UNTERRAIS}
Government of Tamil Nadu

First Edition - 2019

(Published under New syllabus in Trimester Pattern)

NOT FOR SALE

Content Creation

State Council of Educational Research and Training
© SCERT 2019

Printing & Publishing

Tamil Nadu Textbook and Educational Services Corporation
www.textbooksonline.tn.nic.in
FOREWORD

The Colourful world of children is full of excitement and spectacular thoughts! Their imaginative power can even attract the wild creatures to accompany them in a friendly manner. Their enthusiasm and innovative prescription can even trigger the non-living entities and enchant the poetic Tamil. It is nothing but a bundle of joy blended with emotions when you travel into their creative world.

We have tried our level best to achieve the following objectives through the new text books by gently holding the tender hands of those little lads.

• To tune their mind away from rote-learning and guide them into the world of creativity.
• To make the children be proud of their ancient history, culture, art and rich Tamil literature.
• To march triumphantly with confidence into the modern world with the help of Science and Technology.
• To facilitate them to extend their journey of learning beyond the text book into the world of wisdom.

These new text books are studded with innovative design, richer content blended with appropriate psychological approach meant for children. We firmly believe that these newly designed text books will certainly create a sparkle in the mind of the children and make them explore the world afresh.
Mathematics is a unique symbolic language in which the whole world works and acts accordingly. This text book is an attempt to make learning of Mathematics easy for the students community.

Mathematics is not about numbers, equations, computations or algorithms; it is about understanding

— William Paul Thurston

The main goal of Mathematics in School Education is to mathematise the child’s thought process. It will be useful to know how to mathematise than to know a lot of Mathematics.
Let's use the QR code in the text books!

- Download DIKSHA app from the Google Play Store.
- Tap the QR code icon to scan QR codes in the textbook.
- Point the device and focus on the QR code.
- On successful scan, content linked to the QR code gets listed.
- Note: For ICT corner, Digi Links QR codes use any other QR scanner.
Learning Objectives

- To recall the concepts of profit and loss and simple interest.
- To solve problems involving applications of percentage, profit and loss, overhead expenses, discount and GST.
- To know what compound interest is and to be able to find compound interest through patterns and formula and use them in simple problems.
- To find the difference between simple and compound interest for 2 years and 3 years.

Recap

1. If the selling price of an article is less than the cost price of the article then, there is a ________.
2. An article costing ₹5000 is sold for ₹4850. Is there a profit or loss? What is the percentage?
3. If the ratio of cost price and the selling price is 5:7, then the profit/gain is ________%.
4. The formula to find the simple interest for a given principal is __________.
5. Find the simple interest on ₹900 for 73 days at 8% p.a.
6. In how many years will ₹2000 become ₹3600 at 10% p.a simple interest?

Try these

Find the indicated percentage value of the given numbers.

<table>
<thead>
<tr>
<th>Number</th>
<th>60</th>
<th>240</th>
<th>660</th>
<th>852</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33\frac{1}{3}%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.1 Introduction

The following conversation happens in a Math class of VIII std.

Teacher: Dear students, money collection is being made for the Flag Day, and so far 32 out of 40 students in VII std and 42 out of 50 students from our class have contributed. Can anyone of you say, whose contribution is better?

Sankar: Teacher, 32 out of 40 is $\frac{32}{40}$ and 42 out of 50 is $\frac{42}{50}$. The corresponding like fractions of them are $\frac{160}{200}$ and $\frac{168}{200}$ respectively. So, our class students contribution is better.

Teacher: Good, Sankar. Is there any other way to compare?

Bumrah: Yes Teacher, percentages will help. $\frac{32}{40} \times 100 = 80\%$ and $\frac{42}{50} \times 100 = 84\%$

Our class contribution is 4% more than VII std.

Teacher: Well done, Bumrah. You are exactly correct. Can anyone of you say where the use of percentages is seen more?

Bhuvi: Yes Teacher, I have learnt from my father that percentages are used in the calculation of profit and loss, discount, calculation of tax (eg: GST), interest, growth and depreciation and almost everywhere where comparison is made. He also told me that it is an easy tool which is helpful to compare values.

Teacher: Well said, Bhuvi. These are the topics what we are going to see in this chapter using percentages.

The above conversation leads the way to know the application of percentages in various situations and the commonly seen problems in our day-to-day life.

Mathematics Alive—Life Mathematics in Real Life

<table>
<thead>
<tr>
<th>Healthily Diet</th>
<th>Recommended daily amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>32% Bread, Rice, Potatoes, Pasta and other starchy foods</td>
<td></td>
</tr>
<tr>
<td>33% Fruits and Vegetables</td>
<td></td>
</tr>
<tr>
<td>15% Milk and Dairy foods</td>
<td></td>
</tr>
<tr>
<td>12% Meat, Fish, Eggs, Beans and other non-dairy sources of protein</td>
<td></td>
</tr>
<tr>
<td>8% Foods and Drinks high in fat and/or sugar</td>
<td></td>
</tr>
</tbody>
</table>

Percentages are used in diet recommendations and in many daily life situations.

Money grows faster by compound interest.
1.2 Applications of Percentage in Problems

We know that Per Cent means per hundred or out of a hundred. It is denoted by the symbol %.

\(x \% \) denotes the fraction \(\frac{x}{100} \). It is very useful in comparing quantities easily. Let us see its uses in the word problems as given below.

Example: 1

900 boys and 600 girls appeared in an examination of which 70 % of the boys and 85 % of the girls passed out in the examination. Find the total percentage of students who did not pass.

Solution:

Number of students who did not pass = 30 % of boys + 15 % of girls

\[\frac{30}{100} \times 900 + \frac{15}{100} \times 600 \]

= 270 + 90 = 360

\[
\therefore \text{Percentage of students who did not pass} = \frac{360}{1500} \times 100 = 24\%
\]

Example: 2

If \(x \% \) of 600 is 450 then, find the value of \(x \).

Solution:

\[\frac{x}{100} \times 600 = 450 \]

\[x = \frac{450}{6} \]

\[x = 75 \]

Example: 3

When a number is decreased by 25 % it becomes 120. Find the number.

Solution:

Let the number be \(x \).

Given, \[x - \frac{25}{100}x = 120 \]

\[\frac{100x - 25x}{100} = 120 \]

\[\frac{75x}{100} = 120 \]

\[\Rightarrow x = \frac{120 \times 100}{75} \]

\[x = 160 \]
Example: 4

If the price of Orid dhall after 20% increase is ₹96 per kg, find the original price of Orid dhall per kg.

Solution:

Let the original price of Orid dhall be ₹x.

New price after price of 20% increase: \[x + \frac{20}{100}x = \frac{120x}{100} \]

Given that, 96 = \[\frac{120x}{100} \]

\[\therefore x = \frac{96 \times 100}{200} \]

\[\therefore \text{Original price of Orid dhall} = ₹80 \]

(i) If we start with a quantity A and increase that quantity by \(x \)% , we will get the increased quantity as,

\[I = \left(1 + \frac{x}{100}\right)A \]

(ii) If we start with a quantity A and decrease that quantity by \(x \)% , we will get the decreased quantity as,

\[D = \left(1 - \frac{x}{100}\right)A \]

We shall apply the above formulae for examples 3 and 4 and check the answers.

Aliter for Example: 3

We have,

\[D = \left(1 - \frac{x}{100}\right)A \]

\[D = \left(1 - \frac{25}{100}\right)A \]

\[\Rightarrow 120 = \frac{75}{100} \times A \]

\[A = 120 \times \frac{100}{75} \]

\[A = 160 \]

Aliter for Example: 4

We have,

\[I = \left(1 + \frac{x}{100}\right)A \]

\[I = \left(1 + \frac{20}{100}\right)A \]

\[\Rightarrow 96 = \frac{120}{100} \times A \]

\[A = 96 \times \frac{100}{120} \]

\[A = ₹80 \]
Example: 5
In a leadership election between two persons A and B, A wins by a margin of 192 votes. If A gets 58% of the total votes, find the total votes polled.

Solution:
Let the total votes polled be \(x \).
Votes polled in favour in A = 58% of \(x = \frac{58x}{100} \)
Votes polled in favour of B = (100 - 58)% of \(x = \frac{42x}{100} \)
Given, Winning margin \(A - B = 192 \)
That is, \(\frac{58x}{100} - \frac{42x}{100} = 192 \)
\(\Rightarrow \frac{16x}{100} = 192 \)
\(\Rightarrow x = 192 \times \frac{100}{16} \)
\(x = 1200 \) votes

Example: 6
The income of a person is increased by 10% and then decreased by 10%. Find the change in his income.

Solution:
Let his income be ₹ \(x \).
After 10% increase, income is ₹ \(x + \frac{10}{100} \times x = \frac{110x}{100} \) (or) ₹ \(\frac{11}{10} x \)
Now, after 10% decrease, income is ₹ \(\frac{11x}{10} - \frac{10}{100} \left(\frac{11x}{10} \right) \)
\(\text{i.e.} \quad \frac{11x}{10} - \frac{11x}{100} = \frac{110x - 11x}{100} = \frac{99x}{100} \)

\(\therefore \) Net change in his income = \(\frac{x}{100} \times \frac{99x}{100} \)
\(\therefore \) Percentage change = \(\frac{100}{x} \times 100 = 1\% \)
That is, income is reduced by 1%.

(Or)

Aliter
Let his income be ₹100
After 10% increase, income is 100 + 100 \(\times \frac{10}{100} = ₹110 \).
Now, after 10% decrease, income is $110 - 110 \times \frac{10}{100} = 110 - 11 = ₹99$

\[
\therefore \text{Net change in his income} = 100 - 99 = 1
\]

\[
\therefore \text{Percentage change} = \frac{1}{100} \times 100 = 1\%.
\]

That is, income is reduced by 1%.

Note

Given any two numbers, if one of them is increased or decreased by $x\%$ and the other one is increased or decreased by $y\%$, then the product of the number will be increased or decreased by $\left(x + y + \frac{xy}{100} \right)\%$. Use ‘negative’ sign for decrease and assume ‘decrease’ if the sign is negative.

Use this note to check the answer for Example 6.

Example: 7

If the population in a town has increased from 20000 to 25000 in a year, find the percentage increase in population.

Solution:

Increase in population = 25000 - 20000

= 5000

\[
\therefore \text{Percentage increase in population} = \frac{5000}{20000} \times 100
\]

= 25%

Think

An increase from 200 to 600 is clearly a 200% increase. Isn’t it? (check!). With a lot of pride, the traffic police commissioner of a city reported that the accidents had decreased by 200% in one year. He came up with this number stating that the accidents had gone down from 600 last year to 200 this year. Is the decrease from 600 to 200, the same 200% as above? Justify.

Example: 8

Akila scored 80% in an examination. If her score was 576 marks, find the maximum marks of the examination.

Solution:

Let the maximum marks be x.

Now, 80% of $x = 576$
\[
\frac{80}{100} \times x = 576
\]
\[
\Rightarrow x = 576 \times \frac{100}{80}
\]
\[
x = 720 \text{ marks}
\]

Therefore, the total marks in the examination = 720.

Try these

1. What percentage of a day is 10 hours?
2. Divide ₹350 among P, Q and R such that P gets 50% of what Q gets and Q gets 50% of what R gets.

Exercise 1.1

1. Fill in the blanks:
 (i) If 30% of \(x \) is 150, then \(x \) is ________.
 (ii) 2 minutes is _________% to an hour.
 (iii) If \(x \% \) of \(x \) = 25, then \(x \) = ________.
 (iv) In a school of 1400 students, there are 420 girls. The percentage of boys in the school is ________.
 (v) 0.5252 is _________%.

2. Rewrite each underlined part using percentage language.
 (i) One half of the cake is distributed to the children.
 (ii) Aparna scored 7.5 points out of 10 in a competition.
 (iii) The statue was made of pure silver.
 (iv) 48 out of 50 students participated in sports.
 (v) Only 2 persons out of 3 will be selected in the interview.

3. 48 is 32% of what number?

4. A bank pays ₹240 as interest for 2 years for a sum of ₹3000 deposited as savings. Find the rate of interest given by the bank.

5. A Welfare Association has a sports club where 30% of the members play cricket, 28% play volleyball, 22% play badminton and the rest play indoor games. If 30 members play indoor games.
 (i) How many members are there in the sports club?
 (ii) How many play cricket, volleyball and badminton?

6. What is 25% of 30% of 400?
7. If the difference between 75% of a number and 60% of the same number is 82.5, then find 20% of the number.

8. If a car is sold for ₹200000 from its original price of ₹300000, find the percentage for decrease in the value of the car.

9. A number when increased by 18% gives 236. Find the number.

10. A number when decreased by 20% gives 80. Find the number.

11. A number is increased by 25% and then decreased by 20%. Find the change in that number.

12. If the numerator of a fraction is increased by 25% and the denominator is increased by 10%, it becomes $\frac{2}{5}$. Find the original fraction.

13. A fruit vendor bought some mangoes of which 10% were rotten. He sold $33\frac{1}{3}$% of the rest. Find the total number of mangoes bought by him initially, if he still has 240 mangoes with him.

14. A student gets 31% marks in an examination but fails by 12 marks. If the pass percentage is 35%, find the maximum marks of the examination.

15. The ratio of boys and girls in a class is 5:3. If 16% of boys and 8% of girls failed in an examination, then find the percentage of passed students.

Objective Type Questions

16. 12% of 250 litres is the same as _______ of 150 litres.

 (a) 10% (b) 15% (c) 20% (d) 30%

17. If three candidates A, B and C is a 3 school election got 153, 245 and 102 votes respectively, the percentage of votes for the winner is___________.

 (a) 48% (b) 49% (c) 50% (d) 45%

18. 15% of 25% of 10000 =___________.

 (a) 375 (b) 400 (c) 425 (d) 475

19. When 60 is subtracted from 60% of a number to give 60, the number is

 (a) 60 (b) 100 (c) 150 (d) 200

20. If 48% of 48 = 64% of x, then x =

 (a) 64 (b) 56 (c) 42 (d) 36

1.3 Profit and Loss, Discount, Overhead Expenses and GST

1.3.1 Profit and Loss:

Cost Price (C.P)

The amount for which an article is bought is called its **Cost Price (C.P)**
Selling Price (S.P)

The amount for which an article is sold is called its \textit{Selling Price} (S.P)

\textbf{Profit or Gain}

When the \textit{S.P} is more than the \textit{C.P}, then there is a \textit{profit or gain.}

Therefore, \textit{Gain/Profit} = \textit{S.P} – \textit{C.P}

\textbf{Loss}

When the \textit{S.P} is less than the \textit{C.P}, then there is a \textit{loss.}

Therefore, \textit{Loss} = \textit{C.P} – \textit{S.P}

It is to be noted that the profit or loss is always calculated on the cost price.

\textbf{Formulae:}

(i) \textit{Gain or Profit} % = \left(\frac{\text{Profit}}{\text{C.P}} \times 100 \right) %

(ii) \textit{Loss} % = \left(\frac{\text{Loss}}{\text{C.P}} \times 100 \right) %

(iii) \textit{S.P} = \left(\frac{100 + \text{Profit} \%}{100} \right) \times \text{C.P} \ (\text{or}) \ \text{C.P} = \left(\frac{100}{100 + \text{Profit} \%} \right) \times \textit{S.P}

(iv) \textit{S.P} = \left(\frac{100 - \text{Loss} \%}{100} \right) \times \text{C.P} \ (\text{or}) \ \text{C.P} = \left(\frac{100}{100 - \text{Loss} \%} \right) \times \textit{S.P}

\textbf{1.3.2 Discount:}

In order to increase the sale and also to clear the old stock during the month of Aadi and festival seasons, shopkeepers offer a certain percentage of rebates on the marked price of the articles. This rebate is known as \textit{discount.}

\textbf{Marked price}

In big shops and departmental stores, we see that every product is tagged with a card with a price written on it. The price marked on it is called the \textit{marked price}.

Based on this marked price only, the shopkeeper offers a discount of certain percentage. The price payable by the customer after deduction of discount is called the \textit{selling price}.

That is, \textit{Selling Price} = \textit{Marked Price} – \textit{Discount}

\textbf{1.3.3 Overhead Expenses:}

Shopkeepers, traders and retailers are involved in the buying and selling of goods. Sometimes, when articles like machinery, furniture, electronic items etc., are bought, some expenses on repairs, transportation and labour charges are incurred. These expenses are included in the cost price and are called as overhead expenses. Thus,

\textit{\therefore Total Cost Price} = \textit{Cost Price} + \textit{Overhead Expenses}
1.3.4 Goods and Services Tax (GST):

The goods and services tax (GST) is the only common tax in India levied on almost all the goods and the services meant for domestic consumption. The GST is remitted by the consumers and the traders and is one of the sources of income to the government. There are 3 types of GST namely Central GST, (CGST), State GST (SGST) and Integrated GST (IGST). For union territories, there is UTGST.

The GST is shared by the Central and State Governments equally. There are also many products like Eggs, Honey, Milk, Salt etc., which are exempted from GST. Products like petrol, diesel etc., do not come under GST and they are taxed separately. The GST council has fitted over 1300 goods and 500 services under four tax slabs. They are: 5%, 12%, 18% and 28%.

Example: 9
If the selling price of a LED TV is equal to \(\frac{5}{4} \) of its cost price, then find the gain / profit percentage.

Solution:

Let the C.P of the LED TV be ₹ \(x \).

\[\therefore \text{S.P} = \frac{5}{4}x \]

Profit = S.P - C.P = \(\frac{5}{4}x - x = \frac{x}{4} \)

\[\therefore \text{Profit} \% = \left(\frac{\text{Profit}}{\text{C.P}} \times 100 \right) \% \]

\[= \left(\frac{\frac{x}{4}}{x} \times 100 \right) \% \]

\[= \left(\frac{1}{4} \times 100 \right) \% = 25 \% \]

Example: 10
By selling a bicycle for ₹4275, a shopkeeper loses 5%. For how much should he sell it to have a profit of 5%?

Solution:

S.P of the bicycle = ₹4275

Loss = 5%

\[\therefore \text{C.P} = \frac{100}{100 - \text{loss}\%} \times \text{S.P} \]

\[= \frac{100}{95} \times 4275 = \text{₹4500} \]
Now,

\[C.P = \text{₹}4500 \text{ and the desired profit } = 5\% \]

\[
\therefore \text{Desired S.P} = \frac{100 + \text{gain}\%}{100} \times \text{C.P}
\]

\[
= \frac{100 + 5}{100} \times 4500
\]

\[
= 105 \times 45
\]

\[= \text{₹}4725\]

Hence, the desired selling price is ₹4725.

Example: 11

Ranjith bought a washing machine for ₹16150 and paid ₹1350 for its transportation. Then, he sold it for ₹19250. Find his gain or loss percentage.

Solution:

Total C.P of the washing machine

\[
= \text{C.P} + \text{Overhead Expenses}
\]

\[= 16150 + 1350 = \text{₹}17500\]

\[\text{S.P} = \text{₹}19250\]

Therefore, we find \(\text{S.P} > \text{C.P}\).

\[
\text{Gain}\% = \left(\frac{\text{Gain}}{\text{C.P}} \times 100\right)\% = \left(\frac{19250 - 17500}{17500} \times 100\right)\%
\]

\[= \frac{1750}{17500} \times 100 = 10\%\]

Example: 12

A pre-owned car was bought for ₹240000. On repairs ₹15000 was spent, ₹8500 was paid for its insurance. Then, it was sold for ₹258230. What is the gain or loss percentage?

Solution:

Total C.P of the car

\[
= \text{C.P} + \text{Overhead Expenses}
\]

\[= 24000 + 15000 + 8500\]

\[= \text{₹}263500\]

\[\text{S.P} = \text{₹}258230\]

As \(\text{S.P} < \text{C.P}\), there is a loss.

\[
\therefore \text{Loss}\% = \left(\frac{\text{Loss}}{\text{C.P}} \times 100\right)\%
\]
\[
\begin{align*}
&= \left(\frac{263500 - 258230}{263500} \times 100 \right) \% \\
&= \left(\frac{5270}{263500} \times 100 \right) \% = 2 \%
\end{align*}
\]

\[\therefore \text{ Loss percentage } = 2 \%\]

Example: 13
The cost price of 16 boxes of strawberries is equal to the selling price of 20 boxes of strawberries. Find the gain or loss percentage.

Solution:
Let the C.P of one strawberry box be ₹ \(x\).
Then C.P of 20 strawberry boxes = 20 \(x\) and
S.P of 20 strawberry boxes = C.P of 16 strawberry boxes =16 \(x\)
Thus, S.P < C.P, hence there is a loss.

\[
\text{Loss} = \text{C.P} - \text{S.P} = 20x - 16x = 4x
\]

\[\therefore \text{ Loss } = \left(\frac{\text{Loss}}{\text{C.P}} \times 100 \right) \% \]
\[= \left(\frac{4x}{20x} \times 100 \right) \% \]
\[= 20\% \]

(or)

Aliter

S.P of 20 strawberry boxes = C.P of 20 strawberry boxes + Profit
⇒ C.P of 16 strawberry boxes = C.P of 20 strawberry boxes + Profit
⇒ Profit = C.P of 4 boxes
That is, Loss = C.P of 4 boxes

\[\therefore \text{ Loss } = \left(\frac{\text{Loss}}{\text{C.P}} \times 100 \right) \% \]
\[= \left(\frac{4}{20} \times 100 \right) \% \]
\[= 20\% \]

Example: 14
The marked price of an LED tube light is ₹550 and the shopkeeper offers a discount of 8% on it. Find the selling price of the LED tube light.
Solution:

Marked price = ₹550 and Discount = 8%

\[\text{Discount} = \frac{8}{100} \times 550 = ₹44 \]

\[\therefore \text{Selling Price} = \text{Marked price} - \text{Discount} \]
\[= ₹550 - 44 \]
\[= ₹506 \]

\[\therefore \text{The selling price of the tube light is ₹506} \]

Example: 15

The price of a rain coat was slashed from ₹1060 to ₹901 by a shopkeeper in the winter season to boost the sales. Find the rate of discount given by him.

Solution:

Given,

\[\text{Discount} = \text{Marked Price} - \text{Selling Price} \]
\[= 1060 - 901 \]
\[= ₹159 \]

\[\therefore \text{Discount} = \frac{159}{1060} \times 100\% \]
\[= 15\% \]

Think

A shopkeeper marks the price of a marker board 15% above the cost price and then allows a discount of 15% on the marked price. Does he gain or lose in the transaction?

Example: 16

Find the single discount which is equivalent to two successive discounts of 25% and 20% given on an article.

Solution:

Let the marked price of an article be ₹100.

First discount of 25% = 100 \times \frac{25}{100} = ₹25.

\[\therefore \text{Price after first discount} = 100 - 25 = ₹75. \]

Second discount of 20% = 75 \times \frac{20}{100} = ₹15.

\[\therefore \text{Price after second discount} = 75 - 15 = ₹60. \]

Net selling price = ₹60.

\[\therefore \text{Single discount equivalent to two given successive discounts} = (100-60)\% = 40\%. \]
Note

- By selling \(x \) articles, if one gains the cost price of \(y \) articles, then the profit \(\% = \left(\frac{y}{x} \times 100 \right) \% \).
- By selling \(x \) articles, if one gains the selling price of \(y \) articles, then the profit \(\% = \left(\frac{y}{x-y} \times 100 \right) \% \).
- If the cost price of \(x \) articles = selling price of \(y \) articles, then profit\(\% = \left(\frac{x-y}{y} \times 100 \right) \% \). If the answer is negative, then it is treated as loss.

(Use this formula for Example 1.11 and check the answer)

- If there are 2 successive discounts of \(a \% \) and \(b \% \) respectively, then
 \[\text{S.P} = \left(1 - \frac{a}{100} \right) \left(1 - \frac{b}{100} \right) \times \text{M.P.} \]

- Single discount equivalent to 3 successive discounts of \(a \% \), \(b \% \) and \(c \% \) respectively
 \[= \left\{ 1 - \left(1 - \frac{a}{100} \right) \left(1 - \frac{b}{100} \right) \left(1 - \frac{c}{100} \right) \right\} \times 100 \% . \]

(Use this formula for Example 6 and check the answer).

Try these

1. By selling 5 articles, a man gains the cost price of 1 article. Find his gain percentage.
2. By selling 8 articles, a shopkeeper gains the selling price of 3 articles. Find his gain percentage.
3. If the C.P of 20 articles is equal to the S.P of 15 articles, find the profit or loss percentage.

Example: 17

A woman bought some eggs at the rate of 4 eggs for ₹18 and sold them at the rate of 5 eggs for ₹24. She gained ₹90 in selling all the eggs. How many eggs did she buy?

Solution:

Let the number of eggs bought by her be \(x \).

Then, Cost Price = \(₹ \frac{18}{4} \times x = ₹ \frac{9x}{2} \)

Selling Price = \(₹ \frac{24}{5} \times x = ₹ \frac{24x}{5} \)

\[\therefore \text{Gain} = \text{S.P} - \text{C.P} = ₹ \frac{24x}{5} - \frac{9x}{2} \]
Given, gain = ₹90
That is, \(\frac{3x}{10} = ₹90 \)
\[\therefore \quad x = \frac{90 \times 10}{3} = 300 \]

Example: 18
A water heater is sold by a trader for ₹10502 including GST at 18% and 11% profit. Find the M.P of the water heater, profit and GST.

Solution:
Let the marked price be ₹\(x \).

Now,
\[
\frac{x + 18x}{100} = 10502
\]
\[\frac{118x}{100} = 10502\]
\[\therefore \quad \text{Marked price, } x = ₹8900.\]

GST at 18% = \(\frac{8900 \times 18}{100} \)
\[= ₹10502 - ₹8900\]
\[= ₹1602 \] (or)

Let the C.P be ₹\(y \).

\[\therefore \quad \text{Profit of the water heater = } \frac{11y}{100}\]
\[y + \frac{11y}{100} = 8900\]
\[\Rightarrow \frac{111y}{100} = 8900\]
\[y = 8900 \times \frac{100}{111}\]
\[\therefore \quad \text{Cost price of the water heater = } ₹8018.\]

Example: 19
A family went to a hotel and spent ₹350 for the food and paid 5% GST extra. Calculate the CGST and SGST.

Solution:
Cost of the food = ₹350

5% GST is equally shared by Central and State Governments at 2.5% each

\[\therefore \quad \text{CGST = SGST = } 350 \times \frac{2.5}{100} = ₹8.75\]
1. **Fill in the blanks:**

(i) Loss or gain percentage is always calculated on the__________.

(ii) A mobile phone is sold for ₹8400 at a gain of 20% . The cost price of the mobile phone is_______.

(iii) An article is sold for ₹555 at a loss of $7\frac{1}{2}$%. The cost price of the article is ________.

(iv) The marked price of a mixer grinder is ₹4500 is sold for ₹4140 after discount. The rate of discount is __________.

(v) The total bill amount of a shirt costing ₹575 and a T-shirt costing ₹325 with GST of 5% is_______.

2. If selling an article for ₹820 causes 10% loss on the selling price, find its cost price.

3. If the profit earned on selling an article for ₹810 is the same as loss on selling it for ₹530, then find the cost price of the article.

4. Some articles are bought at 2 for ₹15 and sold at 3 for ₹25. Find the gain percentage.

5. If the selling price of 10 rulers is the same as the cost price of 15 rulers, then find the gain percentage.

6. By selling a speaker for ₹768, a man loses 20%. In order to gain 20% how much should he sell the speaker?

7. A man sold two gas stoves for ₹8400 each. He sold one at a gain of 20% and the other at a loss of 20%. Find his gain or loss % in the whole transaction.

8. Find the unknowns x, y and z.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the items</th>
<th>Marked Price</th>
<th>Selling Price</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>Book</td>
<td>₹225</td>
<td>x</td>
<td>8%</td>
</tr>
<tr>
<td>(ii)</td>
<td>LED TV</td>
<td>y</td>
<td>₹11970</td>
<td>5%</td>
</tr>
<tr>
<td>(iii)</td>
<td>Digital clock</td>
<td>₹750</td>
<td>₹615</td>
<td>z</td>
</tr>
</tbody>
</table>

9. Find the total bill amount for the data given below.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the items</th>
<th>Marked Price</th>
<th>Discount</th>
<th>GST</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>School bag</td>
<td>₹500</td>
<td>5%</td>
<td>12%</td>
</tr>
<tr>
<td>(ii)</td>
<td>Stationery</td>
<td>₹250</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>(iii)</td>
<td>Cosmetics</td>
<td>₹1250</td>
<td>8%</td>
<td>18%</td>
</tr>
<tr>
<td>(iv)</td>
<td>Hair dryer</td>
<td>₹2000</td>
<td>10%</td>
<td>28%</td>
</tr>
</tbody>
</table>
10. A shopkeeper buys goods at \(\frac{4}{5}\) of its marked price and sells them at \(\frac{7}{5}\) of the marked price. Find his profit percentage.

11. A branded AC has a marked price of ₹37250. There are 2 options given for the customer.
 (i) Selling Price is ₹37250 along with attractive gifts worth ₹3000 (or)
 (ii) Discount of 8% but no free gifts.
Which offer is better?

12. If a mattress is marked for ₹7500 and is available at two successive discounts of 10% and 20%, find the amount to be paid by the customer.

Objective Type Questions

13. A fruit vendor sells fruits for ₹200 gaining ₹40. His gain percentage is
 (a) 20% (b) 22% (c) 25% (d) 16 \(\frac{2}{3}\)%

14. By selling a flower pot for ₹528, a woman gains 20%. At what price should she sell it to gain 25%?
 (a) ₹500 (b) ₹550 (c) ₹553 (d) ₹573

15. A man buys an article for ₹150 and makes overhead expenses which are 12% of the cost price. At what price must he sell it to gain 5%?
 (a) ₹180 (b) ₹168 (c) ₹176.40 (d) ₹85

16. The price of a hat is ₹210. What is the marked price of the hat if it is bought at 16% discount?
 (a) ₹243 (b) ₹176 (c) ₹230 (d) ₹250

17. The single discount which is equivalent to two successive discount of 20% and 25% is
 (a) 40% (b) 45% (c) 5% (d) 22.5%

1.4 Compound Interest

The most powerful force in this universe is_______. How would you finish this quote? The world renowned physicist Albert Einstein completed this quote with the word Compound Interest.

When money is borrowed or deposited on simple interest, then the interest is calculated evenly on the principal throughout the loan or deposit period.

In post offices, banks, insurance companies and other financial institutions, they also offer another type of interest calculation. Here, the interest accrued during the first time period (say, 6 months) is added to the original principal and the amount so obtained is taken as the
principal for the second time period (say, next 6 months) and this keeps going on, up to the fixed time agreement between the lender and the borrower.

After a certain period, the difference between the amount and the money borrowed or deposited is called the compound interest which is abbreviated as C.I. Clearly, compound interest will be more than the simple interest just because the principal keeps on changing for every time period.

We call the time period after which the interest is added to the principal, as the ‘conversion period’. For example, if the interest is compounded say, quarterly, there will be four conversion periods in a year each after 3 months. In such cases, the interest rate will be one fourth of the annual rate and the number of times that interest will be compounded is four times the number of years.

In case of simple interest, the principal remains the same for the whole duration whereas in case of compound interest, the principal keeps on changing as per the conversion period. Simple interest and Compound interest remains the same for the first conversion period.

Illustration 1

To find the compound interest on ₹20000 for 4 years at 10% p.a compounded annually and compare it with the simple interest obtained for the same.

Calculating Compound Interest

<table>
<thead>
<tr>
<th>Year</th>
<th>Principal (P)</th>
<th>Interest (P×R×T/100)</th>
<th>Amount (P+I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>₹20000</td>
<td>₹2000</td>
<td>₹22000</td>
</tr>
<tr>
<td>II</td>
<td>₹22000</td>
<td>₹2200</td>
<td>₹24200</td>
</tr>
<tr>
<td>III</td>
<td>₹24200</td>
<td>₹2420</td>
<td>₹26620</td>
</tr>
<tr>
<td>IV</td>
<td>₹26620</td>
<td>₹2662</td>
<td>₹29282</td>
</tr>
</tbody>
</table>

∴ Compound Interest for 4 years = A − P = 29282 − 20000 = ₹9282

What we observe from the calculation of C.I is a repeated multiplication by 1.1 as 20000, (×1.1) 22000, (×1.1) 24200, (×1.1) 26620, (×1.1)29282 for 4 years. We also note that Compound Interest (₹9282) grows faster and is clearly more than the simple interest (₹8000)
obtained. When the time period is longer the above method is time consuming. So, we have a formula to find the amount and the compound interest easily.

Illustration 2

To calculate the amount and compound interest for ₹1000 for 3 years at 10% p.a compound annually.

```
Amount in account is
1000 × (1.10) = 1000 × (1.10)
= 1000 × (1.10)

Amount in account is
1000 × (1.10) × (1.10) = 1000 × (1.10)
= 1000 × (1.10)²

Amount in account is
1000 × (1.10) × (1.10) × (1.10) = 1000 × (1.10)
= 1000 × (1.10)³
```

This leads to the pattern for Amount as $A = P\left(1 + \frac{r}{100}\right)^n$ for the I year, $P\left(1 + \frac{r}{100}\right)\left(1 + \frac{r}{100}\right)$ for the II year and so on. In general, $A = P\left(1 + \frac{r}{100}\right)^n$ for the nth year. Here $A = 1000\left(1 + \frac{10}{100}\right)^3 = ₹1331$. So, C.I = ₹331.

The following formulae will be helpful in calculating the compound interest easily for the following periods.

(i) When the interest is compound annually, we have

$A = P\left(1 + \frac{r}{100}\right)^n$

where A is the amount, P is the principal, r is the rate of interest per annum and n is the number of years and we shall get Compound Interest = Amount – Principal.

(ii) When the interest is compounded half yearly, we have

$A = P\left(1 + \frac{r}{200}\right)^{2n}$

(iii) When the interest is compounded quarterly, we have

$A = P\left(1 + \frac{r}{400}\right)^{4n}$

(iv) When the interest is compounded annually but rate of interest differs year by year, we have

$A = P\left(1 + \frac{a}{100}\right)\left(1 + \frac{b}{100}\right)\left(1 + \frac{c}{100}\right)\ldots$

where a, b and c are interest rates for I, II and III years respectively.
(v) When interest is compounded annually but time is in fraction say \(\frac{a}{b} \text{ years} \), we have

\[
A = P \left(1 + \frac{r}{100}\right)^a \left(1 + \frac{b 	imes r}{100}\right)\]

(Use of calculators are permitted for lengthy calculations and also to verify answers).

Example: 20
Find the C.I for the data given below:

(i) Principal = ₹4000, \(r = 5\% \text{ p.a, } n = 2 \text{ years, interest compounded annually.} \)

(ii) Principal = ₹5000, \(r = 4\% \text{ p.a, } n = 1 \frac{1}{2} \text{ years, interest compounded half-yearly.} \)

(iii) Principal = ₹10000, \(r = 8\% \text{ p.a, } n = 2 \frac{3}{4} \text{ years, interest compounded yearly.} \)

(iv) Principal = ₹30000, \(r = 7\% \text{ for I year, } r = 8\% \text{ for II year, compounded annually.} \)

Solution:

(i) Amount, \(A = P \left(1 + \frac{r}{100}\right)^a \)

\[
= 4000 \left(1 + \frac{5}{100}\right)^2 = 4000 \times \frac{21}{20} \times \frac{21}{20} = ₹4410
\]

\[
\therefore \text{C.I} = A - P = ₹4410 - ₹4000 = ₹410
\]

(ii) Amount, \(A = P \left(1 + \frac{r}{100}\right)^{2n} = 5000 \left(1 + \frac{4}{200}\right)^{2 \times 2} = 5000 \times \frac{51}{50} \times \frac{51}{50} \times \frac{51}{50} = 51 \times 10.2 \times 10.2 = ₹5306.04
\]

\[
\therefore \text{C.I} = A - P = ₹5306.04 - ₹5000 = ₹306.04
\]
(iii) \[A = P \left(1 + \frac{r}{100}\right)^n \left(1 + \frac{b \times r}{100}\right) = 10000 \left(1 + \frac{8}{100}\right)^2 \left(1 + \frac{3 \times 8}{100}\right) = 10000 \left(\frac{27}{25}\right)^2 \left(\frac{53}{50}\right) \]
\[A = 12363.84 \]
\[\therefore \text{C.I} = 12363.84 - 10,000 = \text{₹}2363.84 \]

(iv) \[A = P \left(1 + \frac{a}{100}\right) \left(1 + \frac{b}{100}\right) \]
\[= 3000 \left(1 + \frac{7}{100}\right) \left(1 + \frac{8}{100}\right) \]
\[= 3000 \times \frac{107}{100} \times \frac{108}{100} \]
\[= \text{₹}34668 \]
\[\therefore \text{C.I} = A - I = 34668 - 30000 = \text{₹}4668. \]

1.4.1 Applications of Compound Interest formula:

The compound interest formula is used in the following situations.

(i) To find the increase or decrease in population.

(ii) To find the growth of cells when the rate of growth is given.

(iii) To find the depreciation in the values of machines, vehicles, utility appliances etc.,

Example: 21

The population of a town is increasing at the rate of 6% p.a. It was 238765 in the year 2018. Find the population in the year 2016 and 2020.

Solution:

Let the population in 2016 be ‘P’.

Then, \[A = P \left(1 + \frac{r}{100}\right)^n \]
\[\Rightarrow 238765 = P \left(1 + \frac{6}{100}\right)^2 = P \left(\frac{53}{50}\right)^2 \]
\[\Rightarrow P = 238765 \times \frac{50}{53} \times \frac{50}{53} \]
\[\therefore P = 212500 \]
Let the population in 2020 be ‘A’
Then, \[A = P \left(1 + \frac{r}{100} \right)^n \]
\[\therefore A = 238765 \left(1 + \frac{6}{100} \right)^2 \]
\[= 238765 \times \frac{53}{50} \times \frac{53}{50} \]
\[= 95.506 \times 53 \times 53 \]
\[A = 268276 \]

\[\therefore \] The population in the year 2016 is 212500 and that in the year 2020 is 268276.

Example: 22

The value of a motor cycle 2 years ago was ₹70000. It depreciates at the rate of 4% p.a. Find its present value.

Solution:

Depreciated value \[= P \left(1 - \frac{r}{100} \right)^n \]
\[= 70000 \left(1 - \frac{4}{100} \right)^2 \]
\[= 70000 \times \frac{96}{100} \times \frac{96}{100} \]
\[= ₹64512 \]

Example: 23

The bacteria in a culture grows by 5% in the first hour, decreases by 8% in the second hour and again increases by 10% in the third hour. Find the count of the bacteria at the end of 3 hours, if its initial count was 10000.

Solution:

Bacteria at the end of 3 hours
\[A = P \left(1 + \frac{a}{100} \right) \left(1 - \frac{b}{100} \right) \left(1 + \frac{c}{100} \right) \] (‘–’ because ‘decrease’)
\[= 10000 \left(1 + \frac{5}{100} \right) \left(1 - \frac{8}{100} \right) \left(1 + \frac{10}{100} \right) \]
\[= 10000 \times \frac{105}{100} \times \frac{92}{100} \times \frac{110}{100} \]
\[A = ₹10626 \]
1. Find the principal which gives ₹420 as C.I at 20% p.a, compounded half yearly for one year.

2. The price of a laptop depreciates at 4% p.a. If its present price is ₹24000, find its price after 3 years.

1.4.2 Difference between S.I and C.I:

- There is no difference in S.I and C.I for the first conversion period.
- For 2 years, the difference in S.I and C.I is
 \[C.I - S.I = P \left(\frac{r}{100} \right)^2 \]
- For 3 years, the difference in S.I and C.I is
 \[C.I - S.I = P \left(\frac{r}{100} \right)^2 \left(2 + \frac{r}{100} \right) \]

Example: 24

Find the difference in C.I and S.I for

(i) \(P = ₹5000, r = 4\% \text{ p.a, } n = 2 \text{ years.} \)
(ii) \(P = ₹8000, r = 5\% \text{ p.a, } n = 3 \text{ years.} \)

Solution:

(i) \(C.I - S.I = P \left(\frac{r}{100} \right)^2 = 5000 \times \frac{4}{100} \times \frac{4}{100} = ₹8 \)

(ii) \(C.I - S.I = P \left(\frac{r}{100} \right)^2 \left(2 + \frac{r}{100} \right) \)
\[= 8000 \times \frac{5}{100} \times \frac{5}{100} \times \left(3 + \frac{5}{100} \right) \]
\[= 20 \times \frac{61}{20} = ₹61 \]

Activity

Mukunthan invests ₹30000 for 3 months in a bank which gives C.I at the rate of 12% p.a, compounded monthly. A private company offers his S.I at the rate of 12% p.a. What is the difference in the interests received by Mukunthan? Do by traditional method and verify your answer by calculator.
Exercise 1.3

1. Fill in the blanks:
 (i) The compound interest on ₹5000 at 12% p.a for 2 years compounded annually is __________.
 (ii) The compound interest on ₹8000 at 10% p.a for 1 year, compounded half yearly is __________.
 (iii) The annual rate of growth in population of a town is 10%. If its present population is 26620, the population 3 years ago was __________.
 (iv) The amount if the compound interest is calculated quarterly, is found using the formula __________.
 (v) The difference between the S.I and C.I for 2 years for a principal of ₹5000 at the rate of interest 8% p.a is __________.

2. Say True or False.
 (i) Depreciation value is calculated by the formula $P\left(1-\frac{r}{100}\right)^n$.
 (ii) If the present population of a city is P and it increases at the rate of $r\%$ p.a, then the population n years ago would be $P\left(1+\frac{r}{100}\right)^n$.
 (iii) The present value of a machine is ₹16800. It depreciates at 25% p.a. Its worth after 2 years is ₹9450.
 (iv) The time taken for ₹1000 to become ₹1331 at 20% p.a compounded annually is 3 years.
 (v) The compound interest on ₹16000 for 9 months at 20% p.a, compounded quarterly is ₹2522.

3. Find the compound interest on ₹3200 at 2.5% p.a for 2 years, compounded annually.

4. Find the compound interest for $2\frac{1}{2}$ years on ₹4000 at 10% p.a if the interest is compounded yearly.

5. Magesh invested ₹5000 at 12% p.a for one year. If the interest is compounded half yearly, find the amount he gets at the end of the year.

6. At what time will a sum of ₹3000 will amount to ₹3993 at 10% p.a compounded annually?

7. A principal becomes ₹2028 in 2 years at 4% p.a compound interest. Find the Principal.

8. At what rate percentage p.a will ₹5625 amount to ₹6084 in 2 years at compound interest?
9. In how many years will ₹3375 become ₹4096 at $13\frac{1}{3}$% p.a where interest is compounded half-yearly?

10. Find the C.I on ₹15000 for 3 years if the rates of interest are 15%, 20%, and 25% for I, II and III years respectively.

11. The present height of a tree is 847 cm. Find its height two years ago, if it increases at 10% p.a.

12. Find the difference between C.I and S.I on ₹5000 for 1 year at 2% p.a, if the interest is compounded half yearly.

13. What is the difference in simple interest and compound interest on ₹15000 for 2 years at 6% p.a compounded annually.

14. Find the rate of interest if the difference between C.I and S.I on ₹8000 compounded annually for 2 years is ₹20.

15. Find the principal if the difference between C.I and S.I on it at 15% p.a for 3 years is ₹1134.

DO YOU KNOW?

- If a sum of money doubles in n years, then it will become m times in $(m-1) \times n$ years, if simple interest is applied.
- If a sum of money becomes m times in n years, then it will become m^a times in an years if compound interest is applied.
- Difference between the compound interest and the simple interest on a sum for 4 years at r% p.a is $P\left(6 + 4i + i^2\right)$ where $i = \frac{r}{100}$.

Objective Type Questions

16. The number of conversion periods, if the interest on a principal is compounded every two months is__________.

 (a) 2 (b) 4 (c) 6 (d) 12

17. The time taken for ₹4400 to become ₹4851 at 10%, compounded half yearly is ________.

 (a) 6 months (b) 1 year (c) 1\frac{1}{2} years (d) 2 years

18. The cost of a machine is ₹18000 and it depreciates at $16\frac{2}{3}$% annually. Its value after 2 years will be__________.

 (a) ₹12000 (b) ₹12500 (c) ₹15000 (d) ₹16500
19. The sum which amounts to ₹2662 at 10% p.a in 3 years compounded yearly is______.
 (a) ₹2000 (b) ₹1800 (c) ₹1500 (d) ₹2500

20. The difference between simple and compound interest on a certain sum of money for 2 years at 2% p.a is ₹1. The sum of money is__________.
 (a) ₹2000 (b) ₹1500 (c) ₹3000 (d) ₹2500

Note

If P is \(x\%\) or \(\frac{x}{100}\) more efficient than Q, then Q is \(\left(\frac{100x}{100+x}\right)\%\) less efficient than P?

If P is \(x\%\) or \(\frac{x}{100}\) less efficient than Q, then Q is \(\left(\frac{100x}{100-x}\right)\%\) more efficient than P?

Exercise 1.4

Miscellaneous Practice Problems

1. Nanda’s marks in 3 Math tests T1, T2 and T3 were 38 out of 40, 27 out of 30 and 48 out of 50. In which test did he do well? Find his overall percentage in all the 3 tests.

2. Sultana bought the following things from a general store. Calculate the total bill amount to be paid by her.

 (i) Medicines costing ₹800 with GST at 5%

 (ii) Cosmetics costing ₹650 with GST at 12%

 (iii) Cereals costing ₹900 with GST at 0%

 (iv) Sunglass costing ₹1750 with GST at 18%

 (v) Air Conditioner costing ₹28500 with GST at 28%

3. P’s income is 25% more than that of Q. By what percentage is Q’s income less than P’s?
4. Gopi sold a laptop at 12% gain. If it had been sold for ₹1200 more, the gain would have been 20%. Find the cost price of the laptop.

5. Vaidegi sold two sarees for ₹2200 each. On one she gains 10% and on the other she loses 12%. Calculate her gain or loss percentage in the sales.

6. A sum of money becomes ₹18000 in 2 years and ₹40500 in 4 years on compound interest. Find the sum.

7. Find the difference in the compound interest on ₹62500 for $1\frac{1}{2}$ years at 8% p.a compounded annually and when compounded half-yearly.

Challenging Problems

8. If the first number is 20% less than the second number and the second number is 25% more than 100, then find the first number.

9. A shopkeeper gives two successive discounts on an article whose marked price is ₹180 and selling price is ₹108. Find the first discount percentage if the second discount is 25%.

10. A man bought an article on 30% discount and sold it at 40% more than the marked price. Find the profit made by him.

11. Find the rate of compound interest at which a principal becomes 1.69 times itself in 2 years.

12. The simple interest on a certain principal for 3 years at 10% p.a is ₹300. Find the compound interest accrued in 3 years.

Summary

- Per Cent means per hundred or out of a hundred. It is denoted by the symbol %. $x\%$ denotes the fraction $\frac{x}{100}$.
- Percentages are useful in comparing quantities easily.
- The amount for which an article is bought is called its Cost Price (C.P).
- The amount for which an article is sold is called its Selling Price (S.P).
- When the S.P is more than the C.P, then there is a gain or profit. Gain/Profit = $S.P - C.P$.
- When the S.P is less than the C.P, then there is a loss. Loss = $C.P - S.P$.
- The profit or loss is always calculated on the cost price.
- Marked price: In big shops and departmental stores, we see that every product is tagged with a card with a price written on it. The price marked on it is called the marked price.
- The rebate which is given for an article on buying is known as discount.
Selling price = Marked price – discount.

Formulae

(i) Gain or Profit % = \(\left(\frac{\text{Profit}}{\text{C.P}} \times 100 \right) \) %

(ii) Loss % = \(\left(\frac{\text{Loss}}{\text{C.P}} \times 100 \right) \) %

(iii) S.P = \(\left(\frac{100 + \text{Profit} \%}{100} \right) \times \text{C.P} \) (or) C.P = \(\left(\frac{100}{100 + \text{Profit} \%} \right) \times \text{S.P} \)

(iv) S.P = \(\left(\frac{100 - \text{Loss} \%}{100} \right) \times \text{C.P} \) (or) C.P = \(\frac{100}{(100 - \text{Loss})} \times \text{S.P} \)

Overhead Expenses: Some expenses like repairs, transportation and labour charges incurred are included in the cost price and are called as overhead expenses.

Goods and Services Tax (GST): The goods and services tax (GST) is the only common tax in India levied on almost all the goods and the services meant for domestic consumption.

When the interest is compound annually, \(A = P \left(1 + \frac{r}{100}\right)^n\).

When the interest is compounded half yearly, \(A = P \left(1 + \frac{r}{200}\right)^{2n}\).

When the interest is compounded quarterly, \(A = P \left(1 + \frac{r}{400}\right)^{4n}\).

When the interest is compounded annually but rate of interest differs year by year, \(A = P \left(1 + \frac{a}{100}\right) \left(1 + \frac{b}{100}\right) \left(1 + \frac{c}{100}\right)\) … where a, b and c are interest rates for I, II and III years respectively.

When interest is compounded annually but time is in fraction say \(\frac{a}{c} \) years, \(A = P \left(1 + \frac{r}{100}\right)^a \left(1 + \frac{\frac{b}{c} 	imes r}{100}\right) \).

C.I = Amount – Principal (A–P).

Simple Interest and Compound Interest remains the same for the first conversion period.

For 2 years, the difference in S.I and C.I is \(\text{C.I} - \text{S.I} = P \left(\frac{r}{100}\right)^2 \).

For 3 years, the difference in S.I and C.I is \(\text{C.I} - \text{S.I} = P \left(\frac{r}{100}\right)^2 \left(3 + \frac{r}{100}\right) \).
ICT CORNER

Expected Outcome

Step – 1
Open the Browser type the URL Link given below (or) Scan the QR Code.
GeoGebra work book named “LIFE MATHEMATICS” will open. Click on the worksheet named “Percentage”.

Step – 2
In the given worksheet you can drag the red points E and F to change the Blue rectangle. Find the ratio of Blue with the whole by counting the squares and check the ratio and percentage.

Go through the remaining worksheets given for this chapter

Browse in the link
Life Mathematics:
https://www.geogebra.org/m/fqxbd7rz#chapter/409575 or Scan the QR Code.
Learning Objectives

- To solve word problems that involve linear equations.
- To know how to plot the points in the graph.
- To draw graphs of simple linear functions

2.1 Introduction

We shall recall some earlier ideas in algebra.

What is the formula to find the perimeter of a rectangle? If we denote the length by \(l \) and breadth by \(b \), the perimeter \(P \) is given as \(P = 2(l + b) \). In this formula, 2 is a fixed number whereas the literal numbers \(P \), \(l \) and \(b \) are not fixed because they depend upon the size of the rectangle and hence \(P \), \(l \) and \(b \) are variables. For rectangles of different sizes, their values go on changing. 2 is a constant (which does not change whatever may be the size of the rectangle).

An algebraic expression is a mathematical phrase having one or more algebraic terms including variables, constants and operating symbols (such as plus and minus signs).

Example: \(4x^2 + 5x + 7xy + 100 \) is an algebraic expression; note that the first term \(4x^2 \) consists of constant 4 and variable \(x^2 \). What is the constant in the term \(7xy \)? Is there a variable in the last term of the expression?

The ‘number parts’ of the terms with variables are coefficients. In \(4x^2 + 5x + 7xy + 100 \), the coefficient of the first term is 4. What is the coefficient of the second term? It is 5. The coefficient of the \(xy \) term is 7.

2.2 Forming algebraic expressions

We now to translate a few statements into an algebraic language and recall how to frame expressions. Here are some examples:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Expression</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sum of 8 and 7</td>
<td>8 + 7</td>
<td>When simplified, we get a single number. This is a numerical expression</td>
</tr>
<tr>
<td>The sum of (x) and 7</td>
<td>(x + 7)</td>
<td>We get an algebraic expression (x + 7), since (x) is a variable.</td>
</tr>
<tr>
<td>16 divided by (y)</td>
<td>(\frac{16}{y})</td>
<td>Here, (y) is a variable.</td>
</tr>
<tr>
<td>Expression</td>
<td>Algebraic Form</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>One more than thrice a number (p)</td>
<td>(3p + 1)</td>
<td>Here (p) is a variable; 3 is the coefficient of (p).</td>
</tr>
<tr>
<td>The product of a number and the same number less 5</td>
<td>(x(x - 3))</td>
<td>Note that here (x) stands for the same number throughout in the expression. (We use brackets to indicate multiplication).</td>
</tr>
</tbody>
</table>

Mathematics Alive—Algebra in Real Life

| Linear equation are used to find unit price and total | Linear equation are used for speed, distance, time and average speed |

2.3 Equations

An **equation** is a statement that asserts the equality of two expressions; the expressions are written one on each side of an “equal to” sign.

For example: \(2x + 7 = 17 \) is an equation (where \(x \) is a variable). \(2x + 7 \) forms the Left Hand Side (LHS) of the equation and 17 is its Right Hand Side (RHS).

2.3.1 Linear equations in one or more variables:

An equation is formed when a statement is put in the form of mathematical terms. Here are some Examples:

(i) A number is added to 5 to get 25

This statement can be written as \(x + 5 = 25 \).

This equation \(x + 5 = 25 \) is formed by one variable \((x) \) whose highest power is 1. So it is called a linear equation in one variable.

Therefore, an equation containing only one variable with its highest power as one is called a linear equation in one variable.

Examples: \(5x - 2 = 8 \), \(3y + 24 = 0 \)

This linear equation in one variable is also known as **simple equation**.
(ii) **Sum of two numbers is 45**

This statement can be written as \(x + y = 45 \).

This equation \(x + y = 45 \) is formed by two variables \(x \) and \(y \) whose highest power is 1. Hence, we call it as a linear equation in two variables.

Now, in this class we shall learn to solve linear equations in one variable only. You will learn to solve other type of equations in higher classes.

Note

The equations so formed with more than power 1 of its variables, (2, 3, etc.) are called as quadratic, cubic equations and so on.

Examples:

(i) \(x^2 + 4x + 7 = 0 \) is a quadratic equation.

(ii) \(5x^3 - x^2 + 3x + 10 = 0 \) is a cubic equation.

Try these

Identify which among the following are linear equations.

(i) \(2 + x = 19 \)
(ii) \(7x^2 - 5 = 3 \)
(iii) \(4p^3 = 12 \)
(iv) \(6m + 2 \)
(v) \(n = 10 \)

(vi) \(7k - 12 = 0 \)
(vii) \(\frac{6x}{8} + y = 1 \)
(viii) \(5 + y = 3x \)
(ix) \(10p + 2q = 3 \)
(x) \(x^2 - 2x - 4 \)

Convert the following statements into linear equations:

Example: 1

7 is added to a given number to give 19.

Solution:

Let the number be \(n \).

When 7 is added to this number we get \(n + 7 \).

This result is to give 19.

Therefore, the equation is \(n + 7 = 19 \).

Example: 2

The sum of 4 times a number and 18 is 28.

Solution:

Let the number be \(x \).

4 times the number is \(4x \).

Adding 18 now, we get \(18 + 4x \).

The result now should be 28.

Thus, the equation has to be \(18 + 4x = 28 \).
Try these

Convert the following statements into linear equations:
1. On subtracting 8 from the product of 5 and a number, I get 32.
2. The sum of three consecutive integers is 78.
3. Peter had a Two hundred rupee note. After buying 7 copies of a book he was left with ₹60.
4. The base angles of an isosceles triangle are equal and the vertex angle measures 80°.
5. In a triangle ABC, ∠A is 10° more than ∠B. Also ∠C is three times ∠A. Express the equation in terms of angle B.

2.3.2 Solution of a linear equation:

The value which replaces a variable in an equation so as to make the two sides of the equation equal is called a solution or root of the equation.

Example: \(2x = 10\)

We find that the equation is “satisfied” with the value \(x = 5\). That is, if we put \(x = 5\), in the equation, the value of the LHS will be equal to the RHS. Thus \(x = 5\) is a solution of the equation. Note that no other value for \(x\) satisfies the equation. Thus one can say \(x = 5\) is “the” solution of the equation.

(i) The DO-UNDO Method:

<table>
<thead>
<tr>
<th>Statement (given)</th>
<th>You Think</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 less than twice a number is 11.</td>
<td>The number needed is unknown. Let it be (x). Twice the number gives (2x). 5 less is (2x - 5). This result is given to be 11.</td>
</tr>
</tbody>
</table>

This formation of equation can be visualized as follows:

From the number \(x\), we reached \(2x - 5\) by performing operations like subtraction, multiplication etc. So when \(2x - 5 = 11\) is given, to get back to the value of \(x\), we have to ‘undo’ all that we did! Thus, we ‘do’ to form the equation and ‘undo’ to get the solution.
Example: 3
Solve the equation: \(x - 7 = 6 \)

Solution:

Given,

\[
\begin{align*}
 x - 7 &= 6 \\
 x - 7 + 7 &= 6 + 7 \\
 x &= 13
\end{align*}
\]

(ii) Transposition method

The shifting of a number from one side of an equation to other is called transposition.

For the above example, doing addition of 7 on both sides is the same as changing the number \(-7\) on the left hand side to its additive inverse \(+7\) and add it on the right hand side.

\[
\begin{align*}
 x - 7 &= 6 \\
 x &= 6 + 7 \\
 x &= 13
\end{align*}
\]

Example: 4
Solve the equation: \(3x = 51 \)

Solution:

\[
\begin{align*}
 3x &= 51 \quad \text{(Given)} \\
 3 \times x &= 51 \\
 \frac{3 \times x}{3} &= \frac{51}{3} \quad \text{(÷ 3 on both sides)} \\
 x &= 17
\end{align*}
\]

Likewise, doing division by 3 on both sides is the same as changing the number 3 on the LHS to its reciprocal \(\frac{1}{3}\) and multiply it on the RHS and vice-versa.

(i) \(\frac{6x}{2} = 12 \)

\[
\begin{align*}
 6x &= 12 \\
 x &= \frac{12}{6} \\
 x &= 2
\end{align*}
\]

(ii) \(\frac{y}{7} = 10 \)

\[
\begin{align*}
 y &= 10 \times 7 \\
 y &= 70
\end{align*}
\]

Example: 5
Solve \(2x + 5 = 9 \)

Solution:

\[
\begin{align*}
 2x + 5 &= 9 \\
 2x &= 9 - 5 \\
 2x &= 4 \\
 \frac{2x}{2} &= \frac{4}{2} \\
 x &= 2
\end{align*}
\]

Think

Can you get more than one solution for a linear equation?

Note

While rearranging the given linear equation, group the like terms on one side of the equality sign, and then do the basic arithmetic operations according to the signs that occur in the expression.
Example 6

Solve \(\frac{4y}{3} - 7 = \frac{2}{5}y \)

Solution:

(Rearranging the like terms)

\[
\frac{4y}{3} - \frac{2y}{5} = 7
\]

\[
20y - 6y = 7
\]

\[
14y = 7 \times 15
\]

\[
y = \frac{7 \times 15}{14}
\]

\[
y = \frac{15}{2}
\]

Exercise 2.1

1. **Fill in the blanks:**
 (i) The value of \(x \) in the equation \(x + 5 = 12 \) is \(\) ________.
 (ii) The value of \(y \) in the equation \(y - 9 = (-5) + 7 \) is \(\) ________.
 (iii) The value of \(m \) in the equation \(8m = 56 \) is \(\) ________.
 (iv) The value of \(p \) in the equation \(\frac{2p}{3} = 10 \) is \(\) ________.
 (v) The linear equation in one variable has \(\) ________ solution.

2. **Say True or False.**
 (i) The shifting of a number from one side of an equation to other is called transposition.
 (ii) Linear equation in one variable has only one variable with power 2.

3. **Match the following:**

 (a) \(\frac{x}{2} = 10 \) \((i) \) \(x = 4 \)
 (b) \(20 = 6x - 4 \) \((ii) \) \(x = 1 \)
 (c) \(2x - 5 = 3 - x \) \((iii) \) \(x = 20 \)
 (d) \(7x - 4 - 8x = 20 \) \((iv) \) \(x = \frac{8}{3} \)
 (e) \(\frac{4}{11} - x = \frac{-7}{11} \) \((v) \) \(x = -24 \)

 (A) (i), (ii), (iv), (iii), (v) \((B) \) (iii), (iv), (i), (ii), (v)
 (C) (iii), (i), (iv), (v), (ii) \((D) \) (iii), (i), (v), (iv), (ii)
4. Find x: (i) $\frac{2x}{3} - 4 = \frac{10}{3}$
(ii) $y + \frac{1}{6} - 3y = \frac{2}{3}$
(iii) $\frac{1}{3} - \frac{1x}{3} = \frac{7x}{12} + \frac{5}{4}$
5. Find x: (i) $-3(4x + 9) = 21$
(ii) $20 - 2(5 - p) = 8$
(iii) $(7x - 5) - 4(2 + 5x) = 10(2 - x)$
6. Find x and m: (i) $\frac{3x - 2}{4} - \frac{x - 3}{5} = -1$
(ii) $\frac{m + 9}{3m + 15} = \frac{5}{3}$

2.4 Word problems that involve linear equations

The challenging part of solving word problems is translating the statements into equations. Collect as many such problems and attempt to solve them.

Example: 7

The sum of two numbers is 36 and one number exceeds another by 8. Find the numbers.

Solution:

Let the smaller number be x and the greater number be $x + 8$

Given: the sum of two numbers = 36

$$x + (x + 8) = 36$$
$$2x + 8 = 36$$
$$2x = 36 - 8$$
$$2x = 28$$
$$x = \frac{28}{2}$$
$$x = 14$$

The smaller number, $x = 14$
The greater number, $x + 8 = 14 + 8 = 22$

Example: 8

A bus is carrying 56 passengers with some people having ₹8 tickets and the remaining having ₹10 tickets. If the total money received from these passengers is ₹500, find the number of passengers with each type of tickets.

Solution:

Let the number of passengers having ₹8 tickets be y. Then, the number of passengers with ₹10 tickets is $(56 - y)$.

Total money received from the passengers = ₹500

That is, $y \times ₹8 + (56 - y) \times ₹10 = 500$

$$8y + 560 - 10y = 500$$
$$8y - 10y = 500 - 560$$
$$-2y = -60$$
$$y = \frac{60}{2}$$
$$y = 30$$
Hence, the number of passengers having,
(i) ₹8 tickets =30
(ii) ₹10 tickets =56−30 =26

Example:9

The length of a rectangular field exceeds its breadth by 9 metres. If the perimeter of the field is 154m, find the length and breadth of the field.

Solution:

Let the breadth of the field be ‘x’ metres; then its length (x+9) metres.

Perimeter of the P = 2(length + breadth) = 2(x + 9 + x) = 2(2x + 9)

Given that, 2(2x + 9) = 154.

\[4x + 18 = 154 \]
\[4x = 154 − 18 \]
\[4x = 136 \]
\[x = 34 \]

Thus, Breadth of the rectangular field = 34m

Length of the rectangular field = x+9 = 34+9 = 43m

Example: 10

There is a wooden piece of length 2m. A carpenter wants to cut it into two pieces such that the first piece is 40 cm smaller than twice the other piece. What is the length of the smaller piece?

Solution:

Let us assume that the length of the first piece is x cm.

Then the length of the second piece is (200cm − x cm) i.e., (200 − x) cm.

According to the given statement (change m to cm),

First piece = 40 less than twice the second piece.

\[x = 2 \times (200 − x) − 40 \]
\[x = 400 − 2x − 40 \]
\[x + 2x = 360 \]
\[3x = 360 \]
\[x = \frac{360}{3} \]
\[x = 120 \]

Thus the length of the first piece is 120cm and the length of second piece is 200cm − 120cm = 80cm, which happens to be the smaller.
Example: 11
A mother is five times as old as her daughter. After 2 years, the mother will be four times as old as her daughter. What are their present ages?

Solution:

<table>
<thead>
<tr>
<th>Age / Person</th>
<th>Now</th>
<th>After 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daughter</td>
<td>x</td>
<td>$x + 2$</td>
</tr>
<tr>
<td>Mother</td>
<td>$5x$</td>
<td>$5x + 2$</td>
</tr>
</tbody>
</table>

Given condition: After two years, Mother’s age = 4 times of Daughter’s age

\[
5x + 2 = 4(x + 2) \\
5x + 2 = 4x + 8 \\
5x - 4x = 8 - 2 \\
x = 6
\]

Hence daughter’s present age = 6 years;
and mother’s present age = $5x = 5 \times 6 = 30$ years

Example: 12
The denominator of a fraction is 3 more than its numerator. If 2 is added to the numerator and 9 is added to the denominator, the fraction becomes $\frac{5}{6}$. Find the original fraction.

Solution:

Let the original fraction be $\frac{x}{y}$.

Given that $y = x + 3$. (Denominator = Numerator + 3).

Therefore, the fraction can be written as $\frac{x}{x+3}$. As per the given condition, $\frac{x+2}{(x+3)+9} = \frac{5}{6}$

By cross multiplication,

\[
6(x+2) = 5(x+12) \\
6x + 12 = 5x + 60 \\
6x - 5x = 60 - 12 \\
x = 60 - 12 \\
x = 48.
\]

Therefore, the original fraction is $\frac{x}{x+3} = \frac{48}{48+3} = \frac{48}{51}$.

Example: 13
The sum of the digits of a two-digit number is 8. If 18 is added to the value of the number, its digits get reversed. Find the number.

Solution:

Let the two digit number be xy (i.e., ten’s digit is x, ones digit is y)

Its value can be expressed as $10x + y$.

Given, $x + y = 8$ which gives $y = 8 - x$
Therefore its value is $10x + y$
\[= 10x + 8 - x\]
\[= 9x + 8.\]

The new number is yx with value $10y + x$
\[= 10(8 - x) + x\]
\[= 80 - 9x\]

Given, when 18 is added to the given number (xy) gives new number (yx)
\[(9x + 8) + 18 = 80 - 9x\]
This simplifies to $9x + 9x = 80 - 8 - 18$
$18x = 54$
$x = 3 \Rightarrow y = 8 - 3 = 5$

The two digit number is $xy = 35$

Example: 14

From home, Rajan rides on his motorbike at 35 km/hr and reaches his office 5 minutes late. If he had ridden at 50 km/hr, he would have reached his office 4 minutes earlier. How far is his office from his home?

Solution:

Let the distance be \(x\) km. (Recall that time = \(\frac{\text{Distance}}{\text{Speed}}\))

Time taken to cover \(x\) km at 35 km/hr: \(T_1 = \frac{x}{35}\) hr

Time taken to cover \(x\) km at 50 km/hr: \(T_2 = \frac{x}{50}\) hr

According to the problem, the difference between two timings
\[
= 4 - (-5)
\]
\[
= 4 + 5 = 9 \text{ minutes}
\]
\[
= \frac{9}{60} \text{ hour (changing minutes to hour)}
\]

Given, \(T_1 - T_2 = \frac{9}{60}\)
\[
\frac{x}{35} - \frac{x}{50} = \frac{9}{60}
\]
\[
\frac{10x - 7x}{350} = \frac{9}{60}
\]
\[
\frac{3x}{350} = \frac{9}{60}
\]
\[
x = \frac{9}{60} \times \frac{350}{3}
\]

The distance to his office $x = 17 \frac{1}{2}$ km.
1. **Fill in the blanks:**
 (i) The solution of the equation \(ax+b=0\) is _______.
 (ii) If \(a\) and \(b\) are positive integers then the solution of the equation \(ax=b\) has to be always _______.
 (iii) One-sixth of a number when subtracted from the number itself gives 25. The number is _______.
 (iv) If the angles of a triangle are in the ratio 2:3:4 then the difference between the greatest and the smallest angle is _______.
 (v) In an equation \(a + b = 23\). The value of \(a\) is 14 then the value of \(b\) is _______.

2. **Say True or False**
 (i) “Sum of a number and two times that number is 48” can be written as \(y+2y=48\)
 (ii) \(5(3x+2) = 3(5x−7)\) is a linear equation in one variable.
 (iii) \(x = 25\) is the solution of one third of a number is less than 10 the original number.

3. One number is seven times another. If their difference is 18, find the numbers.

4. The sum of three consecutive odd numbers is 75. Which is the largest among them?

5. The length of a rectangle is \(\frac{1}{3}\) of its breadth. If its perimeter is 64 m, then find the length and breadth of the rectangle.

6. A total of 90 currency notes, consisting only of ₹5 and ₹10 denominations, amount to ₹500. Find the number of notes in each denomination.

7. At present, Thenmozhi’s age is 5 years more than that of Murali’s age. Five years ago, the ratio of Thenmozhi’s age to Murali’s age was 3:2. Find their present ages.

8. A number consists of two digits whose sum is 9. If 27 is subtracted from the original number, its digits are interchanged. Find the original number.

9. The denominator of a fraction exceeds its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get \(\frac{3}{2}\). Find the original fraction.

10. If a train runs at 60 km/hr it reaches its destination late by 15 minutes. But, if it runs at 85 kmph it is late by only 4 minutes. Find the distance to be covered by the train.

Objective Type Questions

11) Sum of a number and its half is 30 then the number is _______.
 (a) 15 (b) 20 (c) 25 (d) 40

12) The exterior angle of a triangle is 120° and one of its interior opposite angle 58°, then the other opposite interior angle is _______.
 (a) 62° (b) 72° (c) 78° (d) 68°

13) What sum of money will earn ₹500 as simple interest in 1 year at 5% per annum?
 (a) 50000 (b) 30000 (c) 10000 (d) 5000

14) The product of LCM and HCF of two numbers is 24. If one of the number is 6, then the other number is _______.
 (a) 6 (b) 2 (c) 4 (d) 8
2.5 Graph

2.5.1 Introduction:

There was an instance in the 17th century when Rene Descartes, a famous mathematician became ill and from his bed, noticed an insect hovering over a corner and sitting at various places on the ceiling. He wanted to identify all the places where the insect sat on the ceiling. Immediately, he drew the top plane of the room in a paper, creating the horizontal and vertical lines. Based on these perpendicular lines, he used the directions and understood that the places of the insect can be spotted by the movement of the insect in the east, west, north and south directions. He called that place as \((x, y)\) in the plane which indicates two values, one \(x\) in the horizontal direction and the other \(y\) in the vertical direction (say east and north in this case). This is how the concept of graphs came into existence.

2.5.2 Graph sheets:

Graph is just a visual method for showing relationships between numbers. In the previous class, we studied how to represent integers on a number line horizontally. Now take one more number line – vertically. We take the graph sheet keeping both number lines mutually perpendicular to each other at ‘zero’ as given in the figure. The number lines and the marking integers should be placed along the dark lines of the graph sheet.

The intersecting point of the perpendicular lines ‘O’ represent the origin \((0, 0)\).
Rene Descartes: The French mathematician and philosopher was born in 1596. Descartes presented his results in the book “Discourse on the method”. His major contribution lies in bringing forth coordinate system that also bears his name. This Cartesian coordinate system tends to explain the algebraic equations through geometrical shapes. As his famous dictum is “I think, therefore I am”.

Cartesian system

Rene Descartes system of fixing a point with the help of two measurements, horizontal and vertical, is known as **Cartesian system**, in his honour. The horizontal line is named as XOX, called the X-axis. The vertical line is named as YOY', called the Y-axis. Both the axes are called **coordinate axes**. The plane containing the X axis and the Y axis is known as the coordinate plane or the **Cartesian plane**.

2.5.3 Signs in the graphs:

1. X-coordinate of a point is positive along OX and negative along OX'
2. Y-coordinate of a point is positive along OY and negative along OY'

Mathematics Alive — Graph in Real Life

Graphs are used in the medical field for various purposes like in ECG, EEG etc., Graphs are used for drawing
2.5.4 Ordered pairs:

A point represents a position in a plane. A point is denoted by a pair \((a, b)\) of two numbers ‘a’ and ‘b’ listed in a specific order in which ‘a’ represents the distance along the X-axis and ‘b’ represents the distance along the Y-axis. It is called an ordered pair \((a, b)\). It helps us to locate precisely a point in the plane. Each point can be exactly identified by a pair of numbers. It is also clear that the point \((b, a)\) is not the same as \((a, b)\) as they both indicate different orders.

We have, \(XOX'\) and \(YOY'\) as the co-ordinate axes and let ‘M’ be \((4, 3)\) in the plane. To locate ‘M’
(i) you (always) start at \(O\), a fixed point (which we have, agreed to call as origin),
(ii) first, move 4 units along the horizontal direction (that is, the direction of \(x\)-axis)
(iii) and then trek along the \(y\)-direction by 3 units.

To understand how we have travelled to reach \(M\), we denote by \((4, 3)\).

4 is called the \(x\)-coordinate of \(M\) and 3 is called the \(y\)-coordinate of \(M\).

It is also habitual to name the \(x\)-coordinate as abscissa and the \(y\)-coordinate as ordinate.

\((4, 3)\) is as an ordered pair.

If instead of \((4, 3)\), we write \((3, 4)\) and try to mark it, will it represent ‘\(M\)’ again?

2.5.5 Quadrants:

The coordinate axes divide the plane of the graph into four regions called quadrants. It is a convention that the quadrants are named in the anti clock wise sense starting from the positive side of the \(X\) axis.
Quadrant Sign

<table>
<thead>
<tr>
<th>Quadrant</th>
<th>Sign</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>I the region XOY</td>
<td>$x > 0$, $y > 0$, then the coordinates are $(+, +)$</td>
<td>$(5, 7)$, $(2, 9)$, $(10, 15)$</td>
</tr>
<tr>
<td>II the region X'OY</td>
<td>$x < 0$, $y > 0$, then the coordinates are $(-, +)$</td>
<td>$(-2, 8)$, $(-1, 10)$, $(-5, 3)$</td>
</tr>
<tr>
<td>III the region X'OY'</td>
<td>$x < 0$, $y < 0$, then the coordinates are $(-, -)$</td>
<td>$(-2, -3)$, $(-7, -1)$, $(-5, -7)$</td>
</tr>
<tr>
<td>IV the region XOY'</td>
<td>$x > 0$, $y < 0$, then the coordinates are $(+, -)$</td>
<td>$(1, -7)$, $(4, -2)$, $(9, -3)$</td>
</tr>
</tbody>
</table>

Coordinate of a point on the axes:

- **If** $y = 0$ then the coordinate $(x, 0)$ lies on the ‘x’-axis.
 For example, $(2, 0)$, $(-5, 0)$, $(7, 0)$ are points on the ‘x’-axis.
- **If** $x = 0$ then the coordinate $(0, y)$ lies on the ‘y’-axis.
 For example, $(0, 3)$, $(0, -4)$, $(0, 9)$ are points on the ‘y’-axis.

2.6.6 Plotting the given points on a graph:

Consider the following points $(4, 3)$, $(-4, 5)$, $(-3, -6)$, $(5, -2)$, $(6, 0)$, $(0, -5)$

(i) **To locate $(4, 3)$**.

Start from origin O, move 4 units along OX and from 4, move 3 units parallel to OY to reach M$(4, 3)$.

(ii) **To locate $(-4, 5)$**

From the origin, move 4 units along OX’ and from -4, move 5 units parallel to OY to reach N$(-4, 5)$.

(iii) **To locate $(-3, -6)$**

From the origin move 3 units along OX’ and from -3, move 6 units parallel to OY’ to reach P$(-3, -6)$.

(iv) **To locate $(5, -2)$**

From the origin move 5 points along OX and from 5, move 2 units parallel to OY’ to reach Q$(5, -2)$.

(v) **To locate $(6, 0)$ and $(0, -5)$**

In the given point $(6, 0)$, X-coordinate is 6 and Y-coordinate is zero. So the point lies on the x-axis. Move 6 units on OX from the origin; to reach R$(6, 0)$.

In the given point $(0, -5)$ X-coordinate is zero and Y-coordinate is (-5). So, the point lies on Y-axis, move 5 units on OY’ from the origin to reach S $(0, -5)$.
1. Complete the table given below.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Point</th>
<th>Sign of X-coordinate</th>
<th>Sign of Y-coordinate</th>
<th>Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(−7,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(10,−2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(−3,−7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(3,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(7,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(0,−4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Write the coordinates of the points marked in the following figure.

1. Fill in the blanks:
 (i) X-axis and Y-axis intersect at ________.
 (ii) The coordinates of the point in third quadrant are always ________.
 (iii) (0, −5) point lies on ________ axis.
 (iv) The x-coordinate is always ______ on the y-axis.
 (v) ________ coordinates are the same for a line parallel to Y-axis.

2. Say True or False:
 (i) (−10, 20) lies in the second quadrant.
 (ii) (−9, 0) lies on the x-axis.
 (iii) The coordinates of the origin are (1, 1).

3. Find the quadrants without plotting the points on a graph sheet.
 (3, −4), (5, 7), (2, 0), (−3, −5), (4, −3), (−7, 2), (−8, 0), (0, 10), (−9, 50).

4. Plot the following points in a graph sheet.
 A(5, 2), B(−7, −3), C(−2, 4), D(−1, −1), E(0, −5), F(2, 0), G(7, −4), H(−4, 0), I(2, 3), J(8, −4), K(0, 7).
5. Use the graph to determine the coordinates where each figure is located.

a) Star _______
b) Bird _______
c) Red Circle _______
d) Diamond _______
e) Triangle _______
f) Ant _______
g) Mango _______
h) Housefly _______
i) Medal _______
j) Spider _______

2.6.7 To obtain a straight line:

Now, we know how to plot the points on the graph. The points may lie on the graph in different order. If we join any two points we will get a straight line.

(i) Draw a straight line by joining the points A (−2,6) and B (4,−3)

Solution:

The given first point A (−2,6) lies in the II quadrant and plot it. Second point B (4,−3) lies in the IV quadrant and plot it.

Now join the point A and point B using scale and extend it. We get a straight line.

Note:

The straight line intersects X axis at (2,0) and Y axis at (0,3).
(ii) Draw straight lines by joining the points A(2, 5) B(−5,−2) M(−5, 4) N(1,−2) also find the point of intersection
Plot the first pair of points A and B in I and III quadrants. Join the points and extend it to get AB straight line. Plot the second pair of points M and N in II and IV quadrants. Join the points and extend it to get MN straight line.
Now, both lines are intersect at P(−2,1)

(i) The line AB interest the coordinate axis, ie) x -axis at R(−3,0) and y-axis at Q(0,3)
(ii) The line MN interest the c’ordinate axis, ie) x -axis at S(−1,0) and y-axis at T(0,−1)

2.6.8 Line parallel to the coordinate axes
- If a line is parallel to the X-axis, its distance from X axis is the same and it is represented as y = c .
- If a line is parallel to the Y-axis, its distance from Y axis is the same and it is represented as x = k. (Here c and k are constants)

(i) Draw the graph of x = 5

Solution:

x =5 means that x-coordinate is always 5 for whatever value of y-coordinate. So we may give any value for y-coordinate and this is tabulated as follows.

<table>
<thead>
<tr>
<th>X</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>−2</td>
<td>−1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

x =5 is given (fixed)
Take any value for y (Why?)
The points are (5,\(-2\))
(5,\(-2\)) (5,0) (5,2) (5,3).
Plot the points in the graph and join them. We get a straight line parallel to Y axis at a distance of 5 units from the Y axis.

2.6.9 Scale in a graph:

There will be situations in drawing a graph where ‘y’ is a big multiple of ‘x’ and the usual graph in units may not be enough to locate the ‘y’ coordinate and vice-versa. In this situation, we use the concept of scale in both the axes as per the need. Represent a convenient scale at the right side corner of the graph. A few examples are given below.

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the X axis 1 cm = 5 units.</td>
<td>On the X axis 1 cm = 10 units.</td>
</tr>
<tr>
<td>On the Y axis 1 cm = 2 units.</td>
<td>On the Y axis 1 cm = 50 units.</td>
</tr>
</tbody>
</table>
2.7 Linear graph

2.7.1 Linear pattern:

Plot the following points on a coordinate plane: (0, 2), (1, 3), (2, 4), (3, 5), (4, 6). What do you find? They all lie on a line! There is some pattern in them. Look at the y-coordinate in each ordered pair: 2 = 0+2; 3 = 1+2; 4 = 2+2; 5 = 3+2; 6 = 4+2. In each pair, the y-coordinate is 2 more than the x-coordinate. The coordinates of each point have the same relationship between them. All the points plotted lie on a line!

In such a case, when all the points plotted lie on a line, we say ‘a linear pattern’ exists.

In this example, we found that in each ordered pair y value = x value + 2. Therefore the linear pattern above can be denoted by the algebraic equation \(y = x + 2 \). Such an equation is called a linear equation and the line graph for linear equation is called a linear graph.

Linear equations use one (or more) variables where one variable is dependent on the other(s).

The longer the distance we travel by a taxi, the more we have to pay. The distance travelled is an example of an independent variable. Being dependent on the distance, the taxi fare is called the dependent variable.

The more one uses electricity, greater will be the amount of electricity bill. The amount of electricity consumed is an example for independent variable and the bill amount is naturally the dependent variable.

2.7.2 Graph of a linear function in two variables:

We have talked about parallel lines, intersecting lines etc., in geometry but never actually looked at how far apart they were, or where they were. Drawing graphs helps us place lines. A linear equation is an equation with two variables (like \(x \) and \(y \)) whose graph is a line. To graph a linear equation, we need to have at least two points, but it is usually safe to use more than two points. (Why?) When choosing points, it would be nice to include both positive and negative values as well as zero. There is a unique line passing through any pair of points.
Example: 1

Draw the graph of \(y = 5x \)

Solution:
The given equation \(y = 5x \) means that for any value of \(x \), \(y \) takes five times of \(x \) value.

Plot the point \((-3, -15)\) \((-1, -5)\) \((0, 0)\) \((2, 10)\) \((3, 15)\)

Example: 2

Graph the equation \(y = x + 1 \).

Begin by choosing a couple of values for \(x \) and \(y \). It will firstly help to see

(i) what happens to \(y \) when \(x \) is zero and

(ii) what happens to \(x \) when \(y \) is zero.

After this we can go on to find one or two more values.

Let us find at least two more ordered pairs. For easy graphing, let us avoid fractional answers. We shall make suitable guesses.
We have now five points of the graph: \((-2,-1) \ (-1,0) \ (0,1) \ (1,2)\) and \((2,3)\).

2.7.3 Applications:
Let us look into some real-life examples and their linear nature.

Example: 3

Relation between Quantity and Cost
The following table gives the quantity of milk and its cost.

<table>
<thead>
<tr>
<th>Quantity of milk</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of milk in ₹</td>
<td>150</td>
<td>300</td>
<td>450</td>
<td>600</td>
</tr>
</tbody>
</table>

Plot the graph.

Solution

- Take a suitable scale on both the axes.
 - Here, we take on the x-axis 1cm = 5 litres on the, y-axis 1cm = 100 rupees.
- Mark number of litres of milk along the x-axis.
- Mark the cost of milk along the y-axis.
- Plot the points \((5,150)\) \((10,300)\) \((15,450)\) \((20,600)\).
- Join the points.

This graph can help us to estimate few more things also. Suppose we like to find the cost of 25 litres of milk. Mark 25 on the x-axis, follow the line parallel to y-axis through 25 till we meet the drawn line at P. From P we take a horizontal line to meet the y-axis. This meeting point of y-axis is the required answer.

Thus, the cost of 25 litres of milk is ₹750. This is the graph of linear equation in two quantities, and hence they are in direct variation.

Note

The orientation of the graph will be different according to the scale chosen.
Example: 4

Relation between Principal and Simple Interest:

A bank gives 10% simple interest on deposits made by Senior citizens. Illustrate by a graph the relation between the deposit and the interest gained. Use the graph to compute

(i) The annual interest obtainable for investment of ₹450;
(ii) The amount a Senior citizen has to invest to get an annual simple interest of ₹80.

Solution:

Using the formula for calculating the simple interest, the following table of values is prepared.

<table>
<thead>
<tr>
<th>Deposit (in. ₹)</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual S.I. (in. ₹)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

These are the points which are to be plotted in the graph sheet. Let us take the deposits along x-axis and annual simple interest along y-axis.

We choose the scale as follows:

Then we plot the points and draw the straight line.

From the graph we find:

(i) Corresponding to ₹300 on the x-axis, we get the interest as ₹30 on the y-axis.
(ii) Corresponding to ₹70 on the y-axis, we get the deposit as ₹700 on the x-axis.
Example: 5

Relation between Time and Distance:
A train runs constantly at a speed of 80 km/hr. Draw a time – distance graph for this situation. Also find the
(i) time – taken to cover 240 km.
(ii) distance covered in 5 ½ hours.

Solution:
Given, the train runs constantly at a speed of 80 km/hr.
i.e For 1 hour = 80 km
2 hours = 2 × 80 = 160 km
3 hours = 3 × 80 = 240 km
We can tabulate as above,
Take a suitable scale
1) Mark the number of hours on the x-axis.
2) Mark the distance in Km on the y-axis.
3) Plot the points (1,80) (2,160) (3,240) (4,320) and (5,400).
4) Join the points and get a straight line.
5) From the graph.
(i) Time taken to cover 240 km is 3 hrs.
(ii) The distance covered in 5 ½ hrs 440 km.

Why is it given that the speed is ‘constant’?
If the speed is not constant, will the graph be the same?
The graph is named as y = 80x algebraically. Why?
Exercise 2.4

1. Fill in the blanks:
 (i) \(y = px \) where \(p \in \mathbb{Z} \) always passes through the__________.
 (ii) The intersecting point of the line \(x = 4 \) and \(y = -4 \) is__________.
 (iii) Scale for the given graph,
 On the x-axis 1 cm = _______ units
 y-axis 1 cm = _______ units

2. Say True or False.
 (i) The points (1,1) (2,2) (3,3) lie on a same straight line.
 (ii) \(y = -9x \) not passes through the origin.

3. Will a line pass through (2, 2) if it intersects the axes at (2, 0) and (0, 2).

4. A line passing through (4, −2) and intersects the Y-axis at (0, 2). Find a point on the line in the second quadrant.

5. If the points P(5, 3) Q(−3, 3) R(−3, −4) and S form a rectangle, then find the coordinate of S.

6. A line passes through (6, 0) and (0, 6) and another line passes through (−3, 0) and (0, −3). What are the points to be joined to get a trapezium?

7. Find the point of intersection of the line joining points (−3, 7) (2, −4) and (4, 6) (−5, −7). Also find the point of intersection of these lines and also their intersection with the axis.

8. Draw the graph of the following equations
 (i) \(x = -7 \) (ii) \(y = 6 \)

9. Draw the graph of (i) \(y = -3x \) ii) \(y = x-4 \)

10. Find the values.
 | Let \(y = x + 3 \) | Let \(2x + y - 6 = 0 \) |
 | (i) If \(x = 0 \), find \(y \). | (i) If \(x = 0 \), find \(y \). |
 | (ii) If \(y = 0 \), find \(x \). | (ii) If \(y = 0 \), find \(x \). |
 | (iii) If \(x = -2 \), find \(y \). | (iii) If \(x = -2 \), find \(y \). |
 | (iv) If \(y = -3 \), find \(x \). | (iv) If \(y = -3 \), find \(x \). |
11. The following is a table of values connecting the radii of a few circles and their circumferences (Taking $\pi = \frac{22}{7}$).
Illustrate the relation with a graph and find
(i) The radius when the circumference is 242 units.
(ii) The circumference when the radius is 24.5 units.

<table>
<thead>
<tr>
<th>Radius (r)</th>
<th>Circumference $(2\pi r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$2 \times \frac{22}{7} \times 7 = 44$</td>
</tr>
<tr>
<td>14</td>
<td>$2 \times \frac{22}{7} \times 14 = 88$</td>
</tr>
<tr>
<td>21</td>
<td>$2 \times \frac{22}{7} \times 21 = 132$</td>
</tr>
<tr>
<td>28</td>
<td>$2 \times \frac{22}{7} \times 28 = 176$</td>
</tr>
<tr>
<td>35</td>
<td>$2 \times \frac{22}{7} \times 35 = 220$</td>
</tr>
<tr>
<td>42</td>
<td>$2 \times \frac{22}{7} \times 42 = 264$</td>
</tr>
<tr>
<td>49</td>
<td>$2 \times \frac{22}{7} \times 49 = 308$</td>
</tr>
</tbody>
</table>

12. An over-head tank is full with water. Water leaks out from it, at a constant rate of 10 litres per hour. Draw a “time-wastage” graph for this situation and find
(i) The water wasted in 150 minutes
(ii) The time at which 75 litres of water is wasted.

Exercise 2.5

Miscellaneous Practice Problems

1. The sum of three numbers is 58. The second number is three times of two-fifth of the first number and the third number is 6 less than the first number. Find the three numbers.

2. In triangle ABC, the measure of $\angle B$ is two-third of the measure of $\angle A$. The measure of $\angle C$ is 20° more than the measure of $\angle A$. Find the measures of the three angles.

3. Two equal sides of an isosceles triangle are $5y-2$ and $4y+9$ units. The third side is $2y+5$ units. Find ‘y’ and the perimeter of the triangle.

4. In the given figure, angle XOZ and angle ZOY form a linear pair. Find the value of x.

5. Draw a graph for the following data:

<table>
<thead>
<tr>
<th>Side of a square (cm)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (cm^2)</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
</tbody>
</table>

Does the graph represent a linear relation?
Challenging Problems

6. Three consecutive integers, when taken in increasing order and multiplied by 2, 3 and 4 respectively, total up to 74. Find the three numbers.

7. 331 students went on a field trip. Six buses were filled to capacity and 7 students had to travel in a van. How many students were there in each bus?

8. A mobile vendor has 22 items, some which are pencils and others are ball pens. On a particular day, he is able to sell the pencils and ball pens. Pencils are sold for ₹15 each and ball pens are sold at ₹20 each. If the total sale amount with the vendor is ₹380, how many pencils did he sell?

9. Draw the graph of the lines \(y = x \), \(y = 2x \), \(y = 3x \) and \(y = 5x \) on the same graph sheet. Is there anything special that you find in these graphs?

10. Consider the number of angles of a convex polygon and the number of sides of that polygon. Tabulate as follows:

<table>
<thead>
<tr>
<th>Name of Polygon</th>
<th>No. of angles</th>
<th>No. of sides</th>
</tr>
</thead>
</table>

Use this to draw a graph illustrating the relationship between the number of angles and the number of sides of a polygon.

Summary

- An equation containing only one variable with its highest power as one is called a linear equation in one variable.
- This linear equation in one variable is also known as simple equation.
- The value which replaces a variable in an equation so as to make the two sides of the equation equal is called a solution or root of the equation.
- The shifting of a number from one side of an equation to other is called transposition.
- Graphing is just a visual method for showing relationships between numbers.
- The horizontal line is named as XOX’, called the X-axis. The vertical line is named as YOY’, called the Y-axis. Both the axes are called coordinate axes. The plane containing the x axis and the y axis is known as the coordinate plane or the Cartesian plane.
- A point is denoted by a pair (a,b) of two numbers ‘a’ and ‘b’ listed in a specific order in which ‘a’ represents the distance along the X-axis and ‘b’ represents the distance along the Y axis. It is called an ordered pair \((a,b)\).
- The coordinate axes divide the plane of the graph into four regions called quadrants.
- The line graph for the linear equation is called a linear graph.
ICT CORNER

Expected Outcome

Step – 1
Open the Browser type the URL Link given below (or) Scan the QR Code. GeoGebra work book named “ALGEBRA” will open. Click on the worksheet named “Point Plotting”.

Step - 2
In the given worksheet you can get new point by clicking on “New point”. Enter the correct point in the input box and press enter.

Go through the remaining worksheets given for this chapter

Browse in the link
Algebra:
https://www.geogebra.org/m/fqxbd7rz#chapter/409574 or Scan the QR Code.
Chapter 3: Geometry

Learning Objectives:
- To understand the Pythagoras theorem and solve problems using it.
- To know how to construct Trapeziums and Parallelograms.

3.1 Introduction
In the first term, we have learnt about similar and congruent triangles and the construction of quadrilaterals. Now, we will learn about the Pythagorean theorem and the construction of trapeziums and parallelograms.

Mathematics alive – Geometry in Real life

The Pythagoras theorem is useful in finding the distance and the heights of objects. We can see the shape of a trapezium in building.

3.2 The Pythagorean Theorem
The Pythagorean theorem or simply Pythagoras theorem, named after the ancient Greek Mathematician Pythagoras (570-495 BC (BCE)) is definitely one of the most famous and celebrated theorems in the whole of mathematics. People have proved this theorem in numerous ways possibly the most for any mathematical theorem. They are very diverse which include both geometric and algebraic proofs dating back to thousands of years.

Statement of the theorem
In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

In $\triangle ABC$, $BC^2 = AB^2 + AC^2$
Visual Illustration:

The given figure contains a triangle of sides of measures 3 units, 4 units and 5 units. From this well known $3 - 4 - 5$ triangle, one can easily visualise and understand the meaning of the Pythagorean theorem.

In the figure, the sides of measure 3 units and 4 units are called the legs or sides of the right angled triangle. The side of measure 5 units is called the hypotenuse. Recall that the hypotenuse is the greatest side in a right angled triangle.

Now, it is easily seen that a square formed with side 5 units (hypotenuse) has $5 \times 5 = 25$ unit squares (small squares) and the squares formed with side 3 units and 4 units have $3 \times 3 = 9$ unit squares and $4 \times 4 = 16$ unit squares respectively. As per the statement of the theorem, the number of unit squares on the hypotenuse is exactly the sum of the unit squares on the other two legs (sides) of the right angled triangle. Isn’t this amazing?

Yes, we find that

$5 \times 5 = 3 \times 3 + 4 \times 4$

i.e. $25 = 9 + 16$ (True)

Proof of the theorem using similarity of triangles

Given: $\angle BAC = 90^\circ$

To prove: $BC^2 = AB^2 + AC^2$

Construction: Draw $AD \perp BC$

Proof:

In $\triangle ABC$ and $\triangle DBA$,

$\angle B$ is common and $\angle BAC = \angle ADB = 90^\circ$

Therefore, $\triangle ABC \sim \triangle DBA$ (AA similarity)

Hence, the ratio of corresponding sides are equal.

$\Rightarrow \frac{AB}{DB} = \frac{BC}{BA}$

$\Rightarrow AB^2 = BC \times DB$ \quad \quad \quad \text{---------(1)}

Similarly $\triangle ABC \sim \triangle DAC$,

$\Rightarrow \frac{AC}{DC} = \frac{BC}{AC}$

$\Rightarrow AC^2 = BC \times DC$ \quad \quad \quad \text{---------(2)}

Adding (1) and (2), we get
\[AB^2 + AC^2 = BC \times DB + BC \times DC \]
\[= BC \times (DB + DC) \]
\[= BC \times BC \]
\[\therefore AB^2 + AC^2 = BC^2 \text{ and} \]
Hence the proof of the theorem.

3.3 Converse of Pythagorean theorem

If in a triangle, the square on the greatest side is equal to the sum of squares on the other two sides, then the triangle is right angled triangle.

Example:

In the triangle ABC,
\[AB^2 + AC^2 = 11^2 + 60^2 = 3721 = 61^2 = BC^2 \]
Hence, \(\triangle ABC \) is a right angled triangle.

(i) There are special sets of numbers \(a, b \) and \(c \) that makes the Pythagorean relationship true and these sets of special numbers are called Pythagorean triplets. **Example:** \((3, 4, 5)\) is a Pythagorean triplet.

(ii) Let \(k \) be any positive integer greater than 1 and \((a, b, c)\) be a Pythagorean triplet, then \((ka, kb, kc)\) is also a Pythagorean triplet.

Examples:

<table>
<thead>
<tr>
<th>(k)</th>
<th>((3,4,5))</th>
<th>((5,12,13))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(k)</td>
<td>((6,8,10))</td>
<td>((10,24,26))</td>
</tr>
<tr>
<td>3(k)</td>
<td>((9,12,15))</td>
<td>((15,36,39))</td>
</tr>
<tr>
<td>4(k)</td>
<td>((12,16,20))</td>
<td>((20,48,52))</td>
</tr>
</tbody>
</table>

So, it is clear that we can have infinitely many Pythagorean triplets just by multiplying any Pythagorean triplet by \(k \).

Try these

Check whether the following are Pythagorean triplets.

i) \(57,176,185\)

ii) \(264, 265, 23\)

iii) \(8, 41,40\)

We shall now see a few examples on the use of Pythagoras theorem in problems.

Example: 1

In the figure, \(AB \perp AC \)

a) What type of \(\triangle ABC \)?

b) What are \(AB \) and \(AC \) of the \(\triangle ABC \)?

c) What is \(CB \) called as?

d) If \(AC = AB \) then, what is the measure of \(\angle B \) and \(\angle C \)?
Solution
a) \(\Delta ABC \) is right angled as \(AB \perp AC \) at A.
b) \(AB \) and \(AC \) are legs of \(\Delta ABC \).
c) \(CB \) is called as the hypotenuse.
d) \(\angle B + \angle C = 90^\circ \) and equal angles are opposite to equal sides. Hence, \(\angle B = \angle C = \frac{90^\circ}{2} = 45^\circ \)

Example 2
Can a right triangle have sides that measure 5cm, 12cm and 13cm?

Solution:
Take \(a = 5 \), \(b = 12 \) and \(c = 13 \)
Now, \(a^2 + b^2 = 5^2 + 12^2 = 25 + 144 = 169 = 13^2 = c^2 \)
By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle.

Example 3
A 20-feet ladder leans against a wall at height of 16 feet from the ground. How far is the base of the ladder from the wall?

Solution:
The ladder, wall and the ground form a right triangle with the ladder as the hypotenuse. From the figure, by Pythagoras theorem,
\[
20^2 = 16^2 + x^2
\]
\[
\Rightarrow 400 = 256 + x^2
\]
\[
\Rightarrow x^2 = 400 - 256 = 144 = 12^2
\]
\[
\Rightarrow x = 12 \text{ feet}
\]
Therefore, the base (foot) of the ladder is 12 feet away from the wall.

Activity-1
We can construct sets of Pythagorean triplets as follows.
Let \(m \) and \(n \) be any two positive integers \((m > n) \):
(a, b, c) is a Pythagorean triple if \(a = m^2 - n^2, b = 2mn \) and \(c = m^2 + n^2 \) (Think, why?)

Complete the table.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(a = m^2 - n^2)</th>
<th>(b = 2mn)</th>
<th>(c = m^2 + n^2)</th>
<th>Pythagorean triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>(15, 8, 17)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>___</td>
<td>___</td>
<td>___</td>
<td>(45, 28, 53)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>8</td>
<td>17</td>
<td>(15, 8, 17)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>45</td>
<td>28</td>
<td>53</td>
<td>(45, 28, 53)</td>
</tr>
</tbody>
</table>
Example: 4

Find LM, MN, LN and also the area of $\triangle LON$.

Solution:

From $\triangle LMO$, by Pythagoras theorem,

$$LM^2 = OL^2 - OM^2$$

$$\Rightarrow LM^2 = 13^2 - 12^2 = 169 - 144 = 25 = 5^2$$

\therefore $LM = 5$ units

From $\triangle NMO$, by Pythagoras theorem,

$$MN^2 = ON^2 - OM^2$$

$$= 15^2 - 12^2 = 225 - 144 = 81 = 9^2$$

\therefore $MN = 9$ units

Hence, $LN = LM + MN = 5 + 9 = 14$ units

Area of $\triangle LON = \frac{1}{2} \times \text{base} \times \text{height}$

$$= \frac{1}{2} \times LN \times OM$$

$$= \frac{1}{2} \times 14 \times 12$$

$$= 84\text{ square units}.$$

Example: 5

A junction where two roads intersect at right angles is as shown in the figure. Find AC if AB = 8 m and BC = 15 m.

Solution:

Now $\triangle ABC$ is right angled.

Therefore, by Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow AC^2 = 8^2 + 15^2 = 64 + 225 = 289$$

$$AC^2 = 17^2$$

$$\Rightarrow AC = 17m.$$

Therefore, the length of the diagonal of the two intersecting roads is 17 m.

Example: 6

Find the area of a rectangular plot of land shown in the figure.

Solution:

Here, the hypotenuse is 29 m. One side of the right triangle is 20 m. let the other side be ‘l’ m

Therefore, by Pythagoras theorem,
\[l^2 = 29^2 - 20^2 = 841 - 400 = 441 = 21^2 \]
\[\therefore l = 21 \text{ m} \]
Therefore, the area of the rectangular plot of land = \(l \times b \text{ square units.} \)
\[= 20 \times 21 = 210 \text{ m}^2. \]

3.4 The Altitude – on – Hypotenuse theorem (without proof)

Here, the hypotenuse of a right angle triangle is taken as its base. Draw an altitude to it (as given in the figure). We will have two more, smaller right triangles. Isn’t it? Now, all these three triangles are similar! Aren’t they? (check!) We now state the theorem.

Theorem:

If an altitude is drawn to the hypotenuse of an right angled triangle, then

(i) The two triangles are similar to the given triangle and also to each other.

That is, \(\triangle PRQ \sim \triangle PSR \sim \triangle RSQ \)

(ii) \[h^2 = xy \]

(iii) \[p^2 = yr \text{ and } q^2 = xr, \text{ where } r = x+y \]

Note

It is to be noted that iii) is just one formula or relationship and not two formulae. It can be remembered as

(side of big triangle)\(^2\) = (part of hypotenuse next to side) \(\times\) (whole of the hypotenuse)

Example: 7

\(\triangle ABC \) is equilateral and CD of the right triangle BCD is 8 cm. Find the side of the equilateral \(\triangle ABC \) and also BD.

Solution:

As \(\triangle ABC \) is equilateral from the figure, \(AB=BC=AC=(x-2) \text{ cm}. \)

\[\therefore \text{ From } \triangle BCD, \text{ by Pythagoras theorem} \]
\[BD^2 = BC^2 + CD^2 \]
\[\Rightarrow (x+2)^2 = (x-2)^2 + 8^2 \]
\[x^2 + 4x + 4 = x^2 - 4x + 4 + 8^2 \]
\[\Rightarrow 8x = 8^2 \]
\[\Rightarrow x = 8 \text{ cm} \]

\[\therefore \text{ The side of the equilateral } \triangle ABC = 6 \text{ cm} \text{ and } BD = 10 \text{ cm}. \]
Example: 8

From the figure, find \(x \) and \(y \) and verify \(\triangle ABC \) is a right angled triangle.

Solution:
Now, by altitude-on-hypotenuse theorem,

\[
AB^2 = AD \times AC \text{ gives, }
\]
\[10^2 = x \times 26\]
\[\Rightarrow x = \frac{100}{26} = \frac{50}{13} \text{ units and } \]
BC^2 = CD \times AC \text{ gives, }
\[24^2 = y \times 26\]
\[\Rightarrow y = \frac{576}{26} = \frac{288}{13} \text{ units and } \]
In \(\triangle ABC \), \(AB^2 + BC^2 = 10^2 + 24^2 = 676 = 26^2 = AC^2 \).

Therefore, \(\triangle ABC \) is a right angled triangle.

Exercise 3.1

1. **Fill in the blanks:**
 (i) If in a \(\triangle PQR, PR^2 = PQ^2 + QR^2 \), then the right angle of \(\triangle PQR \) is at the vertex ________.
 (ii) If 'l' and 'm' are the legs and 'n' is the hypotenuse of a right angled triangle then, \(l^2 = \) ________.
 (iii) If the sides of a triangle are in the ratio 5:12:13 then, it is ________.
 (iv) If a perpendicular is drawn to the hypotenuse of a right angled triangle, then each of the three pairs of triangles formed are ________.
 (v) In the figure, \(BE^2 = TE \times \) ________.

2. **Say True or False.**
 (i) 8, 15, 17 is a Pythagorean triplet.
 (ii) In a right angled triangle, the hypotenuse is the greatest side.
 (iii) One of the legs of a right angled triangle PQR having \(\angle R = 90^\circ \) is PQ.
 (iv) The hypotenuse of a right angled triangle whose sides are 9 and 40 is 49.
 (v) Pythagoras theorem is true for all types of triangles.

3. **Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem.**
 (i) 8,15,17 (ii) 12,13,15 (iii) 30,40,50 (iv) 9,40,41 (v) 24,45,51
4. Find the unknown side in the following triangles.

5. An isosceles triangle has equal sides each 13cm and a base 24cm in length. Find its height.

6. In the figure, find PR and QR.

7. The length and breadth of the screen of an LED-TV are 24 inches and 18 inches. Find the length of its diagonal.

8. Find the distance between the helicopter and the ship.

9. From the figure,
 (i) If TA=3cm and OT =6cm, find TG.

10. If RQ = 15cm and RP = 20cm, find PQ, PS and SQ.

Objective Type Questions

11. If Δ GUT is isosceles and right angled, then \(\angle TUG \) is ________.
 (a) 30° (b) 40° (c) 45° (d) 55°

12. The hypotenuse of a right angled triangle of sides 12cm and 16cm is ________.
 (a) 28cm (b) 20cm (c) 24cm (d) 21cm

13. The area of a rectangle of length 21cm and diagonal 29cm is ________ cm².
 (a) 609 (b) 580 (c) 420 (d) 210

14. If the square of the hypotenuse of an isosceles right triangle is 50cm², the length of each side is __________.
 (a) 25cm (b) 5cm (c) 10cm (d) 20cm

15. The sides of a right angled triangle are in the ratio 5:12:13 and its perimeter is 120 units then, the sides are __________.
 (a) 25, 36, 59 (b) 10,24,26 (c) 36, 39, 45 (d) 20,48,52
Exercise 3.2

Miscellaneous Practice Problems

1. The sides of a triangle are 1.2 cm, 3.5 cm and 3.7 cm. Is this triangle a right triangle? If so, which side is the hypotenuse?

2. Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Why?

3. Find the length of the support cable required to support the tower with the floor.

4. A ramp is constructed in a hospital as shown. Find the length of the ramp.

5. In the figure, find MT and AH.

Challenging problems

6. Mayan travelled 28 km due north and then 21 km due east. What is the least distance that he could have travelled from his starting point?

7. If \(\triangle APK \) is an isosceles right angled triangle, right angled at K. Prove that \(AP^2 = 2AK^2 \).

8. The diagonals of the rhombus is 12 cm and 16 cm. Find its perimeter. (Hint: the diagonals of rhombus bisect each other at right angles).

9. In the figure, find AR.

10. \(\triangle ABC \) is a right angled triangle in which \(\angle A = 90^\circ \) and AM \(\perp BC \). Prove that \(AM = \frac{AB \times AC}{BC} \). Also if AB = 30 cm and AC = 40 cm, find AM.
3.5 Construction of Trapeziums

In the first term, we have learnt how to construct the quadrilaterals. To draw a quadrilateral, how many measurements do you need? 5 measurements. Isn’t it? Let us see the special quadrilaterals which need less than 5 measurements. Based on the nature of sides and angles of a quadrilateral, it gets special names like trapezium, parallelogram, rhombus, rectangle, square and kite.

Now, you will learn how to construct trapeziums.

Trapezium is a quadrilateral in which a pair of opposite sides are parallel. To construct a trapezium, draw one of the parallel sides as a base and on that base construct a triangle with the 2 more measurements. Now, through the vertex of that triangle, construct the parallel line opposite to the base so that the triangle lies between the parallel sides. As the fourth vertex lies on this parallel line, mark it with the remaining measure. Hence, we need four independent measures to construct a trapezium. The given shapes are examples of trapeziums.

Note: The arrow marks in the above shapes represent parallel sides.

If the non-parallel sides of a trapezium are equal in length and form equal angles at one of its bases, then it is called an **isosceles trapezium**.

In the US and UK, Trapezoid and Trapezium are differentiated as below.

<table>
<thead>
<tr>
<th></th>
<th>Trapezoid</th>
<th>Trapezium</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>a quadrilateral with a pair of parallel sides.</td>
<td>a quadrilateral with no parallel sides.</td>
</tr>
<tr>
<td>UK</td>
<td>a quadrilateral with no parallel sides.</td>
<td>a quadrilateral with a pair of parallel sides.</td>
</tr>
</tbody>
</table>

Try these

1. The area of the trapezium is ________.
2. The distance between the parallel sides of a trapezium is called as ________.
3. If the height and parallel sides of a trapezium are 5cm, 7cm and 5cm respectively, then its area is ________.
4. In an isosceles trapezium, the non-parallel sides are ________ in length.
5. To construct a trapezium, ________ measurements are enough.
6. If the area and sum of the parallel sides are 60cm² and 12cm, its height is ________.

Let us construct a trapezium with the given measurements

1. Three sides and one diagonal.
2. Three sides and one angle.
3. Two sides and two angles.
4. Four sides.
3.5.1 Constructing a trapezium when its three sides and one diagonal are given:

Example: 9

Construct a trapezium $BOAT$ in which BO is parallel to TA, $BO=7\text{cm}$, $OA=6\text{cm}$, $BA=10\text{cm}$ and $TA=6\text{cm}$. Also find its area.

Solution:

Given:
- $BO=7\text{cm}$, $OA=6\text{cm}$, $BA=10\text{cm}$,
- $TA=6\text{cm}$ and $BO \parallel TA$

Steps:

1. Draw a line segment $BO = 7\text{cm}$.
2. With B and O as centres, draw arcs of radii 10cm and 6cm respectively and let them cut at A.
3. Join BA and OA.
5. With A as centre, draw an arc of radius 6cm cutting AX at T.
6. Join BT. $BOAT$ is the required trapezium.

Calculation of area:

Area of the trapezium $BOAT$

\[
\frac{1}{2} \times h \times (a + b) \text{ sq.units}
\]

\[
= \frac{1}{2} \times 5.9 \times (7 + 6) = 38.35 \text{ sq.cm}
\]
3.5.2 Constructing a trapezium when its three sides and one angle are given:

Example: 10

Construct a trapezium CARD in which \overline{CA} is parallel to \overline{DR}, $CA=9\text{cm}$, $\angle CAR = 70^\circ$, $AR=6\text{cm}$ and $CD=7\text{cm}$. Also find its area.

Solution:

Given:

- $CA=9\text{cm}$, $\angle CAR = 70^\circ$, $AR=6\text{cm}$, and $CD=7\text{cm}$ and $\overline{CA} \parallel \overline{DR}$

Steps:

1. Draw a line segment $CA=9\text{cm}$.
2. Construct an angle $\angle CAX = 70^\circ$ at A.
3. With A as centre, draw an arc of radius 6cm cutting AX at R.
4. Draw RY parallel to CA.
5. With C as centre, draw an arc of radius 7cm cutting RY at D.
6. Join CD. CARD is the required trapezium.

Calculation of area:

Area of the trapezium $CARD = \frac{1}{2} \times h \times (a + b) \text{ sq.units}$

$$= \frac{1}{2} \times 5.6 \times (9 + 11) = 56 \text{ sq.cm}$$
3.5.3 Constructing a trapezium when its two sides and two angles are given:

Example: 11

Construct a trapezium DEAN in which \overline{DE} is parallel to \overline{NA}, $DE = 7cm$, $EA = 6.5cm$ $\angle EDN = 100^\circ$ and $\angle DEA = 70^\circ$. Also find its area.

Solution:

Given:

$DE = 7cm$, $EA = 6.5cm$ $\angle EDN = 100^\circ$

and $\angle DEA = 70^\circ$ and $\overline{DE} \parallel \overline{NA}$

Steps:

1. Draw a line segment $\overline{DE} = 7cm$.
2. Construct an angle $\angle DEX = 70^\circ$ at E.
3. With E as centre draw an arc of radius $6.5cm$ cutting \overline{EX} at A.
4. Draw \overline{AY} parallel to \overline{DE}.
5. Construct an angle $\angle EDZ = 100^\circ$ at D cutting \overline{AY} at N.
6. DEAN is the required trapezium.

Calculation of area:

Area of the trapezium DEAN $= \frac{1}{2} \times h \times (a + b) \text{ sq.units}$

$= \frac{1}{2} \times 6.1 \times (7 + 5.8) = 39.04 \text{ sq.cm}$
3.5.4 Constructing a trapezium when its four sides are given:

Example: 12

Construct a trapezium DESK in which DE is parallel to KS, DE=8 cm, ES=5.5 cm, KS =5 cm and KD=6 cm. Find also its area.

Solution:

Given:
DE=8 cm, ES=5.5 cm, KS =5 cm, KD=6 cm and DE || KS

Steps:
1. Draw a line segment DE= 8 cm.
2. Mark the point A on DE such that DA=5 cm.
3. With A and E as centres, draw arcs of radii 6 cm and 5.5 cm respectively. Let them cut at S. Join AS and ES.
4. With D and S as centres, draw arcs of radii 6 cm and 5 cm respectively. Let them cut at K. Join DK and KS.
5. DESK is the required trapezium.

Calculation of area:

Area of the trapezium DESK

\[
\text{Area} = \frac{1}{2} \times h \times (a + b) \text{ sq.units}
\]

\[
= \frac{1}{2} \times 5.5 \times (8 + 5) = 35.75 \text{ sq.cm}
\]
Exercise 3.3

I. Construct the following trapeziums with the given measures and also find their area.

1. **AIMS** with \(\overline{AI} \parallel \overline{SM} \), \(AI=6cm \), \(IM=5cm \), \(AM=9cm \) and \(MS=6.5cm \).
2. **BIKE** with \(\overline{BI} \parallel \overline{EK} \), \(BI=4cm \), \(IK=3.5cm \), \(BK=6cm \) and \(BE=3.5cm \).
3. **CUTE** with \(\overline{CD} \parallel \overline{ET} \), \(CU=7cm \), \(\angle UCE = 80^\circ \), \(CE=6cm \) and \(TE=5cm \).
4. **DUTY** with \(\overline{DU} \parallel \overline{YT} \), \(DU=8cm \), \(\angle DUT = 60^\circ \), \(UT=6cm \) and \(TY=5cm \).
5. **ARMY** with \(\overline{AR} \parallel \overline{YM} \), \(AR=7cm \), \(RM=6.5cm \), \(\angle RAY = 100^\circ \) and \(\angle ARM = 60^\circ \).
6. **BELT** with \(\overline{BE} \parallel \overline{TL} \), \(BE=10cm \), \(BT=7cm \), \(\angle EBT = 85^\circ \) and \(\angle BEL = 110^\circ \).
7. **CITY** with \(\overline{CI} \parallel \overline{YT} \), \(CI=7cm \), \(IT=5.5cm \), \(TY=4cm \) and \(YC=6cm \).
8. **DICE** with \(\overline{DI} \parallel \overline{EC} \), \(DI=6cm \), \(IC=ED=5cm \) and \(CE=3cm \).

3.6 Construction of Parallelograms

In the previous session, we have learnt how to construct trapeziums. In a trapezium, a pair of opposite sides are parallel, Isn’t it? What about the other pair? They are non-parallel sides. Can you guess the quadrilaterals which have both pairs of opposite sides as parallel? Yes, you call them as parallelogram, rhombus, rectangle and square.

Here, we will come to know about parallelograms. A parallelogram is a quadrilateral in which the opposite sides are parallel. To construct a parallelogram, draw a triangle with the given measurements. Then, the fourth vertex is found by using the measurements as same as the adjacent sides. Hence, three independent measurements are enough to construct a parallelogram.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>

- Similar arrows indicates the parallel sides.
- Similar lines indicates the congruent sides.
- Figure shows that the diagonals bisect each other.
- Figure shows that the opposite angles are congruent.
Can a rhombus, a square or a rectangle be called as a parallelogram? Justify your answer.

Try these

1. In a parallelogram, the opposite sides are ___________ and ____________.
2. If \(\angle A \) of a parallelogram ABCD is 100° then, find \(\angle B, \angle C \) and \(\angle D \).
3. Diagonals of a parallelogram ___________ each other.
4. If the base and height of the parallelogram are 20cm and 5cm then, its area is _____.
5. Find the unknown values in the given parallelograms and write the property used to find them.

<table>
<thead>
<tr>
<th>Diagram</th>
<th>(x)</th>
<th>2x-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. (x =) _______________.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Property used = _______________.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>4</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>y</td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x-20°</td>
<td>2x</td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2z</td>
<td>(z+30°)</td>
</tr>
<tr>
<td>(z)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2z</td>
<td>(z+30°)</td>
</tr>
<tr>
<td>(z)</td>
<td></td>
</tr>
</tbody>
</table>

Let us construct a parallelogram with the given measurements

1. Two adjacent sides and one angle. 2. Two adjacent sides and one diagonal.
3. Two diagonals and one included angle. 4. One side, one diagonal and one angle.
3.6.1 Constructing a parallelogram when its two adjacent sides and one angle are given:

Example: 13

Construct a parallelogram BIRD with BI=6.5cm, IR=5cm and $\angle BIR=70^\circ$. Also find its area.

Solution:

Given:

BI=6.5cm, IR=5cm and $\angle BIR=70^\circ$

Steps:

1. Draw a line segment BI=6.5cm.
2. Make an angle $\angle BIX = 70^\circ$ at I on BI.
3. With I as centre, draw an arc of radius 5cm cutting IX at R.
4. With B and R as centres, draw arcs of radii 5cm and 6.5cm respectively. Let them cut at D.
5. Join BD and RD.
6. BIRD is the required parallelogram.

Calculation of area:

Area of the parallelogram BIRD = bh sq.units

$= 6.5 \times 4.7 = 30.55$ sq.cm
3.6.2 Constructing a parallelogram when its two adjacent sides and one diagonal are given:

Example: 14

Construct a parallelogram CALF with CA=7cm, CF=6cm and AF=10cm. Also find its area.

Solution:

Given:

CA=7cm, CF=6cm and AF=10cm

Steps:

1. Draw a line segment CA=7cm.
2. With C and A as centres, draw arcs of radii 7cm and 6cm respectively. Let them cut at F.
3. Join CF and AF.
4. With A and F as centres, draw arcs of radii 6cm and 7cm respectively. Let them cut at L.
5. Join AL and FL.
6. CALF is the required parallelogram.

Calculation of area:

Area of the parallelogram CALF = \(bh \) sq.units

\[
= 7 \times 5.9 = 41.3 \text{sq.cm}
\]
3.6.3 Constructing a parallelogram when its two diagonals and one included angle are given:

Example: 15

Construct a parallelogram DUCK with DC=8cm, UK=6cm and ∠DOU=110°. Also find its area.

Solution:

Given:
DC=8cm, UK=6cm and ∠DOU=110°

Steps:
1. Draw a line segment DC=8cm.
2. Mark O the midpoint of DC.
3. Draw a line through O which makes ∠DOY=110°.
4. With O as centre and 3cm as radius draw two arcs on XY on either sides of DC. Let the arcs cutOX at K and OY at U.
5. Join DU, UC, CK and KD.
6. DUCK is the required parallelogram.

Calculation of area:

Area of the parallelogram DUCK = bh sq.units
= 5.8×3.9 = 22.62 sq.cm
3.6.4 Constructing a parallelogram when its one side, one diagonal and one angle are given:

Example: 16

Construct a parallelogram BEAR with $BE=7\,cm$, $BA=7.5\,cm$ and $\angle BEA=80^\circ$. Also find its area.

Solution:

Given:
$BE=7\,cm$, $BA=7.5\,cm$ and $\angle BEA=80^\circ$

Steps:
1. Draw a line segment $BE=7\,cm$.
2. Make an angle $\angle BEX=80^\circ$ at E on BE.
3. With B as centre, draw an arc of radius $7.5\,cm$ cutting EX at A and Join BA.
4. With B as centre, draw an arc of radius equal to the length of AE.
5. With A as centre, draw an arc of radius $7\,cm$. Let both arcs cut at R.
7. BEAR is the required parallelogram.

Calculation of area:
Area of the parallelogram $BEAR = bh$ sq.units
$= 7 \times 4.1 = 28.7 \, sq.cm$
Exercise 3.4

I. Construct the following parallelograms with the given measurements and find their area.

1. ARTS, AR=6 cm, RT=5 cm and $\angle ART = 70^\circ$.
2. BANK, BA=7 cm, BK=5.6 cm and $\angle KBA = 85^\circ$.
3. CAMP, CA=6 cm, AP=8 cm and CP=5.5 cm.
4. DRUM, DR=7 cm, RU=5.5 cm and DU=8 cm.
5. EARN, ER=10 cm, AN=7 cm and $\angle EOA = 110^\circ$ where \overline{ER} and \overline{AN} intersect at O.
6. FAIR, FI=8 cm, AR=6 cm and $\angle IOR = 80^\circ$ where \overline{FI} and \overline{AR} intersect at O.
7. GAIN, GA=7.5 cm, GI=9 cm and $\angle GAI = 100^\circ$.
8. HERB, HE=6 cm, $\angle EHB = 60^\circ$ and EB=7 cm.

Summary

- In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides. This is Pythagoras theorem. $\Delta ABC, BC^2 = AB^2 + AC^2$

- If in a triangle the square on the greatest side is equal to the sum of squares on the other two sides, then the triangle is right angled triangle. This is converse of Pythagoras theorem.

- If an altitude is drawn to the hypotenuse of an right angled triangle, then
 (i) The two triangles are similar to the given triangle and also to each other.

That is, $\Delta PRQ \sim \Delta PSR \sim \Delta RSQ$

(ii) $h^2 = xy$

(iii) $p^2 = yr$ and $q^2 = xr$, where $r = x+y$

- A trapezium is a quadrilateral in which a pair of opposite sides are parallel.

- A parallelogram is a quadrilateral in which the opposite sides are parallel.
ICT CORNER

Expected Outcome

Step – 1

Open the Browser type the URL Link given below (or) Scan the QR Code. GeoGebra work book named “GEOMETRY” will open. Click on the worksheet named “Parallelogram”.

Step – 2

In the given worksheet you can move the sliders Base, Height and the angle. Check for what value(s) the parallelogram becomes rectangle and square. Study the properties.

Go through the remaining worksheets given for this chapter

Browse in the link

Geometry:
https://www.geogebra.org/m/fqxbd7rz#chapter/409576 or Scan the QR Code.
Chapter 4
Information Processing

Learning Objectives:

- To observe the Fibonacci pattern in physical and biological phenomena.
- To think critically and choose the best method in finding the HCF of numbers.
- To understand how information can be processed, encrypted and decrypted.

4.1 Introduction

We have learnt in earlier classes, on how all beautiful things in nature as well as man made things are connected with Mathematics. Now, we just refresh everyone’s memory and show how Math can be beautiful when seen in physical and biological things everywhere around us.

From each cell’s nucleus to the infinitely winding spirals of galaxies that are immeasurable. There is one golden process that nearly all wonders of nature depend upon. What is the number sequence that we find in each of these instances, that is so instrumental in living things? Yes, that is the Fibonacci sequence. Let us learn more about it.

Mathematics Alive — Information Processing in our Real life

Biological example for the Fibonacci numbers

Verifying Golden angle values in nature

4.2 Fibonacci Numbers

Fibonacci (real name Leonardo Bonacci) was a Italy mathematician who developed the Fibonacci Sequence. It looks like this: 1, 1, 2, 3, 5, 8, 13, 21, 34... and it goes on. Remember the pattern of the Fibonacci sequence we already studied in standard VI.
Let us tabulate the Fibonacci sequence and find a rule.

<table>
<thead>
<tr>
<th>Term (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>F (n)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
<td>...</td>
</tr>
</tbody>
</table>

We observe that the 3rd term of the Fibonacci sequence is the sum of 2nd term and the 1st term.

That is, \(F(3) = F(2) + F(1) \) and so we can extend and write the rule is \(F(n) = F(n-1) + F(n-2) \)

where \(F(n) \) is the \(n \)th term

\(F(n-1) \) is the previous term to the \(n \)th term

\(F(n-2) \) is the term before the \((n-1) \)th term

This is how the Fibonacci Sequence is found. Let us learn more from the following real life examples.

Situation

Let us look at the family tree of a male drone bee and a female bee given below.

Here, female bees have 2 parents, a male (drone) and a female whereas male (drone) bees have just one parent, a female. (Males (drone) are produced by the queen's unfertilized eggs, so male (drone) bees only have a mother but no father!)

From the picture the following points are noted:

1. The male has 1 parent, a female.
2. The male has 2 grandparents, since his mother had two parents, a male and a female.
3. The male has 3 great-grandparents: his grandmother had two parents but his grandfather had only one.

Now, answer, how many great-great-grandparents did the male have?

Let us try to find the relationship among the pattern of bees family by representing in the tabular form given below,

<table>
<thead>
<tr>
<th>Number of</th>
<th>Parents</th>
<th>Grandparents</th>
<th>Great Grandparents</th>
<th>Great- Great Grandparents</th>
<th>Great- Great-Great Grandparents</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Male bee</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>a Female bee</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

We see the Fibonacci numbers 1, 1, 2, 3, 5,... in the above table.

Bee population aren't the only place in nature where Fibonacci numbers occur, they also appear in the beautiful shapes of trees, leaves, seeds, shells, storms and you… Yes! you are an example
of the beauty of the Fibonacci Sequence. The human body has various representations of the Fibonacci Sequence proportions, from your face to your ear to your hands and beyond! You have now been proven to be mathematically gorgeous, so go forth and be beautiful! ...and maybe think math is a little bit better than you first thought? Let us, learn about some more forms of the Fibonacci sequence.

4.2.1. Patterns in the Fibonacci sequence:

When we take any two successive (one after the other) Fibonacci numbers and divide the larger by the smaller number the result of dividing the pairs of numbers gives us the approximate value of the Golden ratio “phi” (φ) = 1.618.

\[
\frac{a+b}{a} = 1.618 = \phi
\]

This diagram gives us an idea of the proportions of a Golden Rectangle. It is divided into two pieces, and the ratio of the two parts (a to b) is the Golden Ratio. If we investigate even further, we will find that the two parts together (a + b) is the same ratio to just the left part (a) for example, let us take 8th and 9th Fibonacci numbers where a = 34 and b = 21

\[
\text{(i) } \frac{a}{b} = \frac{34}{21} = 1.61 \\
\text{(ii) } \frac{a+b}{b} = \frac{21+34}{34} = 1.61
\]

Therefore we conclude that \(\frac{a}{b} = \frac{a+b}{a} = \phi = 1.61 \)

The Fibonacci numbers will also create the Golden Spiral as shown in the snail picture.

What does the Fibonacci sequence have to do with golden rectangles and the golden ratio? Do the following activity to know the connection.

Activity-1

I. To draw a Golden Spiral using Fibonacci squares - Connect the squares through diagonals by curve from corner to corner across each square to make a Golden Spiral.
Examples where Fibonacci sequence found in nature

Example: 1

Given that one pair of new born rabbits they produce a new pair each month and from the second month, each new pair can breed themselves. Find how many pairs of rabbits are bred from one pair in a year, and find the relationship between the number of months and the number of pairs of rabbits by tabulation (a pair means (a male and a female)).

Solution:

<table>
<thead>
<tr>
<th>Number of months</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pairs of rabbits</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>

The above figure clearly forms the sequence is 1, 1, 2, 3, 5, 8... Here, we find the pattern in which each number is in the Fibonacci sequence, obtained by adding together with previous two. Going on like this to find subsequent numbers at the twelfth month, we will get 144 pairs of rabbits. In the other words, twelfth Fibonacci number is 144.
Using the given Table I, find the pattern. Answer the following questions and colour the values in the given Table II. One is done for you.

Table I

| Term(n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F(n)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
</tbody>
</table>

1. Where are the even Fibonacci Numbers?
 Colour both the term n and where F(n) is even in yellow.
 Do you find any pattern?
 Every Third Fibonacci number is a multiple of 2 (even).
 i.e. a multiple of F(3) or 2=F(3).

2. Where there are Fibonacci numbers which are multiple of 3?
 Colour both the term n and where F(n) is multiple of 3 in red.
 Write down the pattern you find
 Every …………………… i.e. …………………………………
 i.e. a multiple of …………. or =F(4).

3. What about the multiple of 5?
 Colour both the term n and where F(n) is multiple of 5 in blue.
 Write down the pattern you find.
 Every …………………………… i.e. …………………………………

4. What about the multiple of 8?
 Colour both the term n where F(n) is multiple of 8 in green.
 Write down the pattern you find.
 Every …………………………… i.e. …………………………………

Table II

| Term(n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F(n)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
</tr>
</tbody>
</table>

Factors

n	3	4	5	6	7	8	9	10	11	12	13	14	15	...
F(n)	2	3	5	8	13	21	34	55	89	144	233	377	610	...

Factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>F(3)</th>
<th>F(4)</th>
<th>F(5)</th>
<th>F(6)</th>
<th>F(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2=F(3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3=F(4)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5=F(5)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8=F(6)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

From the above activity, we conclude that
Every Fibonacci number is a factor of (a term number of) Fibonacci numbers in multiples.

From the table, we find the general rule as Every kth Fibonacci number is a multiple of F(k).
The difference between two consecutive numbers of the Fibonacci sequence increase very quickly. For example $F(5) - F(4) = 5 - 3 = 2$; $F(10) - F(9) = 55 - 34 = 21$; $F(15) - F(14) = 610 - 377 = 233$; Observe that the difference grow very fast.

Note

Exercise 4.1

1. Choose the correct answer:

(i) What is the eleventh Fibonacci number?
 (a) 55 (b) 77 (c) 89 (d) 144

(ii) If $F(n)$ is a Fibonacci number and $n = 8$, which of the following is true?
 (a) $F(8) = F(9) + F(10)$ (b) $F(8) = F(7) + F(6)$ (c) $F(8) = F(10) \times F(9)$ (d) $F(8) = F(7) - F(6)$

(iii) Every 3rd number of the Fibonacci sequence is a multiple of ______
 (a) 2 (b) 3 (c) 5 (d) 8

(iv) Every ______ number of the Fibonacci sequence is a multiple of 8
 (a) 2nd (b) 4th (c) 6th (d) 8th

(v) The difference between the 18th and 17th Fibonacci number is
 (a) 233 (b) 377 (c) 610 (d) 987

2. In the given graph sheet draw and colour how the Fibonacci number pattern makes a spiral in the Golden Rectangle.
4.3 Highest Common Factor

We have learnt in class VI that iteration is a process wherein a set of instructions or structures are repeated in a sequence for a specified number of times or until a condition is met. Here, we are going to learn to find HCF by listing all factors and find the biggest, then to find HCF by repeated subtraction and see how much faster the iteration goes (and how in fewer steps you get the HCF) and then how to improve further by repeated division and remainder and that both lead to the same solution but one is faster than the other.

We know that, HCF is used in simplifying or reducing fractions. To understand how this concept applies in real life, imagine the following situation.

Situation : 1

Let us, assume that you have 20 mangoes and 15 apples and you want to donate those together equally among the orphan children. How many maximum number of orphan children can you help?

Here, basically question demands finding HCF of two numbers. HCF is Highest Common Factor, also known as GCD (Greatest Common Divisor). HCF of two or more than two numbers is such that, it is the largest possible number which divides all the numbers completely.

Here, let us find the HCF of 20 mangoes and 15 apples.
Factors of 20 = 1,2,4,5,10,20
Factors of 15 = 1,3,5,15
So, the HCF of 20 and 15 is 5. That is you can help maximum 5 orphan children.

For 5 children you can give 4 mangoes (20 ÷ 5 = 4) and 3 apples (15 ÷ 5 = 3) each. In this way you can distribute equally the mangoes and the apples to each child.

Now, let us learn some more methods to find HCF.

4.3.1 Methods To Find HCF (Highest Common Factor):
1. Repeated Division Method:

Situation: 2

Let us, suppose there are 18 students in Class VII and 27 in Class VIII and each class is divided into teams to prepare for an upcoming sports tournament, will the winning teams from each class play each other in the final. What would be the biggest possible team size that you could divide both these classes such that each team has exactly the same number of students and that no one is left behind.
Let us first find the HCF of 18 and 27 by the following methods that we have learnt in earlier classes.

<table>
<thead>
<tr>
<th>Factorisation Method</th>
<th>Prime Factorisation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors of 18 = 1, 2, 3, 6, 9, 18</td>
<td>Prime Factors of 18 = 2 x 3 x 3</td>
</tr>
<tr>
<td>Factors of 27 = 1, 3, 9, 27</td>
<td>Prime Factors of 27 = 3 x 3 x 3</td>
</tr>
<tr>
<td>HCF of 18 and 27 = 9</td>
<td>HCF of 18 and 27 = 3 x 3 = 9</td>
</tr>
</tbody>
</table>

We find that the HCF of 18 and 27 is 9 by both the methods.

The above methods are easy to finding HCF, but for larger numbers these methods are tedious to find factors of the given numbers. In that case, alternatively we have some more methods to find HCF. Let us learn more about the other methods of finding HCF.

But what if the Class VII had 396 students and Class VIII had 300 students? Then what would be the biggest possible team size? Well, the above said two methods may not help here quickly. So, we can use continuous division method for finding the highest common factor.

STEP 1: Divide the larger number by the smaller number.

Here, 360 is the larger number. So, we divide 360 (Dividend) by 300 (Divisor). We got the Remainder as 96.

STEP 2: The remainder from Step 1 becomes the new divisor, and divisor of Step 1 becomes the new dividend.

From the step 1, we got 96 as remainder. So, In the second step 96 becomes the new divisor and 300 becomes the new dividend.

STEP 3: Repeat this division process till remainder becomes zero. The divisor of the last division (when remainder is zero) is our HCF.

From step 2, we got 12 as the new remainder which will become the new divisor. By the Third step 12 becomes the new divisor and 96 becomes the new dividend. Now, the remainder is zero. when, 12 is the last divisor of the division. Therefore, 12 is our required HCF.

Hence, the **HCF of 396 and 300 is 12** is got as shown in the picture given above. So the team would be 12 students.

Let us learn more about this from the following example.
Example: 2
There are 270 ginger chocolates, 384 milk chocolates and 588 coconut chocolates. What is the largest number of containers possible so that each container contains the same number of chocolates of each kind?

Solution:
Here, we have to find HCF of 270, 384 and 588.

STEP 1: First find the HCF of any two of the given numbers (follow the same step 1, 2 and 3 of the above example). Here, find HCF of (384, 588) first.

STEP 2: The HCF of the first two numbers which is 12 becomes the divisor and the third number 270 becomes the dividend.

STEP 3: Repeat this division process till the remainder becomes zero. The last divisor is the HCF. Here, 6 is the last divisor.

Hence, HCF of 270, 384 and 588 is 6. Therefore, we needs 6 containers so that each of them contains (270 ÷ 6 = 45) 45 ginger chocolates, (384 ÷ 6 = 64) 64 milk chocolates and (588 ÷ 6 = 98) 98 coconut chocolates.

2. Repeated Subtraction Method:

STEP 1: To find the HCF for the given two numbers say m and n we do the subtraction continuously unless m and n becomes equal.

STEP 2: If m is greater than n, then we perform m – n and we assign the result (the difference) as m. Again we check whether m and n are equal or not and repeat the process. If m is less than n, then we perform n – m and we assign the result (the difference) as n. Again we check whether m and n are equal or not and repeat the process.

STEP 3: When m and n values are equal then that equal number will be the HCF (m, n).

Now, let us see the example that how we get the HCF of given any two numbers in this particular repeated subtraction method.

Example: 3
Find the HCF of 144 and 120

Solution:

STEP 1: Here, take m = 144 and n = 120
Check whether m = n or m > n or m < n. Here m > n.

STEP 2: Subtract the smaller number from the larger number till m = n.
First 144 – 120 = 24 Repeat 120 – 24 = 96 Repeat 96 – 24 = 72
Repeat 72 – 24 = 48 Repeat 48 – 24 = 24 Repeat 24 – 24 = 0
Now m = n, Hence, we conclude that the HCF of 144 and 120 is 24.
Example: 4

Do the given repeated division problem in repeated subtraction method and verify the HCF of 255, 204 and 68.

Solution:

STEP 1: Here, let p = 255, q = 204 and r = 68

Check whether p = q or p > q or p < q. Here p > q.

STEP 2: Let us find the HCF of 255 and 204 first.

Now, subtract smaller number from larger number till p = q.

First \(255 - 204 = 51\) Repeat \(204 - 51 = 153\) Repeat \(153 - 51 = 102\)

Repeat \(102 - 51 = 51\) Repeat \(51 - 51 = 0\)

Now p = q , Hence, we conclude that the HCF of 255 and 204 is 51.

STEP 3: Now repeated same procedure for r – HCF (p, q)

Now, subtract smaller number from larger number till HCF (p, q) = r.

First \(68 - 51 = 17\) Repeat \(51 - 17 = 34\)

Repeat \(34 - 17 = 17\) Repeat \(17 - 17 = 0\)

Now HCF (p, q) = r, Hence, we conclude that the HCF of 255, 204 and 68 is 17.

Comparing both the repeated division and repeated subtraction methods, in finding the HCF, we can conclude that the repeated subtraction, in one way is easier and gives the HCF faster that the repeated division and one would want to easily do subtraction rather than division. Isn’t it?

Exercise 4.2

1. Choose the correct answer:

 (i) Common prime factors of 30 and 250 are

 (a) 2 x 5

 (b) 3 x 5

 (c) 2 x 3 x 5

 (d) 5 x 5

 (ii) Common prime factors of 36, 60 and 72 are

 (a) 2 x 2

 (b) 2 x 3

 (c) 3 x 3

 (d) 3 x 2 x 2

 (iii) Two numbers are said to be co-prime numbers if their HCF is

 (a) 2

 (b) 3

 (c) 0

 (d) 1

2. Using repeated division method find HCF of the following:

 (i) 455 and 26

 (ii) 392 and 256

 (iii) 6765 and 610

 (iv) 184, 230 and 276
3. Using repeated subtracting method find HCF of the following:
 (i) 42 and 70 (ii) 36 and 80 (iii) 280 and 420 (iv) 1014 and 654

4. Do the given problems in repeated subtraction method
 (i) 56 and 12 (ii) 320, 120 and 95

5. On a school trip, 56 girls and 98 boys went to Kanyakumari. They were divided into as many groups as possible so that there were equal numbers of girls and boys in each group. Find the largest group possible? (To find the HCF using repeated division method)

6. Kalai wants to cut identical squares as big as she can, from a piece of paper measuring 168mm and by 196mm. What is the length of the side of the biggest square? (To find HCF using repeated subtraction method)

4.4 Cryptology

In today’s world, security in information is a fundamental necessity not only for military and political departments but also for private communication. Today’s world of communication has increased the importance of financial data exchange, image processing, biometrics and e-commerce transaction which in turn has made data security an important issue. Cryptology is defined as the science which is concerned with communication in secured form.

Cryptology – Some technical details

Plain text: The original message is called plain text.

Cipher text or Cipher number: The encrypted output (converted message into code) is called Cipher text or Cipher number. Cipher text is written in capital letters, while plain text is usually written in lowercase. A secret key is to use something to generate the Cipher text from the plain text.

Encryption and Decryption: The process of converting the plain text to the Cipher text is called encryption and the vice versa is called decryption.

Let us try to create some Cipher text that we use in the form of coded message at some point in our real life.
4.4.1. Examples of Cipher Code:

1. Shifitng Cypher Text

Ceasar Cipher

The Ceasar Cipher is one of the earliest known and simplest ciphers. It is a type of substitution cipher in which each letter in the text is “shifted” a certain number of places down the alphabets.

To pass an encrypted message from one person to another, it is first necessary that both parties have the ‘key’ for the cipher, so that the sender may encrypt it and the receiver may decrypt it. For the Caesar Cipher, the “key” is the number of characters to shift the cipher alphabet. So, we have to know how big the switch is to break the code.

Let us know about more from the following examples and situations.

Example: 5

Use Ceasar Cipher table set +4 and to try to solve the given secret sentence.

fvieo mr gshiw ger fi xvmgoc

Solution:

Let us make Ceasar Cipher table first. Here, we have to set to +4 table.

For that, we have to start letter e to set as A, f as B … likewise d as Z.

Now, the +4 Ceasar Cipher table looks like

| Plain Text | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| Cipher Text | W | X | Y | Z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |

The given plain text is

fvieo mr gshiw ger fi xvmgoc

To crack this secret code, follow the steps given below.

Step 1: Using Ceasar Cipher table, let us first match the most repeated letters. This will help us to progress faster.

fvieo mr gshiw ger fi xvmgoc

Step 2: Then, let us find remaining letters to complete the code.

Thus, the secret sentence is, BREAK IN CODES CAN BE TRICKY
2. Substituting Cipher Text

Each letter in a text is "substituted" by certain pictures and symbols. A key message, group of words, letters, or a combination of these can be used to encode or decode the information. Let us learn more about from the following situation.

Situation

The teacher divides the class into two teams and display a worksheet given in the figure below for students to complete. Play a game, teams take turns suggesting letter substitutions and someone entering your suggestions in the table. Teams earn points for correct letter guesses.

Worksheet 1 :- Additive Cipher [key = 5]

Convert a given plain text into Additive Cipher text (number) code.

"mathematics is a unique symbolic language in which the whole world works and acts accordingly."

Tips for cracking additive ciphers:

- Especially for additive Ciphers, you only need **key number**. You can complete the cipher table by filling in the rest of the numbers in order.
- If you can, find and make **frequency table for alphabets**. It is help you to get started.
- Match the most **repeated letters** first and fill the Cipher number.
- Look for familiar one-letter words like a or i. Common two and three letter words like of, to, in, it, at, the, and, for, you …..
- Look for **consecutive numbers** in the Cipher text and match them with possible **consecutive letters** in the plain text.

Now, start to convert a plain text into Cipher number, first we have to make a cipher table as shown below. Here, key=5. As per key number we have to start and fill a = 05, b = 06 …….. z = 04 respectively.

<table>
<thead>
<tr>
<th>Plain Text</th>
<th>Cipher Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>05</td>
</tr>
<tr>
<td>b</td>
<td>06</td>
</tr>
<tr>
<td>c</td>
<td>07</td>
</tr>
<tr>
<td>d</td>
<td>08</td>
</tr>
<tr>
<td>e</td>
<td>09</td>
</tr>
<tr>
<td>f</td>
<td>10</td>
</tr>
<tr>
<td>g</td>
<td>11</td>
</tr>
<tr>
<td>h</td>
<td>12</td>
</tr>
<tr>
<td>i</td>
<td>13</td>
</tr>
<tr>
<td>j</td>
<td>14</td>
</tr>
<tr>
<td>k</td>
<td>15</td>
</tr>
<tr>
<td>l</td>
<td>16</td>
</tr>
<tr>
<td>m</td>
<td>17</td>
</tr>
<tr>
<td>n</td>
<td>18</td>
</tr>
<tr>
<td>o</td>
<td>19</td>
</tr>
<tr>
<td>p</td>
<td>20</td>
</tr>
<tr>
<td>q</td>
<td>21</td>
</tr>
<tr>
<td>r</td>
<td>22</td>
</tr>
<tr>
<td>s</td>
<td>23</td>
</tr>
<tr>
<td>t</td>
<td>24</td>
</tr>
<tr>
<td>u</td>
<td>25</td>
</tr>
<tr>
<td>v</td>
<td>00</td>
</tr>
<tr>
<td>w</td>
<td>01</td>
</tr>
<tr>
<td>x</td>
<td>02</td>
</tr>
<tr>
<td>y</td>
<td>03</td>
</tr>
<tr>
<td>z</td>
<td>04</td>
</tr>
</tbody>
</table>

To start encoding the text, let us count the frequency of alphabets and frame frequency table as shown below.

<table>
<thead>
<tr>
<th>Frequency of alphabets in the plain text</th>
<th>Frequency of alphabets in the plain text</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>3</td>
</tr>
<tr>
<td>h</td>
<td>5</td>
</tr>
<tr>
<td>i</td>
<td>7</td>
</tr>
<tr>
<td>j</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>5</td>
</tr>
<tr>
<td>l</td>
<td>5</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>o</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>5</td>
</tr>
<tr>
<td>q</td>
<td>5</td>
</tr>
<tr>
<td>r</td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>z</td>
<td>0</td>
</tr>
</tbody>
</table>
Step 1: Cipher number for most repeated letters (5 times and above)

<table>
<thead>
<tr>
<th>Plain text</th>
<th>m a t h e m a t i c s i s a u n i q u e s y m b o l i c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Numbers</td>
<td>05 1209 05 130723 1323 05 1813 09 23 19161307</td>
</tr>
</tbody>
</table>

Plain text: l a n g u a g e i n w h i c h t h e w h o l e
Cipher Numbers: 160518 05 09 1318 12130712 1209 12191609

Plain text: w o r l d w o r k s a n d a c t s a c c o r d i n g l y
Cipher Numbers: 19 16 19 23 0518 0507 23 05070719 1318 16

Step 2: Cipher number for most repeated letters (2 times and above)

<table>
<thead>
<tr>
<th>Plain text</th>
<th>m a t h e m a t i c s i s a u n i q u e s y m b o l i c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Numbers</td>
<td>170524120917 0524130723 1323 05 251813 2309 231817 19161307</td>
</tr>
</tbody>
</table>

Plain text: l a n g u a g e i n w h i c h t h e w h o l e
Cipher Numbers: 160518 1124051109 1318 0112130712 121209 0112191609

Plain text: w o r l d w o r k s a n d a c t s a c c o r d i n g l y
Cipher Numbers: 0119221608 011922 23 051808 050723 23 05070719 22181318 111603

Step 3: Cipher numbers for non-repeated letters

<table>
<thead>
<tr>
<th>Plain text</th>
<th>m a t h e m a t i c s i s a u n i q u e s y m b o l i c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Numbers</td>
<td>170524120917 0524130723 1323 05 251813132509 23031719161307</td>
</tr>
</tbody>
</table>

Thus, the Additive Cipher text for plain text ias follows:

“17 05 24 12 09 17 05 24 13 07 23 13 23 05 25 18 13 21 25 09 23 03 17 06 19 16 13 07 16 05 18 11 25 05 11 09 13 08 01 12 13 07 12 24 12 09 01 12 19 16 09 01 19 22 16 08 01 19 22 15 23 05 18 08 05 07 24 23 05 07 07 19 22 08 13 18 11 16 03”

Try this

Convert cipher code written in the school panel board as given in figure below.
Treasure in the Mathematics club room

The teacher divides the students into four groups and gives each group a code and a clue and then asks them to cracking the clues to find

(i) the identity of the treasure
(ii) the place of the treasure
(iii) the room in which the treasure took place.

You may take notes on this piece of paper as you proceed through the search

Code 1: Pigpen

Message: If you decode the clue here you can get the four expected treasure names

I. Fill in the blank boxes and decode

The Pigpen code looks like meaningless writing, but it is quite easy to catch on to. Each letter is represented by the part of the “Pigpen” that surrounds it.

The first code uses the following key. To complete the code, you need to work out how to use the key to decode the message.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td>Z</td>
</tr>
</tbody>
</table>

\[\text{You take notes on this piece of paper as you proceed through the search.}\]

\[\text{Code 2: Polybius Square Cipher}\]

Message: If you decode this you can get the clue to identify the name of the treasure name

II. Fill in the blanks

A Polybius Square is a table that allows someone to convert letters into numbers. Use the Polybius square rows and column values to find the code.
III. Find the code using the key as shown in given figure:

Atbash cipher is a substitution cipher with just one specific key where all the letters are reversed that is A to Z and Z to A.

| Plain Text | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| Cipher Text| Z | Y | X | W | V | U | T | S | R | Q | P | O | N | M | L | K | J | I | H | G | F | E | D | C | B | A |

GSV ILLN MFNYVI RH Z NFOGRKOV LU ULFI ZMW HVEVM
THE ___ ___ ___ ___ ___ ___ ___ ___ ___.

Code 4: Using a Key – Reflection Table

Message: If you decode this clue you can get the possible places where the treasure is located (It used to sit)

Use the reflection table which is given below and find the correct word by using a reflected alphabet.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>JVAQBJ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PBZCHGREGNOYR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PUNVE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PHOObNEQ</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

After finding the codes, the teacher then asks students to rearrange the clues one by one
Activity-3

CLUES

i. __
ii. __
iii. __
iv. __

RESULT

(i) The room in which the treasure took place :- ___________________.
(ii) The place of the treasure :- _________________________________.
(iii) The identity of the treasure :- _________________________________.

(Hint:- If you answered the question number 6 in Exercise 4.3, you can compare and verify your results) The gift voucher contains (20 full marks awarded).

Try these

1. Use Pigpen Cipher code and write the code for your name ________ and your chapter names
 (i) LIFE MATHEMATICS (ii) ALGEBRA
 (iii) GEOMETRY (iv) INFORMATION PROCESSING
2. Decode the following Shifting and Substituting secret codes given below. Which one is easiest for you?
 (i) Shifting method:- M N S G H M F H R H L O N R R H A K D
 (ii) Substituting method:-
3. Write a short message to a friend and get them to decipher it (use any one shifting and substituting code method)

Exercise 4.3

1. Choose the correct answer:

 (i) In questions A and B, there are four groups of letters in each set. Three of these sets are a
 like in some way while one is different. Find the one which is different.

 A. (a) C R D T (b) A P B Q (c) E U F V (d) G W H X
 B. (a) H K N Q (b) I L O R (c) J M P S (d) A D G J
(ii) A group of letters are given. A numerical code has been given to each letter. These letters have to be unscrambled into a meaningful word. Find out the code for the word so formed from the 4 answers given.

![Code Table]

<table>
<thead>
<tr>
<th>L I N C P E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
</tr>
</tbody>
</table>

(a) 2 3 4 1 5 6 (b) 5 6 3 4 2 1 (iii) 6 1 3 5 2 4 (iv) 4 2 1 3 5 6

(iii) In questions I and II, there are based on code language. Find the correct answer from the four alternatives given.

C In a certain code, ‘M E D I C I N E’ is coded as ‘E O J D J E F M’, then how is ‘C O M P U T E R’ written in the same code?

(a) C N P R V U F Q (b) C M N Q T U D R
(c) R F U V Q N P C (d) R N V F T U D Q

D If the word ‘P H O N E’ is coded as ‘S K R Q H’, how will ‘R A D I O’ be coded?

(a) S C G N H (b) V R G N G (c) U D G L R (d) S D H K Q

2. Fill in the blanks (Use Atbash Cipher that is given in code 3)

(i) G Z N R O = _____________________________
(ii) V M T O R H S = _____________________________
(iii) N Z G S V N Z G R X H = _____________________________
(iv) H X R V M X V = _____________________________
(v) H L X R Z O H X R V M X V = _____________________________

3. Match the following (a = 00……………. Z= 25).

(i) mathematics - (a) 18 20 01 19 17 00 02 19 08 14 13
(ii) addition - (b) 03 08 21 08 18 08 14 13
(iii) subtraction - (c) 12 00 19 07 04 12 0019 08 02 18
(iv) multiplication - (d) 00 03 03 08 19 08 14 13
(v) division - (e) 12 20 11 19 08 15 11 15 02 00 19 08 14 13

4. Frame Additive cipher table (key = 4).

5. A message like “Good Morning” written in reverse would instead be “Doog Gninrom”. In the same way decode the sentence given below:

“Ot dnatsrednu taht scitamehtam nac eb decneirepxe erehwreve ni erutan dna laer efil.”
6. Decode the given Pigpen Cipher text and compare your answer to get the Activity 3 result.

I. The room number in which the treasure took place

II. Place of the treasure:

III. The name of the treasure:

Exercise 4.4

Miscellaneous Practice Problems

1. The rule of Fibonacci Sequence is F(n) = F(n–2) + F(n–1). Find the 11th to 20th Fibonacci numbers.

2. In a library, 385 Math books, 297 Science books and 143 Tamil books are bundled equally in numbers. What is the maximum numbers of books possible in a bundle, for all types of books? (Use repeated division method)

3. Find the length of the largest which piece of wood used to measure exactly the lengths 4m50cm and 6m 30cm woods. (Use repeated subtraction method)

4. Using both repeated division method and repeated subtraction method and find the greatest number that divides 167 and 95, leaving 5 as reminder.

5. Praveen recently got the registration number for his new two-wheeler. Here, the number is given in the form of mirror-image. Encode the image and find the correct registration number of praveen's two-wheeler.

```
(a) 6 8 2 5 8 9
(b) 6 8 5 2 8 9
(c) 8 9 2 5 8 9
(d) 9 8 5 2 8 9
```
ANSWERS

LIFE MATHEMATICS

Exercise 1.1

1. (i) \(x = 500 \)
 (ii) \(3 \frac{1}{3} \%) \)
 (iii) \(x = 50 \)
 (iv) \(70 \%) \)
 (v) \(52.52\% \)

2. (i) \(50\% \)
 (ii) \(75\% \)
 (iii) \(100\% \)
 (iv) \(96\% \)
 (v) \(66 \frac{2}{3} \%) \)

3. (i) \(x = 150 \)
 4. \(R = 4\% \)
 5. (i) \(500 \) ii) Cricket -45, Volleyball -42, Badminton -33

6. \(30 \)
 7. \(110 \)
 8. \(33 \frac{1}{3} \%) \)
 9. \(x = 200 \)
 10. \(x = 100 \)

11. No change
 12. \(\frac{44}{125} \)
 13. \(400 \)
 14. \(300 \)
 15. \(87\% \)

16. (c) \(20\% \)
 17. (b) \(49\% \)
 18. (a) \(375 \)
 19. (d) \(200 \)
 20. (d) \(36 \)

Exercise 1.2

1. (i) Cost price
 (ii) \(₹7000 \)
 (iii) \(₹600 \)
 (iv) \(8\% \)
 (iv) \(₹945 \)

2. \(₹902 \)
 3. \(₹670 \)
 4. \(11 \frac{1}{9} \% \)
 5. \(50\% \)
 6. \(₹1152 \)

7. \(4\% \) loss
 8. (i) \(₹207 \) (ii) \(₹12600 \) (iii) \(18\% \)
 9. \(₹4445 \)

10. \(60\% \)
 11. Discount of \(8\% \) is better
 12. \(₹5600 \)
 13. (c) \(25\% \)
 14. (b) \(550 \)

15. (b) \(168 \)
 16. (d) \(₹250 \)
 17. (a) \(40\% \)

Exercise 1.3

1. (i) \(₹1272 \)
 (ii) \(₹820 \)
 (iii) \(₹20,000 \)
 (iv) \(A = P \left(1 + \frac{r}{400}\right)^4 \)
 (v) \(₹32 \)

2. (i) True
 (ii) False
 (iii) True
 (iv) False
 (i) True

3. \(₹162 \)
 4. \(₹936.80 \)
 5. \(₹5618 \)
 6. \(3 \) years
 7. \(₹1875 \)
8. 4% 9. \(\frac{1}{2} \) years 10. ₹10,875 11. 700 cm 12. ₹0.50 13. ₹ 54
14. 5% 15. ₹ 16000 16. (c) 6 17. (b) 1 year 18. (b) ₹ 12500
19. (a) ₹2000 20. (d) ₹2500

Exercise 1.4
Miscellaneous Practice Problems

1. T3, 93\(\frac{2}{3} \) % 2. ₹38163 3. 20% 4. ₹15000 5. \(\frac{2}{9} \) % loss
6. ₹8000 7. ₹ 104

Challenging Problems

8. 100 9. 20 % 10. 100% 11. 30% 12. ₹ 331

ALGEBRA

Exercise 2.1

1. (i) \(x = 7 \) (ii) \(y = 11 \) (iii) \(m = 7 \) (iv) \(p = 15 \) (v) One
2. (i) True (ii) False 3. (c) (iii),(i), (iv), (v), (ii)
4. (i) \(x = 11 \) (ii) \(y = \frac{1}{-4} \) (iii) \(x = -1 \) 5. (i) \(x = -4 \) (ii) \(p = -1 \) (iii) \(x = -11 \)
6. (i) \(x = -2 \) (ii) \(m = -4 \)

Exercise 2.2

1. (i) \(x = -\frac{b}{a} \) (ii) Positive (iii) \(x = 30 \) (iv) 40° (v) b=9
2. (i) True (ii) False (iii) False 3. 3, 21 4. 27
5. \(l = 8 \) cm, \(b = 24 \) cm 6. (80,10) notes 7. Murali’s age is 15 years old, Thenmozhi’s age is 20 years old 8. 63 9. \(\frac{13}{21} \)
10. 64.6 km 11. (b) 20 12. (a) 62 13. (c) 10000 14. (c) 4
Exercise 2.3
1. (i) Origin (0,0) (ii) negative (iii) y-axis (iv) zero (v) X-Coordinate
2. (i) True (ii) True (iii) False

Exercise 2.4
1. (i) Origin (ii) (4,-4) (iii) x-axis 1cm=3 units, y-axis 1cm=25 units
2. (i) True (ii) False

Exercise 2.5
Miscellaneous Practice Problems
1. x = 20 2. 60°, 40°, 80° 3. y=11 units p=133 units 4. 116°, 64°

Challenging Problems
6. 7,8,9 7. 54 8. 12 pencils

GEOMETRY
Exercise 3.1
1. (i) Q (ii) $n^2 - m^2$ (iii) a right angled triangle (iv) similar (v) EN
2. (i) True (ii) True (iii) False (iv) False (v) False
3. (i) Yes (ii) No (iii) Yes (iv) Yes (v) yes
4. (i) $x = 41$ (ii) $y = 16$ (iii) $z = 15$ 5. $5cm$ 6. 25, 24
7. 30 inches 8. $170m$ 9. (i) $12cm$ 10. 25cm, 16cm, 9cm
11. (c) $45°$ 12. (b) 20cm 13. (c) $420cm$ 14. (b) $5cm$ 15. (d) 20, 48, 52

Exercise 3.2
Miscellaneous Practice Problems
1. Yes, the side of length 3.7 cm is the hypotenuse.
2. 24 inches No. 3. 25 ft 4. 25 ft 5. 100, 48

Challenging Problems
6. 35 km 8. $40cm$ 9. 28 ft 10. $24cm$
INFORMATION PROCESSING

Exercise 4.1
I (i) (c) 89 (ii) (b) F (8) = F(7) + F(6) (iii) (a) 2
(iv) (d) 6 th (v) (d) 9187

Exercise 4.2
1. (i) (a) 2 × 5 (ii) (b) 2 × 3 (i) (d) 1
2. (i) 13 (ii) 8 (iii) 5 (i) 46
3. (i) 14 (ii) 4 (iii) 140 (i) 6
4. (i) 4 (ii) 5 5. 14 6. 28

Exercise 4.3
1 (i) A. (a) C R D T B. (d) A D G I (ii) (b) 5 6 3 4 2 1
 (iii) (c) R F U Q N P C D. (c) U D G L R
2. (i) TAMIL (ii) ENGLISH (iii) MATHEMATICS (iv) SCIENCE (v) SOCIAL SCIENCE
3. (i) c, (ii) d (iii) a (iv) e (v) b

Exercise 4.4

Miscellaneous Practice Problems
1. 89, 144, 233, 377, 597, 2584, 4181, 6765
2. 11 3. 90 4. 18 5. (c) 8 ≥ ≤ H ≤ I ≥ T
<table>
<thead>
<tr>
<th>Mathematical Terms</th>
<th>Tamil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accrued</td>
<td>சேர்ந்து</td>
</tr>
<tr>
<td>Altitude on Hypotenuse</td>
<td>கர்ணத்தின் மீதமை்ந்த சேங்குத்து</td>
</tr>
<tr>
<td>Amount</td>
<td>கலனை செறுெவர</td>
</tr>
<tr>
<td>Borrower</td>
<td>கடன் செறுெவர</td>
</tr>
<tr>
<td>Calculator</td>
<td>கணிபெொன்</td>
</tr>
<tr>
<td>Cartesian Plane</td>
<td>கொரடீசியன் தளம்</td>
</tr>
<tr>
<td>Cartesian System</td>
<td>கொரடீசியன் அமைப்பு</td>
</tr>
<tr>
<td>CGST</td>
<td>விலியமா தக்கங்கள் விளையாறா வரி</td>
</tr>
<tr>
<td>Code</td>
<td>குறியீடு</td>
</tr>
<tr>
<td>Compound Interest</td>
<td>கூட்டு வட்டி</td>
</tr>
<tr>
<td>Construction</td>
<td>அமைப்பு / வமரமுமை</td>
</tr>
<tr>
<td>Consumer</td>
<td>நுகரசவொர</td>
</tr>
<tr>
<td>Converse</td>
<td>ஆய அச்சுகள்</td>
</tr>
<tr>
<td>Conversion period</td>
<td>மூமை/கொைம்</td>
</tr>
<tr>
<td>Co-ordinate axes</td>
<td>மும் அச்சகள்</td>
</tr>
<tr>
<td>Corresponding Sides</td>
<td>அண்ட பக்ககள்</td>
</tr>
<tr>
<td>Cost price</td>
<td>அடக்க விமை (அ) வொங்கிய விமை</td>
</tr>
<tr>
<td>Cryptology</td>
<td>குறியொக்கவியல்</td>
</tr>
<tr>
<td>Decrease</td>
<td>குமைவு</td>
</tr>
<tr>
<td>Depreciation value</td>
<td>விளையாறா மறிப்பு</td>
</tr>
<tr>
<td>Diagonal</td>
<td>சுவரைச்சியல்</td>
</tr>
<tr>
<td>Difference</td>
<td>வித்தியொேம்</td>
</tr>
<tr>
<td>Discount</td>
<td>கட்டப்படும்</td>
</tr>
<tr>
<td>Duration</td>
<td>காலம்</td>
</tr>
<tr>
<td>Encryption</td>
<td>குறியொக்கம்</td>
</tr>
<tr>
<td>Equivalent</td>
<td>ஸொகண</td>
</tr>
<tr>
<td>Graph Sheet</td>
<td>வமரெடத் தொள்</td>
</tr>
<tr>
<td>Greatest Side</td>
<td>மிக நீளைொன ஆளங்கள் முக்கோணம்</td>
</tr>
<tr>
<td>Hypotenuse</td>
<td>கர்ணம்</td>
</tr>
<tr>
<td>Increase</td>
<td>உயரவு</td>
</tr>
<tr>
<td>Isosceles right angled triangle</td>
<td>இருேெக்க சேங்சகொ்ண முக்கோணம்</td>
</tr>
<tr>
<td>Mathematical Terms</td>
<td>Tamil Terms</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Isosceles Trapezium</td>
<td>இருேெக்க ேரிவகம்</td>
</tr>
</tbody>
</table>
Mathematics - Class 8 Term II
Text Book Development Team

Reviewers
Dr. R. Ramanujam
Professor,
Institute of Mathematical Science,
Chennai.

R. Athmaraman
Educational Consultant,
Association of Mathematics Teachers of India,
Chennai.

Content Writers
G. Kamalanathan
B.T. Assistant,
GHSS, Arpakkam,
Kancheepuram.

K. Gunasekar
B.T. Assistant,
PUMS, Vallavanur West,
Koliyanur Block,
Villupuram.

G. Palani
B.T. Assistant,
GHS, Jagadab,
Krishnagiri.

P. Malarvizhi
B.T. Assistant,
Chennai High School,
Strahans Road, Pattalam, Chennai.

ICT Coordinator
D. Vasuraj
P.G. Assistant, KRM Public School,
Sembiyam, Chennai.

Typist
K. Punitha
Triplicane, Chennai.

Academic Advisor
Dr. P. Kumar
Joint Director (Syllabus),
SCERT, Chennai.

Academic Co-ordinator
V. Ilayarani Mohan
Assistant Professor,
SCERT, Chennai.

Art and Design Team
Layout and Illustration
R. Mathan Raj
C. Prasanth
P. Arun Kamaraj
M. Yesu Rathinam

In-House QC
C. Jerald Wilson
Rajesh Thangappan

Wrapper Design
Kathir Aarumugam

Layout Co-ordinator
Ramesh Munisamy

QR Code Management Team
A. Devi Jesintha, B.T. Assistant,
G.H.S, N.M. Kovil, Vellore.
M. Murugesan, B.T. Assistant,
PUMS. Pethavelankottagam, Thiruvarur.
V. Padmavathi, B.T. Assistant,
G.H.S, Vetriyur, Ariyalur.

This book has been printed on 80 GSM
Elegant Maplitho paper
Printed by offset at: