY, \, ry.}\,$ इसी प्रकार RY और $\, {
m ry}\,$ ये युग्म के $\, P_1\,$ युग्मकों जैसे ही हैं।

जब F_1 पीढ़ी के पौधों का स्वफलन होता है, तब दूसरी संतानीय पीढ़ी (F_2) का निर्माण होती है। इस पीढ़ी की संतित में लक्षणों का संक्रमण कैसे होता है, वह पृष्ठ क्र. 187 पर दी गई सारिणी में संक्षिप्त रूप में दर्शाया गया है। वह सूत्ररूप में कैसे प्रस्तुत कर सकते हैं, इसका विवरण तालिका के बगल में दी गई चौखट में दिया गया है। चार प्रकार के पुंयुग्मक और चार प्रकार के स्त्रीयुग्मकों के संकर से जो 16 अलग–अलग मेल बनते हैं, वे शतरंज के जैसे चौखटों वाले फलक में दर्शाए हैं। इस फलक के शीर्षक स्थान में पुंयुग्मक है और बगल में स्त्रीयुग्मक है। दूसरी संतानीय पीढ़ी के अध्ययन पर आधारित प्रेक्षण पृष्ठ क्र. 186 पर दी गई सारिणी के अनुसार होंगे।


आनुवंशिक विकृति (Genetic disorder)

गुणसूत्रों की अपसामान्यता के कारण या जनुकों के उत्परिवर्तन के कारण होने वाले रोगों को आनुवंशिक विकृति कहते हैं। इस विकृति में गुणसूत्रों का अधिक संख्या में होना या कम होना, गुणसूत्रों के किसी भाग का लोप अथवा स्थानांतरण जैसी स्थिति का समावेश होता है। फाँक होंठ, रंजकहीनता जैसे शारीरिक व्यंग तथा सिकलसेल रक्ताल्पता, हिमोफीलिया जैसे शरीर क्रियाओं के दोष, आनुवंशिक विकृति के कुछ उदाहरण हैं।

मनुष्य में 46 गुणसूत्र 23 जोड़ियों के रूप में होते हैं। गुणसूत्रों की जोड़ियों का आकार और आयतन में भिन्नता होती है। इन जोड़ियों को अनुक्रमांक दिए गए हैं। गुणसूत्रों की 23 जोड़ियों में से 22 जोड़ियाँ अलिंगी गुणसूत्रों की होती हैं तो 1 जोड़ी लिंग गुणसूत्रों की होती है। स्त्रियों में ये गुणसूत्र 44 + xx होती है तो पुरुषों में 44 + xy ऐसे दर्शाए जाते हैं।

योहान मेंडेल ने अपने प्रयोग में कारकों के अर्थात जनुकों के दो प्रकार बताए हैं। उसके लिए उन्होंने प्रभावी तथा अप्रभावी ऐसे शब्दों की रचना की है।

मानवीय कोशिका के गुणसूत्रों की संख्या, उनके लिंगसापेक्ष प्रकार, उनपर स्थित जनुकों के प्रकार (प्रभावी, अप्रभावी) इन मुद्दों को दृष्टिपात करने पर आनुवंशिक विकृतियाँ कैसे होती हैं तथा उनका संक्रमण कैसे होता है, यह समझ में आता है।

16.8 मानव के सामान्य गुणसूत्रों की सारिणी

अ. गुणसूत्रों की अपसामान्यता के कारण निर्माण होने वाली विकृतियाँ

गुणसूत्रों की कुल संख्या में बदलाव आने पर नीचे दिए हुए दो समस्याएँ हो सकती हैं। अलिंगी गुणसूत्रों की संख्या में कमी आने पर जन्म लेने वाली संतित की प्रजनन क्षमता बाधित नहीं होती। इसके विपरीत अर्भक के कुल गुणसूत्रों की संख्या में किसी अलिंगी गुणसूत्रों की जोड़ी अधिक हो जाने पर बालकों में शारीरिक अथवा मानसिक दोष हो जाते हैं तथा उनकी आयुमर्यादा भी कम होती है। इनमें से कुछ विकृतियाँ निम्नानुसार हैं।

1. डाउन्स सिंड्रोम अथवा मंगोलिकता (डाउन्स-संलक्षण : (46+1) 21के गुणसूत्र की त्रिसमसूत्री अवस्था)

गुणसूत्रों की अपसामान्यता के कारण होने वाला डाउन्स सिंड्रोम या मंगोलिकता यह एक विकृति है। यह मानव के संदर्भ में खोजी गई तथा वर्णन की गई पहली गुणसूत्रीय विकृति है। इस में गुणसूत्र प्रारूप में कुल 47 गुणसूत्र दिखते हैं। इस विकृति को ट्रायसोमी ऑफ 21 (एकाधिक द्विगुणितता 21) ऐसा भी कहा जाता है क्योंकि इस विकृति में अर्भक के शरीर की सभी कोशिकाओं में 21 वे गुणसूत्रों की जोड़ी के साथ एक अधिक (ज्यादा) 21वाँ गुणसूत्र होता है। इसी कारण ऐसे अभ्रक की कोशिकाओं में 46 की जगह 47 गुणसूत्र दिखते हैं। ऐसे बालकों के गतिमंद और दुर्लभतम मामलों में अल्पायु होने की आशंका होती है। मानसिक वृद्धि में बाधा सबसे प्रमुख लक्षण है।

16.9 डाउन्स सिंड्रोम बाधित बच्चा

कुछ मामलों में फैली हुई गरदन, चपटी नाक, छोटी अंगुलियाँ, एक ही आढ़ी हस्तरेखा, सिर पर विरल बाल जैसे लक्षण भी दिखते हैं।

2. टर्नर सिंड्रोम (टर्नर- संलक्षण)

अलिंगी गुणसूत्रों की तरह लिंग गुणसूत्रों की अपसामान्यता के कारण कुछ विकार होते है। दर्नर सिंड्रोम या 44+X इस विकार में एक X गुणसूत्र का लैंगिकता से संबंधित भाग निरूपयोगी हो जाने के कारण एक ही गुणसूत्र X कार्यरत होता है अथवा जनकों से एक ही X गुणसूत्र संक्रमित होता है। ऐसी स्त्रियों में 44+XX के बजाय 44+X स्थिति होती है। ऐसे में प्रजननेंद्रियों की वृद्धि पूर्ण न होने के कारण उनकी प्रजनन क्षमता पर प्रतिकूल प्रभाव होता है।

16.10 टर्नर सिंड्रोम बाधित बच्चे का हाथ

3. क्लाईनफेल्टर्स सिंड्रोम (क्लाईनफेल्टर्स संलक्षण) : 44+ XXY

पुरुषों में लिंग गुणसूत्रों की अपसामान्यता के कारण यह विकार होता है। इसमें पुरुषों में 44+xy के साथ ही X गुणसूत्र अधिक होने के कारण गुणसूत्रों की कुल संख्या 44+xxy होती है। जिन पुरुषों में गुणसूत्रों का यह स्वरूप पाया जाता है, लैंगिक अल्पविकास के कारण उनकी प्रजनन क्षमता पर प्रतिकूल प्रभाव होता है। इसे क्लाईनफेल्टर्स सिंड्रोम कहते है।

राष्ट्रीय आरोग्य अभियान

राष्ट्रीय आरोग्य अभियान के अंतर्गत राष्ट्रीय ग्रामीण आरोग्य अभियान अप्रैल 2005 से जबकि राष्ट्रीय शहरी आरोग्य अभियान 2013 से प्रारंभ किया गया है।

ग्रामीण और शहरी भाग में आरोग्य व्यवस्था का सशक्तीकरण करना, विविध बीमारियाँ और रोगों का नियंत्रण करना, आरोग्य के संबंध में जनजागृति करना और विविध योजनाओं के माध्यम से रोगी को आर्थिक सहायता देना यह इस अभियान का प्रमुख उद्देश्य है।

ब. एकजन्कीय उत्परिवर्तन के कारण होने वाले रोग (एकजन्कीय विकार)

किसी एक सामान्य (निर्दोष) जनुक में उत्परिवर्तन होने के कारण जो रोग होते हैं उन्हें एकजनुकीय विकार कहते हैं। इस प्रकार के लगभग 4000 से भी अधिक मानवीय विकारों की जानकारी हो चुकी है। सदोष जनुकों के कारण शरीर में उन जनुकों द्वारा बनने वाले उत्पादित नहीं बनते अथवा अल्प मात्रा में बनते हैं। उपापचय के इस प्रकार के जन्मजात विकार कम उम्र में जानलेवा साबित हो सकते हैं। इस प्रकार के रोगों के उदाहरण टचिनसन्स रोग, हेसैक्स रोग, गैलेक्टोसेमिया, फेनिल कीटोनमेट, दात्रकोशिका रक्ताल्पता (सिकलसेल एनिमिया), सिस्टीक फाइब्रोसिस (पुटी तंतुमयता), रंजकहीन–ता, हीमोफिलिया रतौंधी इत्यादि हैं।

1. रंजकहीनता (Albinism) रंजकहीनता यह एक जनुकीय विकार है। इस विकार में शरीर मेलैनिन नामक रंजकद्रव्य तैयार नहीं कर पाता। आँखे, त्वचा और बालों को मेलौनिन नामक भूरे रंग के रंजक के कारण रंग प्राप्त होता है। रंजकहीन व्यक्ति की त्वचा निस्तेज होती है और बाल सफेद होते हैं। आँखें सामान्य तौर पर गुलाबी होती हैं क्योंकि आँख की पुतली और दृष्टिपटल में रंजकद्रव्य नहीं होता।

16.11 रंजकहीनता बाधित बच्चे की आँखें और बाल

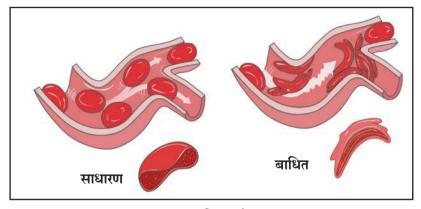
2. दात्रकोशिका रक्ताल्पता (सिकलसेल एनिमिया)

प्रथिन, डी.एन.ए. आदि अणुओं की रचना के किसी भी एकदम छोटे बदलाव के परिणामस्वरूप रोग या विकार होता है। हिमोग्लोबिन अणु की रचना का छठा अमिनो अम्ल, ग्लुटामिक अम्ल होता है। इसकी जगह वैलिन अम्ल ले ले तो हिमोग्लोबिन के अणु की रचना में परिवर्तत आ जाता है। इसी कारण लाल रक्त किणकाओं का उभयोत्तल सामान्य आकार बदलकर वे हाँसिए की आकार की हो जाती हैं। इस स्थिति को दात्रकोशिका रक्ताल्पता कहते हैं। इस रोग से बाधित व्य-क्तियों में हिमोग्लोबिन की ऑक्सीजन का संवहन करने की क्षमता कम हो जाती है।

इस स्थिति में कई बार लाल रक्तकणिकाओं की गुठली बन जाती है और वे नष्ट हो जाती हैं। परिणामस्वरूप रक्त – वाहिनियों में रुकावट पैदा हो जाती है और परिसंचरण संस्थान, मस्तिष्क, फेफड़े, वृक्क आदि को क्षति पहुँचती है। यह रोग आनुवंशिक है। निषेचन के समय जनुकीय बदलावों के कारण यह रोग होता है। माता या पिता दोनों सिकलसेल पीड़ित अथवा वाहक हों तो उनके बच्चों को यह रोग हो सकता है। इस कारण समाज के सिकलसेल पीड़ित या सिकलसेल वाहक व्यक्तियों का आपस में विवाह टालना बेहतर होता है।

सिकलसेल बीमारी के दो प्रकार हैं।

- 1. सिकलसेल वाहक व्यक्ति (AS) कैरिअर
- 2. सिकलसेलग्रस्त/पीड़ित व्यक्ति (SS) सफरर


सिकलसेल रोगी की पहचान और लक्षण

हाथ पैर पर सूजन आना, जोड़ों में दर्द, असहनीय वेदना, सर्दी व खांसी बार-बार होना, शरीर में थोड़े ज्वर का होना, जल्दी थकान होना, चेहरा निस्तेज दिखना, हिमोग्लाबिन की मात्रा कम होना।

क्या आप जानते हैं?

महाराष्ट्र के लगभग 21 जिले सिकलसेल से प्रभावित है। इस में विदर्भ के 11 जिलों का समावेश होता है। राज्यभर में 2.5 लाख से अधिक सिकलसेल बाधित रुग्ण हैं। आओ, हम सब अपने रक्त की जाँच करवाएँ। सिकलसेल बीमारी पर नियंत्रण प्राप्त करें।

16.12 सिकलसेल

सिकलसेल रोग इस प्रकार होता है

संकेत चिहन AA =सामान्य (Normal), AS =चालक (Carrier), SS =पीड़ित (Sufferer)

अ.क्र	पुरुष	स्त्री	सिकलसेल और संतान का जन्म
1	AA	AA	माता व पिता दोनों सामान्य हों तो संतान निरोगी होगी ।
2	AA या	AS या	माता या पिता में से एक सामान्य तथा एक वाहक हो तो संतान के सामान्य या वाहक
	AS	AA	होने की संभावना आधी-आधी (50%)होती है।
3	AA या	SS या	माता या पिता में से एक सामान्य और एक पीड़ित हो तो संतान वाहक होगी।
	SS	AA	
4	AS	AS	माता-पिता दोनों वाहक हों, तो संतान के सामान्य होने की 25%, पीड़ित होने की
			25% और वाहक होने की 50% आशंका होती है।
5	AS या	SS या	माता-पिता में से एक वाहक और एक पीड़ित हो तो संतान के वाहक होने की 50%
	SS	AS	और पीड़ित होने की 50% आशंका होती है।
6	SS	SS	माता-पिता दोनों पीड़ित हों तो संतान पीड़ित होती है।

सिकलसेल निदान – राष्ट्रीय ग्रामीण आरोग्य अभियान के अंतर्गत सभी जिला अस्पतालों में सिकलसेल निदान की सोल्युबिलिटी टेस्ट की सुविधा है। उसी प्रकार ग्रामीण तथा उपजिला अस्पतालों में इलेक्ट्रोफोरेसिस यह निश्चित निदान करने वाली जाँच की जाती है।

उपाय

- 1. यह बीमारी प्रजनन द्वारा ही प्रसारित होती है। इसलिए शादी के पूर्व या बाद वधू और वर दोनों के रक्त की जाँच करवानी चाहिए।
- 2. सिकलसेल वाहक/पीड़ित व्यक्ति को दूसरे वाहक/पीड़ित व्यक्ति से विवाह टालना चाहिए।
- 3. सिकलसेल पीड़ित व्यक्ति को प्रतिदिन फॉलिक अम्ल (फॉलिक एसिड) की एक गोली खानी चाहिए।

16.13 सिकलसेल बाधित बच्चे का हाथ

क. तंतुकणिकीय विकार

तंतुकणिका के डी.एन.ए. अणु के जनुक भी उत्परिवर्तन के कारण सदोष हो सकते हैं। भ्रूण के विकास के समय केवल अंडकोशिका से तंतुकणिकाएँ आती हैं। इसलिए इस प्रकार के विकार केवल माता द्वारा ही संतान को मिलते हैं। लेबेर का आनुवंशिक तंत्रिका विकार तंतुकणिकीय विकार का उदाहरण है।

ड. बहुजनुकीय उत्परिवर्तन के कारण होने वाले विकार (बहुघटकीय विकार)

बहुजनुकीय उत्परिवर्तन के कारण होने वाले विकार कभी-कभार एक से अधिक जनुकों में परिवर्तन होने के कारण विकार आ जाते हैं। ऐसे अधिकांश विकारों में गर्भावस्था में अर्भक के आसपास के पर्यावरणीय घटकों के परिणामस्वरूप विकारों की तीव्रता बढ़ती है। सामान्य तौरपर पाए जाने वाले विकार इस प्रकार हैं। जैसे फाँक होंठ, फाँक तालू, आमाशय का संकुचन, रीढ़ की हड्डी का दोष इत्यादि। इसी प्रकार मधुमेह, रक्तचाप, हृदयविकार, अस्थमा, अतिस्थूलत्व जैसे विकार भी बहुजनुकीय है। बहुघटकीय विकार मेंडेल के आनुवंशिकता के प्रारूप से पूर्ण रूप से नहीं मिलते। पर्यावरण, जीवनशैली तथा कई दोषपूर्ण जनुक इनके संयुक्त जटिल परिणामों के कारण ये विकार होते हैं।

इसे सदैव ध्यान में रखिए

तंबाकू सेवन और कोशिकाओं की अनियंत्रित वृद्धि (कर्करोग) सहसंबंध

बहुत से व्यक्ति तंबाकू का उपयोग धूम्रपान करने के लिए या चुभलाने के लिए करते हुए दिखते हैं। किसी भी अवस्था के तंबाकूजन्य पदार्थ कर्करोग के कारक होते है। बीड़ी, सिगरेट के धूम्रपान के कारण पाचन क्रिया को क्षति पहुँचती है। इसके कारण गले में जलन होती है और खाँसी होती है। अतिधूम्रपान के कारण बारंबार अस्थिरता निर्माण होती है। अंगुलियों में कंपन आता है। सूखी खाँसी के कारण नींद में बाधा आती है। उसी प्रकार आयुसीमा कम होना, दीर्घकालीन ब्राँकाइटिस, फेफड़े, मुँह, स्वरयंत्र, ग्रसनी, स्वादुपिंड, मूत्राशय इनका कर्करोग, परिहृदयरोग जैसी बीमारियों की आशंका होती है।

धूम्रपान के हानिकारक परिणाम तंबाकू में होने वाले 'निकोटिन' नामक घटक के कारण होते हैं। निकोटिन का केंद्रीय तथा परिघीय तंत्रिका संस्थान पर हानिकारक प्रभाव पड़ता है। इसके चलते धमनी सख्त हो जाती है अर्थात धमनी कठोरता के कारण रक्तचाप बढ़ता है।

तंबाकू के धुएँ में पाइटिडिन, अमोनिया, अल्डीहाइड, फरफ्युरॉल, कार्बन मोनॉक्साइड, निकोटिन सल्फर डाइऑक्साइड जैसे हानिकारक यौगिक होते हैं। इनके कारण अनियंत्रित कोशिका विभाजन होना है। तंबाकू का धुआँ महीन कार्बन के कणों से संपूर्ण रूप से भरा होता है। इसके कारण फेफड़ों के निरोगी ऊतकों का रूपांतरण काले रंग के ऊतकों के पुँज में होता है। इससे कर्करोग होता है। तंबाकू और तंबाकूजन्य पदार्थ चुभलाते समय उनके रस का बहुतांश भाग शरीर में अवशोषित किया जाता है। तंबाकू के अतिसेवन से होंठ, जीभ का कर्करोग, दृष्टिदोष तथा तंत्रिका कंपन हो सकता है। इसलिए कर्करोग से शरीर को बचाना हो तो तंबाकू तथा तंबाकूजन्य पदार्थों का सेवन कभी न

तंबाकू सेवन के विरोध में पथनाटय/नाटिका प्रस्तुत करें और तंबाकूविरोधी अभियान में भाग लें।

स्वाध्याय 🗸 🦁

कोष्ठक में दिए हुए विकल्पों में से उचित विकल्प चुनकर वाक्य पूर्ण कीजिए।

(अनुवंश, लैंगिक प्रजनन, अलैंगिक प्रजनन, गुणसूत्र, डी.एन.ए, आर.एन.ए., जनुकी)

- अ. आनुवंशिक लक्षण माता-पिता से उनकी संतित में संक्रमित होते हैं।..... को आनुवंशिकता के कार्यकारी घटक कहते हैं।
- आ. प्रजनन की प्रक्रिया द्वारा जन्म लेने वाले सजीवों में सुक्ष्म भेद होते हैं।
- इ. सजीवों के कोशिका केंद्रक में होने वाला तथा आनुवंशिक गुणधर्म संक्रमित करने वाला घटक है।
- ई. गुणसूत्र प्रमुख रूप से से बने होते हैं।
- प्रजनन की प्रक्रिया द्वारा जन्म होने वाले सजीवों में अधिक मात्रा में भेद होते हैं।

2. स्पष्टीकरण लिखिए।

- अ. किसी एक संकर की सहायता से मेंडेल की एकसंकर संतित स्पष्ट कीजिए।
- आ. मेंडेल की द्विसंकर संतित किसी एक संकर दवारा स्पष्ट कीजिए।
- इ. मेंडेल की एकसंकर और द्विसंकर संतित में अंतर के मुद्दों को स्पष्ट कीजिए।
- ई. क्या जनुकीय विकार से ग्रस्त व्यक्ति के साथ रहने को टालना उचित है ?

3. निम्नलिखित प्रश्नों के उत्तर अपने शब्दों में लिखें।

- अ. गुणसूत्र क्या हैं? उनके प्रकार स्पष्ट कीजिए।
- आ. डी.एन.ए. अणु की रचना स्पष्ट कीजिए।
- इ. डी.एन.ए. फिंगर प्रिंटिंग का किस प्रकार उपयोग हो सकता है, इन विषय में आपके विचार व्यक्त कीजिए।
- ई आर.एन.ए. की रचना, कार्य और प्रकार स्पष्ट कीजिए।
- उ. वधू और वर दोनों को विवाहपूर्व रक्त की जाँच करानी क्यों आवश्यक है?

4. संक्षिप्त जानकारी लिखिए।

- अ. डाउन सिंड्रोम या मंगोलिकता
- आ. एकजनुकीनीय विकार
- इ. सिकिलसेल एनीमिया : लक्षण तथा उपाय

समूह अ, ब और क का एक-दूसरे से क्या संबंध है? परस्पर संबंध स्पष्ट कीजिए

अ	ब	क		
लेबेर की	44 + xxy	निस्तेज त्वचा, सफेद बाल		
आनुवंशिक				
तंत्रविकृति				
मधुमेह	45 + x	पुरुष प्रजननक्षम नहीं होते		
रंजकहीनता	तंतुकणिका	स्त्रियाँ प्रजननक्षम नहीं		
	विकार	होती		
टर्नर सिंड्रोम	बहुघटकीय	भ्रूण विकसित होते समय		
	विकृति	विकृति निर्माण होती है।		
क्लाईनफेल्टर्स	एकजनुकीय	रक्त की ग्लुकोज की मात्रा		
सिंड्रोम	विकृति	पर परिणाम		

6. सहसंबंध लिखिए

अ. 44 + X : टर्नर सिंड्रोम : : 44 + XXY :

आ. 3:1 एकसंकर :: 9:3:3.....

इ. स्त्रियाँ: टर्नर सिंड्रोम ::पुरुष:

आनुवंशिक विकार की जानकारी के आधार पर सारिणी तैयार कीजिए।

उपक्रम:

- अ. डी.एन.ए. अणु की प्रतिकृति बनाएँ तथा जानकारी के साथ प्रस्तुत कीजिए।
- आ. तंबाकू सेवन और कर्करोग विषय के बारे में एक Power Point Presentation तैयार कीजिए और प्रस्तुत कीजिए।

17. जैव प्रौदुयोगिकी की पहचान

- > ऊतक वनस्पति ऊतक और प्राणी ऊतक
- > कृषि पर्यटन

- > ऊतक संवर्धन
- 🕨 कृषिपूरक व्यवसाय

- 1. सजीवों में आवश्यक कार्य कौन-से घटकों द्वारा किए जाते हैं?
- 2. सजीवों के शरीर की रचनात्मक व कार्यात्मक छोटी से छोटी इकाई कौन-सी है?

ऊतक (Tissue)

अमीबा जैसे एक कोशकीय सजीव में सारे आवश्यक कार्य उसी कोशिका के अंगों द्वारा किए जाते हैं, परंतु बहुसंख्य सजीव बहुकोशकीय हैं। ऐसे में उनके शरीर के विविध कार्य कैसे होते हैं? शरीर के विविध कार्यों को पूर्ण करने के लिए शरीर की कोशिकाओं का समूह एकत्र आता है।

अक्षर → शब्द → वाक्य → पाठ → क्या पाठ्यपुस्तक यह क्रम जाना-पहचाना लगता है?

इसी प्रकार सजीवों के शरीर की संरचना एक विशेष क्रम में होती है। इनमें से कोशिका और उसके विभिन्न भागों की जानकारी आपको पहले से है।

शरीर का विशिष्ट कार्य करने के लिए एकत्र आए एक जैसे कोशिकाओं के समूह को ऊतक कहते हैं। बहुकोशकीय सजीवों के शरीरों में लाखों कोशिकाएँ होती हैं। इन कोशिकाओं का समूह में विभाजन होते हुए भी प्रत्येक समूह एक विशिष्ट कार्य ही करता है। उदा. हमारे शरीर में मांसपेशियों के आकुंचन व प्रसारण के कारण हम हिल-डुल पाते हैं। इसी प्रकार वनस्पतियों में संवहनी ऊतक पानी व अन्न का वहन शरीर के सभी भागों तक करते हैं। कोशिकाओं की विशेष रचना व उनके कार्यों का विभाजन होने के कारण शरीर के सभी काम सर्वोच्च क्षमता से किए जाते हैं।

सरल ऊतक (Simple Tissue)

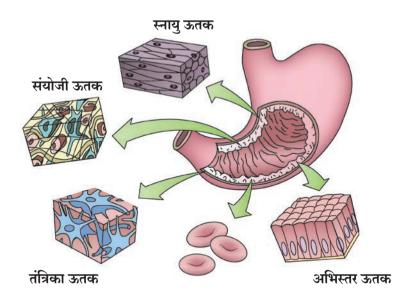
सरल ऊतक एकही प्रकार की कोशिकाओं से बने होते हैं। उदा. प्राणियों के अभिस्तर ऊतक व वनस्पतियों में मूल ऊतक

जटिल ऊतक (Complex Tissue)

ये एक से अधिक कोशिकाओं से मिलकर बने होते हैं। उदा. प्राणियों में रक्त व वनस्पतियों में जलवाहिनियाँ व रसवाहिनियाँ।

क्या वनस्पतियों व प्राणियों में शरीररचना व कार्य एक जैसे होते हैं?

वनस्पतियों के स्थिर होने के कारण उनके बहुत सारे ऊतक आधार देने वाले होते हैं। वनस्पतियों में वृद्धि उनके शरीर के निश्चित भागों में होती है, जहाँ विभाजी ऊतक पाए जाते हैं। प्राणियों को अन्न, निवास व साथी की खोज के लिए सतत गतिविधि या स्थानांतरण करना पड़ता है, जिसमें उन्हें अधिक ऊर्जा की आवश्यकता होती है। प्राणियों के अधिकांश ऊतक जीवित कोशिकाओं द्वारा तैयार किए जाते हैं। प्राणियों में वृद्धि सारे शरीर में एक होती है तथा इनमें विभाजक/अविभाजक ऊतक जैसे भाग नहीं होते अर्थात वनस्पतियों तथा प्राणियों में अलग-अलग प्रकार के ऊतक कार्य करते हैं।


प्राणी ऊतक (Animal Tissue)

हमारा हृदय. रक्तवाहिनियाँ व आँत जैसे अंग हमें क्यों दिखाई नहीं देते?

प्राणियों के शरीर में अनेक अंग एकत्र आकर कार्य करते हैं। फेफड़े, श्वसननलिका जैसे अंग कुछ विशिष्ट मांसपेशियों के आकुंचन व प्रसारण के कारण श्वसनकार्य पूर्ण कर पाते हैं। इन कार्यों के अनुसार ऊतक का अलग-अलग प्रकार में वर्गीकरण किया गया है।

प्राणी ऊतक में अभिस्तर ऊतक, संयोजी ऊतक, मांसपेशीय ऊतक व तंत्रिक ऊतक ये प्रमुख चार प्रकार हैं।

17.1 प्राणी ऊतक के प्रकार

क्या आप जानते हैं?

शरीर में रक्त भी संयोजी ऊतक का एक प्रकार है। रक्त शरीर के एक भाग से दूसरे भाग में प्रवाहित होता है व अनेक पदार्थों का वहन करता है। उदा. ऑक्सिजन व पोषकद्रव्यों को सभी मांसपेशियों तक पहुँचाता है। उसी प्रकार शरीर के सभी भागों में निर्मित होने वाले अपशिष्ट पदार्थ का वृक्क की ओर उत्सर्जन के लिए वहन करता है।

अभिवर्धन लेंस की सहायता से अपनी हथेली की त्वचा का निरीक्षण कीजिए। क्या एक-द्सरे से मजबूती से सटे चौकोनी या पंचकोनी आकार दिखते हैं?

अभिस्तर ऊतक (Epithelial Tissue)

प्राणियों के शरीर के संरक्षक आवरण को 'अभिस्तर ऊतक' कहते हैं। इस ऊतक की कोशिकाएँ एक-दूसरे से मजबूती से सटी व अखंड स्तर के स्वरूप में पाई जाती हैं। शरीर में प्रवेश करने वाले किसी भी पदार्थ को पहले अभिस्तर ऊतक का सामना करना पड़ता है। अभिस्तर ऊतक की कोशिकाएँ उनके बीच उपस्थित अन्य कोशिकाओं से तंतुमय पटल द्वारा अलग होती हैं। त्वचा, मुँह के अंदर की त्वचा, रक्तवाहिनियों के स्तर, फेफड़ों के वायुकोष का स्तर इत्यादि अभिस्तर ऊतकों से बने हैं।

शरीरों के विविध अंग व इंद्रियसंस्थान को अलग-अलग रखने का कार्य कौन करता है और कैसे?

अभिस्तर ऊतक के प्रकार

नाम	आकृति	कहाँ पाए जाते हैं	स्वरूप	कार्य
सरल पट्टकी अभिस्तर (Squamous epithelium)		मुँह के आंतरिक भाग, अन्ननलिका रक्तवाहिनियों फेफड़े व वायुकोष के आंतरिक भाग में पाए जाते हैं।	पतली महीन चपटी कोशिकाओं के अर्धपाट पटल (अस्तर)	निश्चित पदार्थों का वहन करती हैं।
स्तरित पट्टकी अभिस्तर (Stratified epithelium)		त्वचा के बाह्यस्तर पर	कोशिकाएँ एक पर एक ऐसी अनेक सतहों में लगी होती है।	अंग/अंगों का झीजन रोकना/ सुरक्षा करना
ग्रंथिल अभिस्तर (Glandular epithelium)		त्वचा के अंदर की ओर	कोशिकाओं में स्रावक पदार्थों से भरी हुई पिटिका होती है।	पसीना, तेल श्लेष्म या अन्य स्राव करने
स्तंभीय अभिस्तर (Columnar epithelium)		आँतों तथा अन्नमार्ग के आंतरिक स्तर पर	स्तंभ के आकार की खड़ी कोशिका अवशोषण का कार्य करने वाले अंगों की ऊपर की सतह इन कोशिकाओं की तह होती है।	पाचक रस का स्राव, पोषक द्रव्यों का अवशोषण
रोमक पट्टकी अभिस्तर (Ciliated Epithelium)		श्वसन मार्ग के आंतरिक भाग में	कोशिकाओं में बाल जैसी रचना पाई जाती है।	श्लेष्मा और हवा आगे ढकेल कर श्वसनमार्ग को साफ करती है।
घनाभरूपी अभिस्तर (Cuboidal epithelium)		वृक्कनलिका, लार ग्रंथिकी नलिका	ठोसाकृति कोशिकाएँ	लाभदायक पदार्थ को मूत्र विसर्जन के पहले अवशोषित करना। लार का स्रावित होना।

थोड़ा सोचिए

अभिस्तर ऊतक को सरल ऊतक क्यों कहते है?

रक्त की स्थाई स्वरूप की स्लाइड का संयुक्त सूक्ष्मदर्शी की मदद से निरीक्षण कीजिए। आपको क्या दिखता है?

विविध प्रकार तथा विविध रंगों व आकारों की कोशिकाएँ मिश्रित हैं अर्थात रक्त यह एक जटिल ऊतक का प्रकार है।

संयोजी ऊतक (Connective Tissue): शरीर के विभिन्न भागों को एक-दूसरे से जोड़ने वाले ऊतक को संयोजी ऊतक कहते हैं। इस ऊतक में कोशिकाएँ अबद्ध तथा आधारक में धँसी होती है। आधारक जेलीसदृश द्रव या ठोस होता है।

	सर्याजी ऊतक के प्रकार				
प्रकार	आकृति	कहाँ पाई जाती हैं	स्वरूप	कार्य	
रक्त Blood		बंद रक्त परिसंचरण संस्थान	रक्त द्रव्य में लाल रक्त कणिका-श्वेत रक्त कणिका और रक्त पट्टी तथा द्रव्यरूप आधारक होते हैं।	ऑक्सीजन, पोषक तत्व, संप्रेरक व उत्सर्जित पदार्थों का वहन करना।	
ल सिका Lymph		शरीर की कोशिकाओं के चारों ओर	रक्तकेशिकाओं से स्नावित द्रव्य । श्वेत रक्तकणिक व द्रवरूप आधारक ।	रोगों के संक्रमण से शरीर की सुरक्षा करना	
अन्तशलीय संयोजी ऊतक Areolar tissue		त्वचा और मांसपेशी के बीच और रक्तवाहिनियों के चारों ओर।	विविध प्रकार की अबद्ध कोशिकाएँ जेली जैसे आधारक व लचीले तंतु	आंतरअंगों को सहारा देना और ऊतकों की मरम्मत में सहायता करना	
बसीय संयोजी ऊतक Adipose tissue		त्वचा के नीचे का आन्तरिक अंगों को घेरे हुए होता है।	बसायुक्त कोशिका तथा जेली जैसा आधारक	तापरोधक, ऊर्जा का स्रोत, स्निग्ध पदार्थ जमा कराना।	
उपस्थि Cartilage	100000	नाक, कान, स्वरयंत्र, श्वासनलिका	तंतुमय, लचीली कोशिका व जेली जैसे आधारक	हड्डियों के पृष्ठभाग को गद्देदार रखना, अंगों को आकार व आधार देना।	
अस्थी (हड्डी) Bones		संपूर्ण शरीरभर विशिष्ट रचनाओं में	कैल्शियम फॉस्फेट से बनी घनरूपी आधारक व उसमें 'ऑस्टीओसाईटस्' (अस्थिपेशी) नामक संसोचित कोशिका में।	शरीर के सभी अंगों को आधार देना । हलचल में मदद करना, अंगों का संरक्षण करना ।	
स्नायुरज्जू Tendons और अस्थिबंध Ligaments		संधि की जगह	स्नायुरज्जू तंतूमय मजबूत व कम लचीला अस्थि– बंध– अतिशय लचीला व मजबूत	स्नायुरज्जू – स्नायु को हड्डियों से जोड़ना । अस्थिबंध–दो हड्डियों को जोड़ना।	

- 1. मोटे व्यक्ति की अपेक्षा पतले व्यक्ति को ठंड अधिक क्यों लगती है?
- 2. हड्डियों को क्यों मोड़ा नहीं जा सकता?

मांसपेशीय ऊतक (Muscular Tissue)

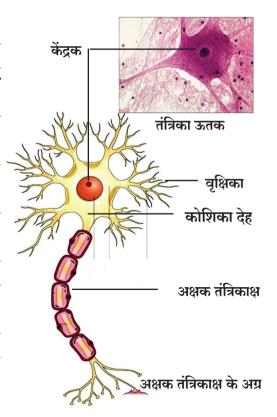
आपका हाथ कुहनी से मोड़ें। ऊपर व नीचे की मांसपेशियों का निरीक्षण कीजिए। हाथ सीधा रख कर पुन: उस मांसपेशियों का निरीक्षण कीजिए। यही कृति पैर को घुटनों से मोड़कर कीजिए। प्रत्येक गतिविधि के समय मांसपेशियों में होने वाले आकुंचन व प्रसारण की एहसास अनुभूति हुई क्या?

यह आकुंचन व प्रसारण जिस कारण से होता है उस विशेष प्रकार के संकोची प्रथिन से मांसपेशीय तंतु व मांसपेशीय ऊतक बनता है। मांसपेशीय ऊतक, मांसपेशीय तंतु की लंबी कोशिकाओं से बने होते हैं। इन कोशिकाओं में संकोची प्रथिनों के आकुंचन व प्रसरण के कारण मांसपेशियों में गतिविधि होती है।

स्नायु ऊतक के प्रकार

पट्टकी स्नायु	अपट्टकी स्नायु	हृदय स्नायु
(Striated Muscles)	(Non striated muscles)	(Cardiac muscles)
केंद्रक पट्टे	केंद्रक	केंद्रक — पट्टे
लंबी-दंडगोलाकार	दोनों किनारों पर संकरी, छोटी अशाखीय	दंडगोलाकार, शाखीय व एककेंद्रकीय
अशाखीय व बहुकेंद्रकीय मांसपेशी	व एककेंद्रकीय मांसपेशी	मांसपेशी
स्वरूप - इन मांसपेशियों पर गाढ़े व	स्वरूप - गाढ़े व हल्के पट्टे नहीं	स्वरूप – मांसपेशी पर गाढ़े व हल्के
हल्के पट्टे होते हैं। हड्डियों से जुड़े	होते । यह हड्डियों से जुड़े हुए नहीं होते।	पट्टे होते है। हृदय इन मांसपेशियों से
होने के कारण इन्हें 'कंकाल मांसपेशी'	इन मांसपेशियों की गतिविधि पर हमारा	बना होता है। इन मांसपेशियों की
कहते हैं। इन मांसपेशियों में गतिविधि	नियंत्रण नहीं होता। इसलिए इन्हें	गतिविधि पर हमारा नियंत्रण नहीं
हमारी इच्छानुसार होती हैं। इसलिए	अनैच्छिक मांसपेशी कहते हैं। यह	होता। लयबद्ध पद्धति से आकुंचन
इन्हें ऐच्छिक मांसपेशी कहते हैं।	अन्ननलिका व रक्तवाहिनियों में होती है।	व प्रसरण होता है।
हाथ-पैर का हिलना, दौड़ना, बोलना	पलकों का गिरना तथा उठना, पाचनसंस्था	हृदय का आकुंचन व प्रसरण कराने
इन गतिविधीयों को कराने वाली	द्वारा भोजन का प्रवास, रक्तवाहिनयों में	वाली मांसपेशी
मांसपेशी	आकुंचन व प्रसरण कराने वाली मांसपेशी	

श्वसनसंस्थान के श्वासपटल में कौन-सी मांसपेशियाँ होती हैं?

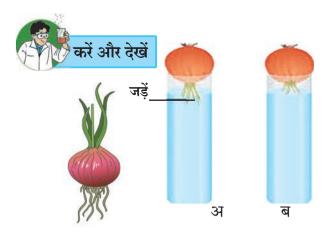

आँखे बंद करें व हाथों से सामने रखी हुई विविध वस्तुओं को स्पर्श करें व पहचानें। कापी, पुस्तक, बेंच, कंपासपेटी ऐसी अनेक वस्तुएँ बिना देखे भी सिर्फ स्पर्श से जानना आपके लिए क्यों संभव है?

तंत्रिकीय ऊतक (Nervous Tissue)

गीत सुनकर गायक का नाम पहचानना, खुशबू से रसोईघर में बनने वाले पदार्थ पहचानना, ऐसे काम हम हमेशा करते हैं इसके लिए हमारी मटट कौन करता है?

स्पर्श, ध्वनि, गंध, रंग इन कुछ अन्य उद्दीपनों को प्रतिसाद देना शरीर के तंत्रिकीय ऊतक के कारण संभव है।

उद्दीपित होने और उस उद्दीपन को गित से शरीर के एक भाग से दूसरे भाग तक पहुँचाने के लिए तंत्रिकीय ऊतक विशेष प्रकार से बने हैं। प्रत्येक तंत्रिकीय ऊतक का कोशिका देह मुख्य भाग होता है। इसमें केंद्रक व कोशिका द्रव्य होता है। कोशिकादेह से अनेक छोटे तंतु निकलते हैं, जिन्हें वृक्षिका कहते हैं। इनमें एक तंतु काफी लंबा होता है जिसे अक्षक तंत्रिकाक्ष कहते हैं। एक तंत्रिका कोशिका एक मीटर तक लंबी हो सकती है। कई तंत्रिकातंतु संयोजी ऊतकों द्वारा जुड़े होने से तंत्रिका (Nerve) का निर्माण करते हैं। मस्तिष्क, मेरूरज्जू व तंत्रिकाएँ, तंत्रिका ऊतक से बनी होती हैं। तंत्रिका ऊतक व मांसपेशी ऊतक इनके कार्यात्मक संयोग के कारण ही बहुसंख्य प्राणियों में उद्दीपन की अनुक्रिया होती है।



17.2 तंत्रिकाकोशिका : तंत्रिका ऊतक की इकाई

वनस्पति ऊतक (Plant Tissue)

- 1. प्राणी और वनस्पति इनकी वृद्धि में कौन-सा महत्त्वपूर्ण अंतर है?
- 2. वनस्पतियों में वृद्धि शरीर में निश्चित स्थान पर ही क्यों होती है?

आकृति में दिखाए अनुसार प्रत्येक गैसजार पर एक -एक प्याज इस प्रकार रखिए कि नीचे का भाग पानी में डुबा हो। पहले, दूसरे व तीसरे दिन प्याज की जड़ों की लंबाई नापकर लिख लें। चौथे दिन दूसरे गैसजार(ब) पर रखे प्याज की जड़ें लगभग 1 सेमी काटें। अगले पाँच दिनों तक रोजाना दोनों प्याज की जड़ों की लंबाई नापें व नीचे दी गयी सारिणी में अंकित करें।

अब आगे पाँच दिनों तक दोनों प्याजों की जड़ों की लंबाई नापें व नीचे दी गई सारिणी में अंकित करें।

17.3 प्याज की जड़ों में होने वाला बदलाव

लंबाई	दिन 1	दिन 2	दिन 3	दिन 4	दिन 5
जार – अ					
जार – ब					

- 1. किस प्याज के जड़ की लंबाई अधिक है? क्यों
- 2. दूसरे गैसजार (ब) में जड़ की वृद्धि किस कारण रुक गई होगी?

विभाजी ऊतक (Meristem Tissue)

वनस्पतियों के निश्चित भाग में रहने वाले विभाजी ऊतकों के कारण उस भाग में वृद्धि होती है। इस ऊतक की कोशिका में स्पष्ट केंद्रक, गाढ़ा जीवद्रव्य व चारों ओर पतली दीवारोंवाली कोशिकाओं की रचना झुरमुट जैसी होती है। इन कोशिकाओं में बहुधा रिक्तिका नहीं होती। ये कोशिकाएँ अतिशय क्रियाशील होती हैं। वनस्पतियों में वृद्धि करना विभाजी ऊतक का महत्त्वपूर्ण कार्य है। विभाजी ऊतक किस भाग में हैं, इस आधार पर वे तीन प्रकार में विभाजित होता हैं।

आकृति	स्थान	कार्य
	प्र <mark>रोह विभाजी ऊतक</mark> ः जड़ व तनों की शिराओं में होते हैं।	जड़ व तनों का घेर व मोटाई बढ़ाना।
	आंतरीय विभाजी ऊतक : पत्तियों के डंठल व टहनियों की तलहट में	पत्तियों व फूलों की निर्मिति करना। टहनियों की वृद्धि करना।
	पार्श्व विभाजी ऊतक : जड़ व तनों के पार्श्व भाग में।	आंतरीय विभाजी ऊतक पत्तियों के डंठल व टहनियों की तलहट में

17.4 वनस्पतियों में विभाजी ऊतकों के स्थान

स्थायी ऊतक (Permanent Tissue)

विभाजी ऊतक के कोशिका विभाजन से तैयार हुई नई कोशिका पूर्ण वृद्धि के बाद निश्चित स्थान पर कोई विशिष्ट कार्य करने लगती है, उस समय उसकी विभाजन क्षमता समाप्त हो जाती है। इस प्रकार स्थायी आकार, आकृति व कार्य निर्धारित करने की प्रक्रिया को विभेदन (Differentiation) कहते हैं व ऐसी विभेदित कोशिका द्वारा स्थायी ऊतक बनता है। स्थायी ऊतक ये दो प्रकार के होते हैं, सरल स्थायी ऊतक व जिटल स्थायी ऊतक।

सरल स्थायी ऊतक (Simple Permanent Tissues)

यह एकही प्रकार की कोशिकाओं से बनते हैं। इनके कार्य के अनुसार इनके विभिन्न प्रकार हैं।

पृष्ठभागीय ऊतक (Epidermis)

17.5 रिओ वनस्पति के ऊतक

रिओ, लीली या कोई भी ताजे मांसल पत्ते लीजिए। उसे खींचकर व दबाकर ऐसे तिरछा फाड़ें कि टुकड़े के साथ उस पत्ती की पारदर्शक छाल दिखने लगे। चिमटी से इस छाल को अलग करके सेफ्रानिन रंजक के विरल द्रव्य में 1 मिनिट रखें। स्लाइड पर उस छाल को फैलाकर उसपर आच्छादक काँच रखें व सूक्ष्मदर्शी की सहायता से छाल का निरीक्षण करें।

वनस्पित का संपूर्ण पृष्ठभाग कोशिकाओं के एक ही स्तर से बना होता है। इस स्तर को अधिचर्म कहते हैं। अधिचर्म कोशिका सपाट होती है। उसमें आंतरकोशीय अंतिरक्ष नहीं होने से लगातार परत तैयार होती है। तनों व पत्तियों के अधिचर्म पर क्युटिकल नामक मोम जैसी परत होने से उसके निचले भाग में पानी को जमा रखा जाता है।

सरल स्थायी ऊतक के प्रकार (Types of Simple Permanent Tissues)

ऊतक का नाम	मूल ऊतक (Parenchyma)	स्थूल ऊतक (Collenchy- ma)	दृढ़ ऊतक (Sclerenchy- ma)
आकृति	आंतरकोशिकीय अवकाश रिक्तिका हरितलवक	रिक्तिका रिक्तिका कोशिकाभित्तिका	खोखलापन लिग्निनयुक्त मोटी भित्तिका
कोशिकाओं का स्वरूप	पवली कोशकीय दीवारें, आंतरकोशिकीय अवकाश पूर्ण जीवित कोशिका	लंबी कोशिका सेल्युलोज व पेक्टीन के कारण कोने से कोशिका भित्ती का मोटा होना, जीवित कोशिका	दोनों किनारों पर संकरी तंतुमय व मृत कोशिका, कोशिका भित्ती में 'लिग्नीन' पदार्थ का होना
कौन-से भाग में पाई जाती है ?	जड़, तना, पित्तयाँ, फूल, फल व बीज सभी अवयवों में ।	पित्तयों का डंठल तना, शाखाओं की तलहट में ।	तना पित्त्यों की शिराएँ बीज का कठोर कवच, नारियल का बाह्य आवरण
कार्य	रिक्त स्थान भरना, यांत्रिक आधार देना, अन्न/भोजन संग्रहित करना	अवयवों को लचीलापन व आधार देना ।	अवयवों को सख्ती व मजबूती देना।
उपप्रकार	हरित ऊतक - पित्तयों के मूल ऊतक, प्रकाश संश्लेषण करना। वायु ऊतक - जलीय वनस्पित के तनों व पित्तयों को तैरने में मदद करती है		

जटिल स्थायी ऊतक के प्रकार (Types of Complex Permanent Tissues)

ऊतक का नाम	जलवाहिनी (Xylem)	रसवाहिनी (Phloem)		
आकृति	वाहिनिका संवहनी पुल जलवाहिनी	चालनी निलका सहकोशिका		
विशेषता	इस कोशिका की दीवारें मोटी और प्रायः मृत होती हैं।	इस कोशिका में कोशिका द्रव्य वाली जीवित कोशिका होती है।		
कोशिकाओं	वाहिनिका, बाहिनियाँ और तंतु - मृत	चालनी नलिकाएँ, सहकोशिकाएँ, रसवाहिनी मूल तंतु,		
के प्रकार	कोशिका जलवाहिनी मूल ऊतक- जीवित	जीवित कोशिका, रसवाहिनी तंतु मृत कोशिकाएँ		
	कोशिका			
कार्य	एक-दूसरे से जुड़ी हुई नलिकाओं जैसी	एक-दूसरे से जुड़ी हुई नलियाँ, पत्तियों से शर्करा और		
	रचना होती है। पानी और खनिजों का वहन	अमिनो अम्ल का वहन ऊपर तथा नीचे की दिशा में		
	नीचे से ऊपर की दिशा में करती हैं।	करती है।		

सजीवों के शरीर में कुछ जीवित कोशिकाएँ पूर्णक्षम (Totipotent) होती हैं। अगर उन्हें उचित वातावरण मिले तो इन कोशिकाओं से नए पूर्ण सजीव तैयार हो सकते हैं। कोशिकाओं के इस गुणधर्म तथा उनमें जनुकनिर्धारित जैवरासायनिक प्रक्रिया का उपयोग कर अनेक उत्तम दर्जे की व अधिक उत्पादन देने वाली फसलों की विविध प्रजातियाँ इसी प्रकार जानवरों की नई प्रजाति, विविध टीके का निर्माण किया जा सकता है, यह मनुष्य के संज्ञान में आया। इससे ही आगे जैव प्रौद्योगिकी का उदय हुआ।

जैवप्रौद्योगिकी (Biotechnology)

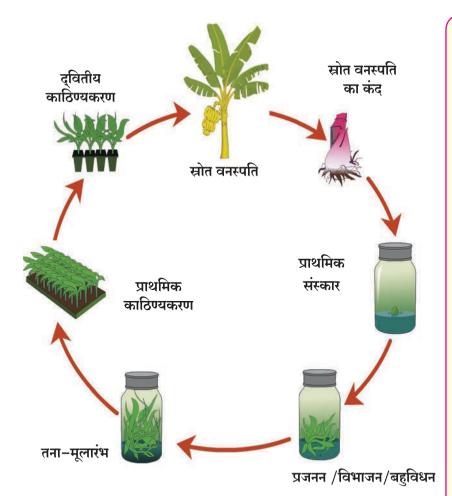
जैवप्रीद्योगिकी नैसर्गिक गुणधर्म के अतिरिक्त नए गुणधर्म धारण करने वाली वनस्पति व प्राणी की उत्पत्ति इस तंत्रज्ञान की मदद से हुई है। मनुष्य के लाभ के उद्देश्य से सजीवों में कृत्रिम रूप से जनुकीय बदलाव व संकर निर्माण कर सुधार करने की प्रक्रिया को जैवप्रीद्योगिकी कहते हैं। इस तंत्रज्ञान में जनुकीय अभियांत्रिकी (Genetic Engineering) व उत्तक संवर्धन (Tissue culture) दोनों तंत्रों का समावेश है। इनका उपयोग मुख्य रूप से नगदी फसल उत्पादन, उनकी प्रजाति में सुधार, पर्यावरणीय प्रतान सहन करने की क्षमता में वृद्धि, टीका निर्मिति, जन्मजात रोगों का निदान, इंद्रियों के प्रत्यारोपण, कर्करोग संशोधन, प्रयोगशाला में कृत्रिम त्वचा, उपस्थित तैयार करने जैसे क्षेत्रों में होता है।

ऊतक संवर्धन (Tissue Culture)

चित्र में दिखाए बगीचे जैसा बगीचा आपके घर/स्कूल/परिसर में बनाना है तो उसके लिए आप क्या करेंगे? कौन-कौन-सी पद्धित से ये पौधे लगाएंगे ?

एकही पौधे पर 2-3 अलग-अलग रंगों की उसी प्रजाति के फूल आपने देखे होगे। ये कैसे संभव है?

खेती व बागवानी के संदर्भ में हम एक अत्यधुनिक तंत्र देखेंगे।


17.6 ऊतक संवर्धन केले का पौधा व उसपर आधारित खेती

सजीवों के शरीर के बाहर पोषक व निर्जंतुक माध्यम से उनकी कोशिका या ऊतक की वृद्धि करने के तंत्र को ऊतक संवर्धक कहते हैं। आजकल ऊतक संवर्धन तंत्र द्वारा एक कोशिका या ऊतक से संपूर्ण सजीव को विकसित किया जाता है।

ऊतक संवर्धन के लिए आवश्यक पोषक व ऊर्जा की आपूर्ति करने के लिए द्रवरूप, स्थायुरूप या अगार से तैयार की गई जेली जैसा माध्यम उपयोग में लाया जाता है।

सूचना और संचार प्राद्यौगिकी के साथ

नीचे दिए हुए संकेत स्थल का उपयोग कर ऊतक संवर्धन व अन्य जानकारी प्राप्त कर कक्षा में प्रस्तुत कीजिए। www.britannica.com/science/tissue-culture www.encyclopedia.com/plants and animals/agriculture and horticulture

17.7 ऊतक संवर्धन की प्रक्रिया

जैवप्रौद्योगिकी द्वारा कृषिकार्य व्यवस्थापन में हुआ परिवर्तन

- 1. फसलों के डी.एन.ए. में बदलाव लाकर जनुकीय सुधारित प्रजाति (Genetically Modified Crops) का निर्माण किया जाता है। बहुधा ऐसी प्रजातियाँ निसर्ग में नहीं पाई जातीं। इस प्रजाति में नए-निराले उपयुक्त गुणधर्म संकरित किए जाते हैं।
- 2. वातावरणीय प्रतान सहन करने की क्षमता-निरंतर बदलता तापमान, गीला व सूखा अकाल, बदलती जलवायु ये सभी वातावरणीय प्रतान कुछ नैसर्गिक प्रजाति सहन नहीं कर सकती पर GM प्रजाति इनमें से किसी भी प्रतिकूल परिस्थिति में वृद्धि दर्शाती है।
- 3. उपद्रवी कीटक, रोगजंतु, रासायनिक अपतृणनाशक का प्रतिरोध करने की क्षमता इस प्रजाति में होने के कारण जंतुनाशक कीटनाशक व अपतृणनाशक का उपयोग टाला जा सकता है।
- 4. GM प्रजाति के बीजों के कारण फसलों का पोषक मूल्य बढ़ता है तथा उनमें कम खराबी आती है।

वैज्ञानिकों का परिचय

फ्रेडिंरिक कॅम्पिअन स्टुअर्ड (1904–1993) ये एक ब्रिटिश वैज्ञानिक थे। कोशिका व ऊतक की शरीर के बाहर वृद्धि हो सकती है, ये उन्होंने सिद्ध किया। इसके लिए उन्होंने गाजर की जड़ से कोशिका निकालकर प्रयोगशाला में पोषक तत्त्व के माध्यम से उनकी वृद्धि की व प्रत्येक कोशिका में संपूर्ण वनस्पति निर्माण करने की क्षमता होती है यह भी सिद्ध किया।

इस प्रकार से सर्वगुणसंपन्न फसलों के बीज निर्मित होने से विश्वभर में किसान बड़े संख्या में GM फसल उत्पन्न कर रहे हैं। दिनोंदिन उनके बोआई के क्षेत्र में वृद्धि हो रही है। उच्च उत्पादनशील फसलों की प्रजाति (High Yielding Varieties) में केला, मक्का, चावल, आलू, सोयाबीन, टमाटर, रूई, सेब, बैंगन, पपीता, गुलाब, चुकंदर, तंबाकू, गेहूँ इत्यादि फसलों की GM प्रजाति उपलब्ध है। इनमें से कुछ में कीटरोधक जनकों का रोपण किया जाता है।

मक्का: MON 810, MON 863

आलू : एम्फ्लोरा

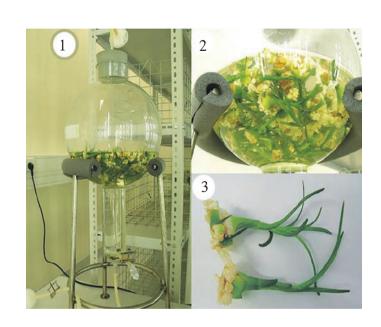
चावल : गोल्डन राईस, सोयाबीन : विस्टिव गोल्ड

टमाटर : वैशाली रूई : बी.टी. कॉटन

परिसर में कौन-कौन-सी फसलों के लिए जनुकीय सुधारित प्रजाति का उपयोग होता है। इसकी जानकारी प्राप्त करे व अंकित करें। Gm फसलों का मुनष्य या पर्यावरण पर कोई प्रतिकूल परिणाम होता है क्या?

इसकी भी खोज करें।

इस प्रकार ऊतक संवर्धन के माध्यम से 'हरितक्रांति' साध्य हो रही है व भारत जैसे विशाल जनसंख्या वाले देश में भरपूर अनाज उत्पादित करने का प्रयत्न सफल हो रहा है।



आपके घर तथा विद्यालय के पास अपना पौधघर(नर्सरी) तैयार करें। परिसर में बढ़ने वाले फूल, फलों के पौधे तथा अलंकारित वृक्षों के पौधे तैयार कीजिए। इस कृति से भविष्य में कुछ उदयोग विकसित हो सकते है क्या? इसका विचार कीजिए।

उद्यानविद्या/पृष्पकृषि पौधघर व वनविद्या के क्षेत्र में जैव प्रौद्योगिकी का अनुप्रयोग। (Application of Biotechnology in Floriculture, Nurseries and Forestry)

छोटे या बड़े प्रमाण में बगीचे बनाना, बंजर जमीन पर वृक्षारोपण कर वन तैयार करना, नाश हो रहे जंगलों का पुनरुज्जीवन करना इन सभी उद्योगों के लिए पौधघर की आवश्यकता होती है। इसके लिए बड़ी संख्या में पौधों की आवश्यकता होती है। ऊतक संवर्धन तंत्र का उपयोग पौधे तैयार करने के उदयोग में लाभदायक है।

- ऊतक संवर्धन के कारण उत्कृष्ट प्रजाति के फूल, फल व अन्य वनस्पितयों के हुबहू एक जैसी प्रितकृति बड़ी संख्या में प्राप्त की जा सकती हैं।
- 2. कम समय में पूर्ण रूप से विकसित वनस्पतियाँ मिलती हैं।
- 3. परागीभवन के माध्यम न रहें या उपजाऊ बीज न रहें ऐसे में भी वनस्पतियों का उत्पादन बड़े अनुपात में हो सकता है। उदा. आर्किड, ड्रासेरा जैसी वनस्पतियों के बीज अंकुरित नहीं होते, पर ऊतक संवर्धन से इनकी निर्मिति सरल रूप से संभव है।
- 4. बायोरिएक्टर में कोशिका वृद्धि कर उन्हें अधिक पोषक माध्यम व अन्य रोगकारक सूक्ष्मजीवों से संरक्षण अतिशय कम खर्च में दिया जाता है। बड़ी संख्या में पौधों की निर्मिति करने पर बायोरिएक्टर का उपयोग लाभदायक

17.8 बायोरिएक्टर और उस आधार पर पौधों की निर्मिति

- 5. अत्यल्प साहित्य व स्रोत का उपयोग कर कम समय में बड़ी संख्या में पौधों की निर्मिति होती है।
- 6. ऊतक संवर्धन व जनुकीय सुधारित पद्धित से निर्मित वनस्पितयाँ बहुधा रोगमुक्त होती हैं। विभाजी ऊतक संवर्धन से मिले हए पौधे विषाणमुक्त होते हैं।
- 7. पारंपरिक पद्धति से दो/अधिक प्रजाति के संकर बनाकर तैयार किए गए भ्रूण में कुछ कारणों से पूर्ण वृद्धि नहीं होती। तथापि ऊतक संवर्धन से उसमें निश्चित वृद्धि होती है।
- 8. दुर्लभ व विलुप्त हो रही वनस्पितयों की ऊतक संवर्धन द्वारा वृद्धि कर उनका अस्तित्व कायम रखा जा सकता है। उसी प्रकार वनस्पितयों के भाग, बीज, ऊतक संवर्धन से सुरक्षित रखकर उस प्रजाति का संरक्षण किया जा सकता है।

यह था वनस्पित के संदर्भ में ऊतक संवर्धन और जैवप्रौद्योगिकी का उपयोग। अगली कक्षा में हम प्राणी और चिकित्साविज्ञान में इनके उपयोग का अध्यापन करेगे।

थोड़ा सोचिए

- 1. पौधघर उद्योग से और कौन-कौन-से उद्योग विकसित किए जा सकते हैं?
- भीड़-भाड़ वाली जीवनशैली से परेशान लोग छुट्टी में मनोरंजन के लिए कौन-कौन-सी जगहों पर जाना पसंद करते हैं?

ऊपर दिए गए दोनों प्रश्नों का एक-दूसरे से क्या संबंध है?

कृषि पर्यटन (Agro Tourism)

भरपूर जगह की उपलब्धता हो तो 'कृषि पर्यटन केंद्र' नया व अच्छा उद्योग है। ऊतक संवर्धन द्वारा फूल, फल व अलंकारिक वृक्षों, सब्जी व औषधीय वनस्पतियों की बड़ी संख्या में पौध निर्मिति की जा सकती है। इन्हीं में से कुछ प्रकार के पौधे लेकर पूर्णरूप से वृद्धि कर स्वयंपूर्ण कृषि पर्यटन केंद्र तैयार किया जा सकता है।

17.9 कृषि पर्यटन केंद्र में कुछ फलों के पेड़

- आम, चीकू, अमरूद, नारियल, सीताफल व अन्य कुछ प्रादेशिक फल देने वाला वृक्ष ।
- छाया देने वाले तथा मनोहारी देशी-विदेशी वृक्ष।
- अलंकारिक/शोभादार वृक्ष व फूल देने वाले पौधे।
- तितिलयों का बगीचा (Butterfly Garden) : जिनके फूलों पर तितिलयाँ बैठती हैं, ऐसी झाड़ियों का छोटा-सा बगीचा।
- औषधीय वनस्पतियों का बगीचा।
- रासायनिक खाद/कीटनाशक का उपयोग न करते हुए उगाई गई सब्जी व फल। ऐसी सभी आकर्षण वाली जगहों पर पर्यटक कृषि पर्यटन के लिए आते हैं। इन जगहों पर पौधे, सब्जी व फल इनकी विक्री अधिक लाभ दे सकती है।

सूचना और संचार प्रौद्योगिकी के साथ

www.ecotourdirectory.com/agrotourism www.agrotourism.in

कृषिपुरक व्यवसाय

प्रेक्षण करें और चर्चा करें

अ. पशुसंवर्धन (Animal Husbandry)

आपके पास के आधुनिक तबेले में जाएँ व नीचे दी गई जानकारी को अंकित करें।

तबेले में जानवरों (गाय-भैंस) की संख्या व उनकी विविध प्रजातियाँ, कुल दूध उत्पादन, तबेले की स्वच्छता, जानवरों के आरोग्य का ध्यान रखने के उपाय।

हमारे देश में दूध उत्पादन व कृषि के कामों में श्रमिक के रूप में मदद के लिए पशुपालन किया जाता है। दूध देने वाली गायें-भैसें. बोझा डोने वाले श्रमिक बैल. भैंसा इत्यादि।

सहिवाल, सिंधी, गीर, इसी प्रकार लाल कंधारी, देवणी, खिल्लारी व डांगी जैसी देशी गायें व जर्सी, ब्राऊन स्विस, होलस्टेन जैसी विदेशी गायों का उपयोग दूध उत्पादन के लिए किया जाता है। दूध का उच्च व स्वच्छ उत्पादन मिले इसलिए पशुधन का ध्यान रखना आवश्यक है।

- 1. गाय, भैसों को सभी अन्नघटकों के समावेश वाला पूरक आहार देना चाहिए। उन्हें अनाजों का दरदरा, चोकरयुक्त अन्न, चारा व भरपूर पानी दें।
- पशुओं का तबेला स्वच्छ, सूखा व हवादार होना चाहिए तबेले पर छत होनी चाहिए।
- एक निश्चित अविध के बाद पशुओं को रोगप्रितबंधक टीके लगवाएँ।

- 'श्वेतक्रांति' का अर्थ क्या है? इसके जनक कौन है?
 इस क्रांति से क्या लाभ हुए?
- 2. पशुसंवर्धन के बारे में अधिक जानकारी प्राप्त कीजिए।
- 3. देशी तथा विदेशी गायों द्वारा प्रतिदिन लगभग कितने दूध का उत्पादन होता है। इसकी जानकारी Internet से प्राप्त कीजिए।

17.10 पशुधन

आ. कुक्कुटपालन (Poultry Farming)

अंडे व मांस देने वाली मुर्गियों का पोषण व पालन किया जाता है, इसे कुक्कुटपालन कहते हैं।

असिल जैसी भारतीय व लेगहार्न जैसी विदेशी प्रजाति के संकर से नई प्रजाति विकसित करने के कुछ उद्देश्य हैं जैसे, अच्छी गुणवत्ता वाले चूजे बड़ी संख्या में मिलें, ज्यादा तापमान सहन करने की क्षमता, कृषि के उप-उत्पादनों का भोजनरूप में उपयोग हो इत्यादि। अंडे व मांस दोनों के लिए पाली जाने वाली मुर्गियों की प्रजाति इस प्रकार है, आयलैंड रेड, न्यू हैम्पशायर, प्लायमाऊथ रॉक, ब्लैक रॉक।

लेयर्स	ब्रॉयलर्स		
अंडे देने वाली मुर्गियाँ	मांस देने वाली मुर्गियाँ		
लेगहॉर्न, मिनॉर्का, एंकोना, लेहमन	ब्रह्मा, लाँग, कोचिन, असिल		

इ. रेशम कीटकपालन (Sericulture)

रेशम के उत्पादन के लिए रेशम के कीड़े पाले जाते हैं। बॉम्बिक्स मोरी प्रजाित के रेशमी कीड़ों को उपयोग इसके लिए सर्वाधिक होता है। रेशमी कीड़ों के जीवनचक्र में अंड-इल्ली-कोशित या प्यूपा शलभ ये चार अवस्थाएँ होती हैं। मादा द्वारा दिए गए हजारों अंडों को कृत्रिमरूप से गर्माहट देकर उष्मायन अवधि को कम किया जाता है। अंडे से बाहर निकलने वाली इल्ली को शहतूत के पेड़ पर छोड़ दिया जाता है। शहतूत के पत्ते खाकर इल्ली का पोषण होता है। 3-4 हफ्तों तक पत्तियाँ खाने के उपरांत इल्ली शहतूत के शाखाओं पर जाती है। इनकी लारग्रंथि से निकलने वाले स्नाव से रेशमी तंतु बनता है। यह तंतु को स्वयं के चारों ओर लपेटकर इल्ली का रेशमीकोष तैयार करता है, यह कोष बेलनाकार या वृत्ताकार होता है।

कोशित या प्यूपा का पतंगा या शलभ के रूप में रूपांतरण होने के दस दिन पूर्व सारे कोशित उबलते हुए पानी में डाल दिए जाते हैं। उबलते पानी के कारण कोशित की इल्ली मर जाती है व रेशम के तंतु ढीले हो जाते हैं। इन्हें सुलझा कर इस पर प्रक्रिया की जाती है व रेशम का धागा प्राप्त किया जाता है। रेशमी धागों से अलग-अलग प्रकार के वस्त्र बनते हैं।

17.11 रेशम कीड़े का जीवचक्र

रेशम कीड़े के कोशि में जीव की वृद्धि होने के पहले कोशित को उबलते पानी में क्यों डाल देते है?

वाध्याय 🗸 🧼

नीचे दिए हुए प्रत्येक कथन में गलती है। इन कथनों के एक या दो शब्द बदलकर उसे सही कर पुन: लिखिए।

- अ. श्वसनमार्ग में सरल पट्टकी अभिस्तर ऊतक होते हैं।
- आ. वुक्क में ग्रंथिल अभिस्तर ऊतक होते हैं।
- इ. हरित ऊतक वनस्पतियों को तैरने में मदद करते हैं।
- ई. पट्टकी मांसपेशी को अनैच्छिक मांसपेशी कहते हैं।
- ए. दुढ़ ऊतक में हरितद्रव्य होते हैं।

समूह में विसंगत शब्द पहचानकर उनका कारण लिखिए।

- अ. जलवाहिनी, रसवाहिनी, दृढ़ऊतक, विभाजी ऊतक
- आ. अभिस्तर, मांसपेशीय ऊतक, तंत्रिकी ऊतक, अधिचर्म
- इ. उपस्थि, अस्थि, स्नायुरज्जू, हृदय स्नायु

3. नीचे पूछे गए ऊतकों का नाम लिखिए।

- अ. मुँह के आंतरिक स्तर के ऊतक
- आ. मांसपेशी व अस्थि को जोड़ने वाले ऊतक।
- इ. वनस्पतियों में वृदिध करने वाले ऊतक।
- ई. तनों की मोटाई बढाने वाले ऊतक।

4. अंतर लिखिए।

वनस्पतियों के सरल ऊतक व जटिल ऊतक

5. टिप्पणी लिखिए।

- अ. विभाजी ऊतक
- आ. जलवाहिनी।
- इ. पट्टकी मांसपेशी।
- ई. कृषिपूरक व्यवसाय।
- उ. जनुकीय अभियांत्रिकी।
- ऊ. रेशम कीटपालन।

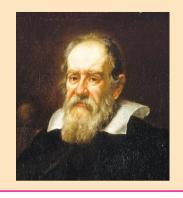
- 6. जैवप्रौद्योगिकी का अर्थ स्पष्ट कर कृषि व्यवस्थापन होने वाले परिणाम को उदाहरण के साथ स्पष्ट कीजिए।
- जैवप्रौद्योगिकी में कौन-से दो मुख्य तंत्रों का उपयोग होता है? क्यों?
- 8. 'कृषि पर्यटन' इस विषय पर कक्षा में चर्चा कीजिए, आप के गाँव के निकट में स्थित कृषि पर्यटन स्थल के विषय में प्रकल्प लिखिए तथा उसे कक्षा में प्रस्तुत कीजिए।
- 9. ऊतक का अर्थ बताकर ऊतक संवर्धन की संकल्पना स्पष्ट कीजिए।
- 10. भेड़ पशुधन है। इस वाक्य का समर्थन के साथ स्पन्टीकरण लिखें।

उपक्रम:

- तितिलयों की विविधता के संदर्भ में अधिक जानकारी प्राप्त कर अगर आपके विद्यालय में तितिलयाँ का उद्यान बनाना है तो क्या करना पड़ेगा, इसकी विस्तृत जानकारी प्राप्त कीजिए।
- 2. मधुमक्खी पालन केंद्र जाकर जानकारी प्राप्त कीजिए।

18. अंतरिक्ष अवलोकन : दुरबीनें (दुरदर्शी)

- > प्रकाश के रूप
- 🕨 दुरबीन और दुरबीनों के प्रकार
- > अंतरिक्ष की दुरबीन > भारतीय अंतरिक्ष अनुसंधान केंद्र (इस्रो)


- 1. आकाश और अंतरिक्ष में क्या अंतर है?
- 2. अंतरिक्ष अवलोकन का क्या अर्थ है? उसका क्या महत्त्व है?

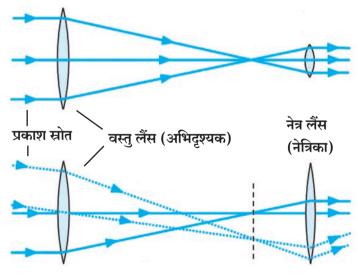
पुरातन काल से ही मानव ने सूर्य और चंद्रमा, तारों की ओर कौतूहल से देखने की शुरुआत की थी। केवल आँखों द्वारा किए गए अवलोकन और अपार कल्पनाशक्ति की सहायता से उन्होंने आँखों द्वारा दिखने वाले आकाश को समझने का प्रयत्न किया। आकाश में तारों, नक्षत्रों की स्थिति समयानुसार बदलती है। इस आधार पर मानव को समझ में आया कि इस स्थिति और ऋतुचक्र का कुछ न कुछ संबंध है। खेती के लिए ऋतुचक्र की जानकारी आवश्यक होने के कारण यह आकाश दर्शन उसके लिए उपयोगी सिद्ध हुआ। नक्षत्रों की स्थिति नाविकों को भी दिशादर्शक के रूप में उपयोगी साबित हुई। आकाश अवलोकन से निर्मित हुए असंख्य प्रश्नों के उत्तर खोजने के मानव ने प्रयत्न शुरू किए, परंतु आकाश के ग्रह या तारों को अधिक पास से देखने के लिए मानव के पास कोई भी उपकरण उपलब्ध नहीं था।

गैलिलियो की दुरबीन के बाद पिछले 400 वर्षों में दुरबीन तकनीक और संपूर्ण अंतरिक्ष विज्ञान और प्रौदुयोगिकी में मानव दवारा की गई प्रचंड प्रगति के कारण ही इस विश्व का अत्यंत विस्मयकारी चित्र हमारे सामने उपस्थित है । अनुसंधान के लिए ही नहीं अपितु अपने दैनिक जीवन की सुख-सुविधाओं के लिए आज अंतरिक्ष विज्ञान और प्रौद्योगिकी उपयोगी सिद्ध हो रही है। अंतरिक्ष अवलोकन के लिए दरबीन का उपयोग किया जाता है परंत् क्या एक ही प्रकार की द्रबीन से अंतरिक्ष का संपूर्ण निरीक्षण किया जा सकता है? अंतरिक्ष अवलोकन के लिए भिन्न-भिन्न दुरबीनों का उपयोग क्यों करना पडता है? क्या अंतरिक्ष में भी दरबीनें स्थापित की जाती हैं? ऐसी अनेक बातों के पीछे छुपे विज्ञान का हम इस प्रकरण में अध्ययन करेंगे।

वैज्ञानिकों का परिचय

चश्मा निर्मित करने वाले अनुसंधानकर्ता हान्स लिपर्शे ने 1608 में यह आविष्कार किया कि दो लैंसों को एक-दूसरे के सामने रखकर देखने पर दूर की वस्तु समीप दिखाई देती है और पहली दूरबीन बनाई। उसके पश्चात 1609 में गैलिलियो ने दूरबीन बनाकर उसका उपयोग अंतरिक्ष के अध्ययन के लिए किया। उन्हें यह स्पष्ट हुआ कि आँखों से देखे जा सकने वाले तारों से अधिक तारे अंतरिक्ष में हैं। दूरबीन की सहायता से उन्होंने गुरु के 4 उपग्रह और सूर्य के दाग इत्यादि की खोज की।

प्रकाश के विविध रूप


प्रकाश विद्युत चुंबकीय तरंग है। तरंगदैध्यं (Wavelength) प्रकाश का एक गुणधर्म है। जिस प्रकाश की तरंगदैध्यं लगभग 400 nm से 800 nm के बीच होती है, उसी प्रकाश को हमारी आँखें देख सकती हैं। इसे ही हम दृश्य प्रकाश तरंग कहते हैं, परंतु इस तरंगदैध्यं के अतिरिक्त अन्य तरंगदैध्यं का प्रकाश भी होता है जिसे हम नहीं देख सकते क्योंकि हमारी आँखे उन किरणों के लिए संवेदनशील नहीं हैं। इसके लिए आगे दी गई तालिका का अध्ययन कीजिए।

रूप	तरंगदैध्यं
रेडियो तरंगे(Radio Waves)	लगभग 20 cm से अधिक
सूक्ष्म तरंगे (Micro Waves)	0.3 mm – 20 cm
अवरक्त तरंगे (Infrared Waves)	800 nm – 0.3 mm
दृश्य प्रकाश किरणें (Visible light Rays)	400 nm – 800 nm
पराबैंगनी किरणें (Ultraviolet Rays)	300 pm – 400 nm
क्ष-किरणें (X-rays)	3 pm – 300 pm
गामा किरणें (Gamma Rays)	3 pm से कम

 $1 \text{ nm}(\hat{\mathbf{q}}) = 10^{-9} \text{ m}$ और $1 \text{ pm}(\hat{\mathbf{q}}) = 10^{-12} \text{ m}$

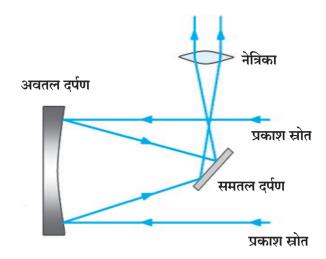
इनमें से केवल 'दृश्य' प्रकाश किरणों को देखने की क्षमता हमारी आँखों में है। इसलिए अंतरिक्ष से आने वाले 'दृश्य' प्रकाश को देखने के लिए हम 'दृश्य-प्रकाश दूरबीन' अर्थात सादे लैंस या दर्पण से बनाई गई दूरबीन का उपयोग करते हैं परंतु अनेक खगोलीय पिंडों से दृश्य प्रकाश के अतिरिक्त अन्य प्रकार का प्रकाश भी निकलता है। रेडियों –तरंगें, क्ष –िकरणें और गामा किरणें इत्यादि प्रकार की प्रकाश किरणों को ग्रहण करने के लिए और उनके स्रोतों का अध्ययन करने के लिए हमें भिन्न-भिन्न दरबीनों की आवश्यकता महसूस होती है।

द्रबीनें/द्रदर्शी (Telescopes)

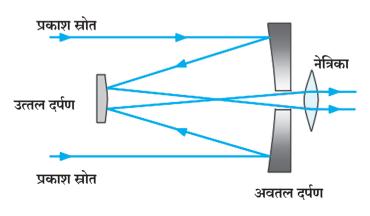
18.1 लैंसों की रचना करके बनाई गई दूरबीन (दूरदर्शी)

दृश्य-प्रकाश दूरबीनें (Optical Telescopes)

अधिकतर दृश्य-प्रकाश दूरबीनों में दो या अधिक लैंस का उपयोग किया जाता है। आकृति 18.1 देखें। खगोलीय पिंडों से आने वाले अधिकतम प्रकाश को एकत्रित करने के लिए वस्तु लैंस (अभिदृश्यक) का आकार बड़ा होता है। इस एकत्रित प्रकाश से खगोलीय पिंड का विशाल प्रतिबिंब निर्मित करने वाले नेत्र लैंस (नेत्रिका) का आकार छोटा होता है। प्रकाश किरणें वायुमंडल से लैंस में या लैंस में से वायुमंडल में जाते समय अपना मार्ग परिवर्तित करती हैं, अर्थात उनका अपवर्तन होता है। इसलिए इस दूरदर्शी को अपवर्तक दूरदर्शी (Refracting Telescope) कहते हैं।


लैंस की सहायता से वस्तुओं के प्रतिबिंब कैसे निर्मित होते हैं, इसका अध्ययन हम आगामी वर्ष में करने वाले हैं। सामान्य आकाश अवलोकन के लिए इस प्रकार की दृश्य प्रकाश दूरबीन उपयुक्त हैं परंतु इसके लिए कुछ कठिनाइयाँ भी हैं।

- 1. स्रोत से आने वाले अधिकतम प्रकाश को एकत्र करके स्रोत का तेजस्वी (स्पष्ट) प्रतिबिंब प्राप्त करना हो तो वस्तु लैंस का व्यास ज्यादा से ज्यादा बड़ा होना आवश्यक होता है। ऐसे बड़े लैंस को बनाना कठिन तो होता ही है साथ ही उसका वजन भी बहुत बढ़ता है और उसका आकार बदलता है।
- 2. दूरदर्शी के दोनों लैंस दो विपरीत सिरों पर होने के कारण लैंसों का आकार बढ़ता है जिससे दूरदर्शी की लंबाई भी बढ़ती है।
- 3. लैंस द्वारा निर्मित प्रतिबिंब में रंगों की त्रुटियाँ भी होती हैं।

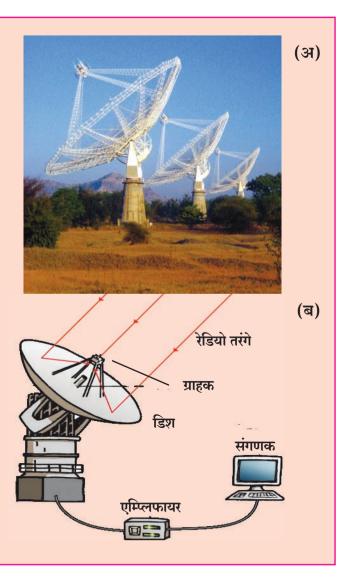

दृश्य-प्रकाश दूरदर्शी में आने वाली कठिनाइयों को दूर करने के लिए अवतल दर्पण से दूरदर्शी बनाए जा सकते हैं। इसमें अवतल दर्पण द्वारा प्रकाश का परावर्तन (Reflection) होने के कारण इस दूरदर्शी को 'परावर्तक-दूरदर्शी' (Reflecting Telescope) कहते हैं। इसमें पिंड का तेजस्वी प्रतिबिंब प्राप्त करने के लिए बड़े दर्पण अत्यावश्यक हैं परंतु बड़े दर्पण बनाना तुलनात्मक दृष्टि से आसान होता है। अनेक टुकड़ों को जोड़कर भी बड़ा दर्पण बनाया जा सकता है। उनका वजन भी उतने ही आकार के लैंस की अपेक्षा कम होता है। दर्पणों द्वारा प्राप्त हुए प्रतिबिंब में रंगों की त्रुटियाँ नहीं होती। निरी आँखों से कभी भी दिखाई न देने वाले अतिदूर स्थित तारों (Stars) और आकाशगंगा (Galaxies) को हम इस प्रचंड दूरदर्शी से देख सकते हैं।

अवतल दर्पण पर आधारित दूरबीनों में न्युटन पद्धित और कैसेग्रेन पद्धित की दूरबीन प्रचितत हैं। आकृति 18.2 में दिखाए अनुसार न्युटन पद्धित की दूरबीन में अंतरिक्ष से आने वाली प्रकाश किरणें अवतल दर्पण से परावर्तित होती हैं। इन परावर्तित किरणों के दर्पण के नाभि के पास अभिसरित होने के पहले एक समतल दर्पण उनका मार्ग परिवर्तित करता है। इस कारण ये किरणें दूरबीन के बेलन की लंब दिशा में एक बिंदु पर एकत्र आती हैं। वहाँ स्थित 'नेत्रिका' नामक विशेष लैंस द्वारा हम वस्तु का अभिवर्धित प्रतिबिंब देख सकते हैं।

आकृति 18.3 में दिखाए अनुसार कैसेग्रेन पद्धति में भी अवतल दर्पण का ही उपयोग किया जाता है परंतु यहाँ अवतल दर्पण से परावर्तित होने वाली किरणें एक उत्तल दर्पण द्वारा पुन: अवतल दर्पण की ओर परावर्तित होती हैं और अवतल दर्पण के केंद्र के पास स्थित छिद्र द्वारा दूसरी ओर जाकर नेत्रिका पर आती हैं। नेत्रिका की सहायता से हम स्रोत का अभिवर्धित प्रतिबिंब देख सकते हैं।

18.2 न्युटन पद्धति की दूरबीन

18.3 कैसेग्रेन पद्धित की दूरबीन (दूरदर्शी)


भारत में दो मीटर के व्यास के दर्पण वाली कुछ दूरबीनें अनेक वर्षों से कार्यरत हैं। भारत की सबसे बड़ी 3.6 मीटर व्यास की दूरबीन नैनीताल के आर्यभट्ट प्रेक्षण विज्ञान शोध संस्थान में स्थित है। यह एशिया में दृश्य प्रकाश की सबसे बड़ी दूरबीन है।

रेडियो दरबीन (Radio Telescope)

अनेक खगोलीय पिंडों से दृश्य प्रकाश के अतिरिक्त रेडियो किरणें भी उत्सर्जित होती हैं। इन तरंगों को हम निरी आँखों से नहीं देख सकते। इसलिए इन तरंगों को ग्रहण करने के लिए विशेष दूरबीनों का उपयोग किया जाता है, इन्हें रेडियो दूरबीन (Radio Telescope) कहते हैं। रेडियो दूरबीन एक विशेष आकार (Paraboloid आकार) की डिश से या ऐसी अनेक डिश के समूहों से बनी होती है। दृश्य-प्रकाश दूरबीन के समान इस डिश के वक्र पृष्ठभाग से रेडियो तरंगें परावर्तित होती हैं। और उस डिश के नाभिकेंद्र के पास अभिसरित होती हैं। वहाँ उन तरंगों को ग्रहण कर सकने वाला एक यंत्र (Receiver) लगाया हुआ होता है। यंत्र द्वारा ग्रहण की गई जानकारी संगणक को दी जाती है। संगणक इस जानकारी का विश्लेषण कर रेडियो तरंगों के स्रोत के स्वरूप का चित्र निर्मित करता है। हमारे घर का डिश एंटिना इसी प्रकार कार्य करता है।

पुणे के पास नारायणगाँव में Giant Meter-Wave Radio Telescope (GMRT) नामक महाकाय रेडियो द्रबीन स्थापित की गई है। ग्रह तारों से आनेवाली मीटर में तरंगदैर्ध्य वाली रेडियो तरंगों का उपयोग करके खगोलीय वस्तु का अध्ययन करने के लिए यह दुरबीन स्थापित की गई है। यह दुरबीन 30 पेराबोला आकार की दुरबीनों का समूह है। इसकी प्रत्येक दुरबीन का व्यास 45 मीटर है। इस दुरबीन को महाकाय दुरबीन कहा जाता है। इसका कारण यह है कि इसमें स्थित 30 दुरबीनों की रचना 25 km के विस्तृत क्षेत्र में की गई है। यह रचना ऐसे प्रतीत होती है जैसे 25 km व्यास की एक ही दुरबीन हो। अर्थात 25 km व्यास वाली दरबीन दवारा जो जानकारी मिलती है वही जानकारी 30 दूरबीनों के समूह द्वारा मिलती है। GMRT भारतीय वैज्ञानिकों और टेक्नीशियनों दवारा कम से कम खर्च में निर्मित विश्व-स्तर की अनुसंधान सुविधा है। इस दरबीन द्वारा सूर्यमाला, सौर हवाएँ, स्पंदक, महाविस्फोट और तारों के मध्य स्थित हाइड़ोजन के बादलों का अध्ययन किया जाता है। इस दुरबीन का उपयोग करने के लिए विश्वभर के वैज्ञानिक भारत में आते हैं।



18.4 (अ) रेडिओ दूरबीन की रचना (ब) रेडियो दूरबीन का छायाचित्र

अंतरिक्ष की दूरबीनें (Telescopes in Space)

अंतिरक्ष के विविध पिंडों से आने वाली दृश्य-प्रकाश और रेडियो तरंगें पृथ्वी के वायुमंडल से भूपृष्ठ तक पहुँच सकती हैं। इस कारण दृश्य-प्रकाश और रेडियो दूरबीनों को भूपृष्ठ पर स्थापित किया जाता है परंतु ऐसी भूपृष्ठ की दूरबीनों से अच्छी कोटि के प्रेक्षण करने में कुछ कठिनाइयाँ आती हैं। अंतिरक्ष से दृश्य-प्रकाश वायुमंडल से होकर पृथ्वीतल पर पहुँचता है। तब प्रकाश का वायुमंडल में अवशोषण होता है और हमारे तक पहुँचने वाले प्रकाश की तीव्रता कम हो जाती है। दूसरी कठिनाई यह है कि वायुमंडल के तापमान व दाब में परिवर्तन के कारण वायुमंडल में उथल-पुथल हो रही हो तब उससे आने वाली दृश्य प्रकाश किरणें स्थिर नहीं रहतीं। इतना ही नहीं, दिन में सूर्यप्रकाश होने के कारण आकाश अवलोकन संभव नहीं हो पाता। बादल युक्त वायुमंडल, रात्रि के समय शहरों के बल्बों का प्रकाश जैसी घटनाएँ भी आकाश अवलोकन करने में कठिनाई उत्पन्न करती हैं। इन परेशानियों को दूर करने के लिए दृश्य प्रकाश की दूरबीनों को पहाड़ों पर निर्जन स्थानों पर स्थापित किया जाता हैं। इन सब कठिनाइयाँ को पूर्ण रूप से दूर करने के लिए दृश्य-प्रकाश दूरबीन को अंतरिक्ष में ही स्थापित करना चाहिए। अंतरिक्ष में ये सब परेशानियाँ नहीं होने के कारण, प्रकाश किरणों के स्रोतों के प्रतिबिंब अत्यंत सुस्पष्ट और स्थिर होंगे। इस संकल्पना को वैज्ञानिकों ने यथार्थ के धरातल पर उतार।

1990 में अमेरिका के नासा (N.A.S.A.) संस्थान ने दृश्य प्रकाश दूरबीन 'हबल' का अंतरिक्ष में प्रक्षेपण किया। इस दूरबीन का व्यास 94 इंच है तथा यह भूपृष्ठ से 569 किलोमीटर दूरी पर पृथ्वी के परितः परिक्रमा कर रही है। यह दूरबीन अभी भी कार्यक्षम है, इस दूरबीन की सहायता से किए गए अवलोकनों द्वारा अनेक महत्त्वपूर्ण खोजें की गई हैं।

क्ष-किरण ग्रहण करके उनके स्रोतों का अध्ययन करने के लिए वर्ष 1999 में अमेरिका के नासा संस्थान ने क्ष-किरण दूरबीन 'चंद्रा' अंतरिक्ष में छोड़ी। क्ष-किरण परावर्तित कर सकने वाले विशेष दर्पणों का इस दूरबीन में उपयोग किया गया है। इस चंद्रा दूरबीन ने तारों और आकाशगंगा के बारे में बहुत उपयुक्त जानकारी प्राप्त की। 'चंद्रा' यह नाम प्रसिद्ध भारतीय वैज्ञानिक चंद्रशेखर सुब्रमण्यम के सम्मान में दिया गया है।

भारतीय अंतरिक्ष अनुसंधान केंद्र (इस्त्रो) Indian Space Research Organization(ISRO), बेंगलूरू

इस संस्थान की स्थापना 1969 में की गई। यहाँ मुख्यत: कृत्रिम उपग्रह निर्मित करने और उनके प्रक्षेपण करने के लिए आवश्यक तंत्रज्ञान विकसित किया जाता है। आज तक इस्रो ने अनेक उपग्रहों का सफलतापूर्वक प्रक्षेपण किया है। स्वतंत्र भारत के यशस्वी कार्यक्रमों में इस्रो के कार्य अग्रगण्य हैं।

भारत द्वारा अंतरिक्ष विज्ञान में की गई प्रगित का राष्ट्रीय और सामाजिक विकास में बड़ा योगदान है। दूरसंचार (Telecommunication), दूरदर्शन प्रसारण (Television Broadcasting) और मौसम विज्ञानसेवा (Meteorological services) के लिए INSAT और GSAT उपग्रह शृंखला कार्यरत है। इस कारण ही देश में सर्वत्र दूरदर्शन, दूरध्विन और इंटरनेट जैसी सेवाएँ उपलब्ध हो सकी हैं। इसी शृंखला के EDUSAT उपग्रह का तो केवल शिक्षा क्षेत्र के लिए उपयोग किया जाता है। देश के प्राकृतिक संसाधनों का नियंत्रण और व्यवस्थापन (Monitoring and Management of Natural Resources) और आपदा प्रबंधन (Disaster Management) के लिए IRS उपग्रह शृंखला कार्यरत है।

संकेतस्थल: www.isro.gov.in

एस्ट्रोसॅट (Astrosat)

भारतीय अंतरिक्ष अनुसंधान केंद्र द्वारा 2015 में एस्ट्रोसेट नामक कृत्रिम उपग्रह का प्रक्षेपण किया गया। इस उपग्रह पर पराबैंगनी किरणें और क्ष-किरणें ग्रहण करने वाली दूरबीनें और उपकरण लगाए गए हैं। इसके अधिकांश भाग भारत में ही तैयार किए गए हैं। यह विश्व का एक द्वितीय उपग्रह है। इसके द्वारा मिलने वाली जानकारी का उपयोग कर भारतीय खगोल वैज्ञानिक अंतरिक्ष के विभिन्न घटकों पर अनुसंधान कार्य कर रहे हैं।

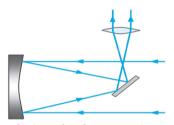
जानकारी प्राप्त कीजिए

हबल और चंद्रा दूरबीनों के समान और भी अनेक दूरबीनें अंतरिक्ष में कार्यरत हैं, उनकी जानकारी प्राप्त कीजिए।

स्वाध्याय

1. रिक्त स्थानों में योग्य शब्द लिखिए।

- अ. दृश्य प्रकाश की तरंग लंबाई लगभग से के बीच होती है।
- आ. GMRT का कार्य तरंगों पर निर्भर है।
- इ. क्ष-किरणों की एक दूरबीन को वैज्ञानिक का नाम दिया गया है।
- ई. अंतरिक्ष अवलोकन के लिए दूरबीन का उपयोग सर्वप्रथम वैज्ञानिक ने किया।
- भारत की दृश्य प्रकाश की सबसे बड़ी दूरबीन
 स्थान पर स्थित है।


2. जोड़ियाँ मिलाइए।

अ गट

ब गट

- अ. क्ष-किरण
- a. GMRT
- आ. दृश्य प्रकाश दूरबीन
- b. इस्रो
- इ. भारतीय रेडियो दुरबीन
- c. हबल
- ई. कृत्रिम उपग्रह प्रक्षेपण
- d. चंद्रा
- 3. भूपृष्ठ पर स्थापित की गई दृश्य प्रकाश दूरबीन का उपयोग करते समय आने वाली कठिनाइयाँ कौन– सी हैं? ये कठिनाइयाँ कैसे दर की जा सकती हैं?
- 4. अवतल दर्पण, समतल दर्पण, उत्तल दर्पण और लैंस इन सामग्रियों का उपयोग करके कौन-कौन- सी पद्धतियों की दूरबीनें बनाना संभव है? उसकी रेखाकृति बनाइए।

आकृति का अवलोकन करके उत्तर लिखिए।

- अ. चित्र में दिखाई गई दूरबीन कौन-सी पद्धित की है?
- आ. दूरबीन के मुख्य भागों को नाम दीजिए।
- इ. द्रबीन किस प्रकार के दर्पण पर आधारित है?
- ई. इस प्रकार के दर्पण पर आधारित दूसरी पद्धति की दुरबीन का नाम क्या है?
- उ. उपर्युक्त दरबीन का कार्य कैसे चलता है?

6. नीचे दिए गए प्रश्नों के उत्तर लिखिए।

- अ. गैलिलियो की दूरबीन की रचना स्पष्ट कीजिए।
- आ. रेडियो द्रदर्शी की रचना स्पष्ट कीजिए।
- इ. दृश्य प्रकाश की दूरबीनों को पहाड़ पर निर्जन स्थानों पर क्यों स्थापित किया जाता है?
- ई. क्ष-किरणों की दूरबीन पृथ्वी पर क्यों कार्यरत नहीं हो सकती?

उपक्रम:

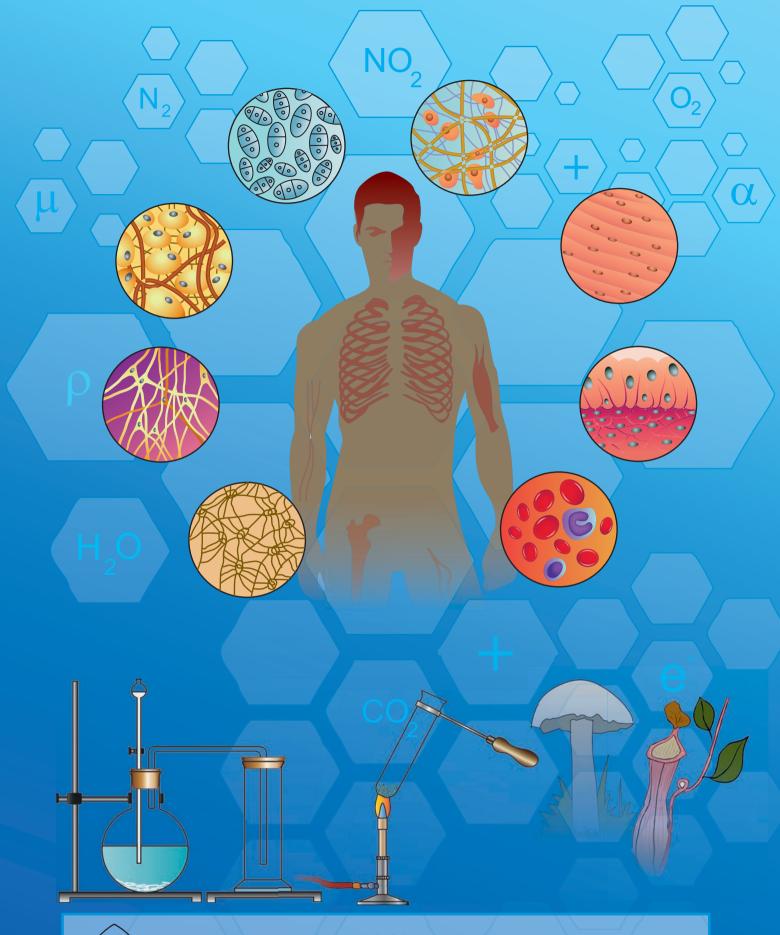
भारत की विभिन्न वेधशालाओं की जानकारी प्राप्त कीजिए और कक्षा में प्रस्तुत कीजिए।

विज्ञान और प्रौद्योगिकी - शैक्षणिक विन्यास

विज्ञान और प्रौद्योगिकी विषय की पाठ्यपुस्तक में कुल 18 पाठों का समावेश किया गया है। इनमें से पहले 10 पाठ प्रथम सत्र के लिए और शेष 8 पाठ द्वितीय सत्र के लिए हैं। पाठ्यक्रम के अनुसार दोनों सत्रों के लिए विज्ञान और प्रौद्योगिकी विषय के दो अलग-अलग भाग हैं। भाग 1 और भाग 2 का विस्तारपूर्वक विश्लेषण नीचे दी गई तालिका में दिया गया है। इसके अनुसार ही पाठों की रचना की गई हैं। भाग 1 में भौतिक विज्ञान तथा रसायन विज्ञान, जबिक भाग 2 में जीवविज्ञान तथा विज्ञान से संबंधित पर्यावरण, अंतरिक्ष, जलवायु, आपदा प्रबंधन और सूचना एवं संचार प्रौद्योगिकी जैसे अत्यंत वेग से विकसित हुए और मानवीय जीवन पर प्रभाव डालने वाले अविभाज्य विषयों का समावेश किया गया है।

प्रथम सत्र और द्वितीय सत्र के भाग 1 में भौतिक विज्ञान और रसायन विज्ञान तथा भाग 2 में जीवविज्ञान और संबंधित अन्य विषयों का समावेश किया गया है तथापि विज्ञान और प्रौद्योगिकी सिखाते समय शिक्षकों को सदैव एकात्मिक दृष्टिकोण अंगीकृत करके सतत रूप से अध्यापन करना है। विद्यार्थी और शिक्षकों को वार्षिक नियोजन के लिए महत्त्वपूर्ण मुद्दे दिए गए हैं।

सत्रानुसार पाठ योजना


प्रथम सत्र

भाग 1		भाग 2	
प्र.क्र.	पाठ का नाम	प्र.क्र.	पाठ का नाम
1	गति के नियम	6	वनस्पतियों का वर्गीकरण
2	कार्य और ऊर्जा	7	परितंत्र के ऊर्जा प्रवाह
3	धारा विद्युत	8	उपयुक्त और उपद्रवी सूक्ष्मजीव
4	द्रव्य का मापन	9	पर्यावरण व्यवस्थापन
5	अम्ल, क्षारक तथा लवण	10	सूचना एवं संचार प्रौद्योगिकी : प्रगति की नई दिशा

द्वितीय सत्र

भाग 1		भाग 2	
प्र.क्र.	पाठ का नाम	प्र.क्र.	पाठ का नाम
11	प्रकाश का परावर्तन	15	सजीवों की जीवन प्रक्रियाएँ
12	ध्वनि का अध्ययन	16	आनुवंशिकता तथा परिवर्तन
13	कार्बन : एक महत्त्वपूर्ण तत्त्व	17	जैव प्रौद्योगिकी की पहचान
14	हमारे उपयोगी पदार्थ	18	अंतरिक्ष अवलोकन : दूरबीनें (दूरदर्शी)

- 1. प्रायोगिक कार्य, लिखित परीक्षा के बारें में संपूर्ण जानकारी स्वतंत्र रूप से दी जाएगी।
- 2. प्रायोगिक कार्य करते समय प्रयोगों के साथ ही पाठ्यपुस्तक की विभिन्न कृतियाँ करना आवश्यक है।
- 3. प्रायोगिक कार्य शीर्षक, सामग्री, रासायनिक सामग्री, आकृति, कृति (विधि), प्रेक्षण, अनुमान/निष्कर्ष इस क्रमानुसार लिखा जाना चाहिए। पाठ्यपुस्तक कृतियों का विचार इस पद्धति के अनुसार कीजिए।
- 4. पाठों के अंत में दिए गए स्वाध्याय के प्रश्न पाठ्यपुस्तक की विषय-वस्तु के साथ विभिन्न कृतियों और उपक्रमों पर आधारित होने के कारण उन्हें कार्यान्वित करते समय उत्तर तक पहुँचने का प्रयत्न कीजिए।
- 5. स्वाध्याय के पश्चात दिए जाने वाले उपक्रम पाठ्यपुस्तक के संदर्भ में नए हैं। प्रत्येक उपक्रम को स्वतंत्र रूप से करें। उसके कार्यान्वन के बाद किया गया लेखन प्रस्तावना, आवश्यकता, कार्यप्रणाली, प्रेक्षण, अनुमान व निष्कर्ष इस क्रमानुसार होना चाहिए।

Tenne trougted speed

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे.

विज्ञान आणि तंत्रज्ञान इयत्ता नववी (हिंदी माध्यम)

₹107.00