

Exercise 4

1. Solve the inequation, 3x - 11 < 3 where $x \in \{1, 2, 3, ..., 10\}$. Also, represent its solution on a number line. Solution:

Given inequation, 3x - 11 < 3 3x < 3 + 11 3x < 14 $\Rightarrow x < 14/3$ But, $x \in \{1, 2, 3, \dots, 10\}$ Hence, the solution set is $\{1, 2, 3, 4\}$. Representing the solution on a number line:

2. Solve $2(x - 3) < 1, x \in \{1, 2, 3, \dots, 10\}$ Solution:

Given inequation, 2(x - 3) < 1 2x - 6 < 1 2x < 7 $\Rightarrow x < 7/2$ But, $x \in \{1, 2, 3, ..., 10\}$ Hence, the solution set is $\{1, 2, 3\}$

3. Solve 5 - 4x > 2 - 3x, $x \in W$. Also represent its solution on the number line. Solution:

Given inequation, 5 - 4x > 2 - 3x- 4x + 3x > 2 - 5- x > -3On multiplying both sides by -1, the inequality reverses $\Rightarrow x < 3$ Since, $x \in W$ The solution set is {0, 1, 2} Representing the solution on a number line:

5

4. List the solution set of 30 - 4(2x - 1) < 30, given that x is a positive integer. Solution:

Given inequation, 30 - 4(2x - 1) < 3030 - 8x + 4 < 30

 $\begin{array}{l} 34-8x < 30\\ -8x < 30-34\\ -8x < -4 \qquad [On multiplying both sides by -1, the inequality reverses]\\ 8x > 4\\ x > 4/8\\ \Rightarrow x > 1/2\\ As x \text{ is a positive integer}\\ The solution set is \{1, 2, 3, ...\} \end{array}$

5. Solve: 2(x-2) < 3x - 2, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$. Solution:

Given inequation, 2(x - 2) < 3x - 2 2x - 4 < 3x - 2 2x - 3x < -2 + 4 -x < 2 $\Rightarrow x > -2$ But, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ Hence, the solution set is $\{-1, 0, 1, 2, 3\}$.

6. If x is a negative integer, find the solution set of 2/3 + 1/3 (x + 1) > 0. Solution:

Given inequation, 2/3 + 1/3 (x + 1) > 0. 2/3 + x/3 + 1/3 > 0 x/3 + 1 > 0 x/3 > -1 $\Rightarrow x > -3$ As x is a negative integer The solution set is $\{-1, -2\}$.

7. Solve: $(2x - 3)/4 \ge \frac{1}{2}$, $x \in \{0, 1, 2, ..., 8\}$ Solution:

Given inequation, $(2x - 3)/4 \ge \frac{1}{2}$ $2x - 3 \ge 4 \times \frac{1}{2}$ $2x - 3 \ge 2$ $2x \ge 2 + 3$ $2x \ge 5$ $\Rightarrow x \ge 5/2$ But, $x \in \{0, 1, 2, ..., 8\}$ Hence, the solution set is $\{3, 4, 5, 6, 7, 8\}$.

8. Solve x - 3 (2 + x) > 2 (3x - 1), $x \in \{-3, -2, -1, 0, 1, 2, 3\}$. Also represent its solution on the number line. Solution:

Given inequation, x - 3 (2 + x) > 2 (3x - 1) x - 6 - 3x > 6x - 2 -2x - 6 > 6x - 2 -6x - 2x > -2 + 6 -8x > 4 x < -4/8 $\Rightarrow x < -1/2$ But, $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ Hence, the solution set is $\{-3, -2, -1\}$

9. Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9} solve x − 3 < 2x − 1. Solution:

Given inequation, x - 3 < 2x - 1 x - 2x < -1 + 3 -x < 2 $\Rightarrow x > -2$ But, $x \in \{1, 2, 3, 4, 5, 6, 7, 9\}$ Hence, the solution set is $\{1, 2, 3, 4, 5, 6, 7, 9\}$.

10. Given $A = \{x: x \in I, -4 \le x \le 4\}$, solve 2x - 3 < 3 where x has the domain A. Graph the solution set on the number line. Solution:

Given equation, 2x - 3 < 3 2x < 6 $\Rightarrow x < 3$ But x has a the domain A = {x: $x \in I$, $-4 \le x \le 4$ } A = {-4, -3, -2, -1, 0, 1, 2, 3, 4} Hence, the solution set is {-4, -3, -2, -1, 0, 1, 2}. Representing the solution on a number line:

11. List the solution set of the inequation $\frac{1}{2} + 8x > 5x - \frac{3}{2}, x \in \mathbb{Z}$ Solution:

Given inequation, $\frac{1}{2} + 8x > 5x - \frac{3}{2}$ $8x - 5x > \frac{3}{2} - \frac{1}{2}$ $3x > -\frac{4}{2}$ $\Rightarrow x > -\frac{2}{3}$ As $x \in \mathbb{Z}$ The solution set is $\{0, 1, 2, 3, 4, 5, ...\}$

12. List the solution set of $(11 - 2x)/5 \ge (9 - 3x)/8 + 3/4$, $x \in N$ Solution:

Given inequation, $(11 - 2x)/5 \ge (9 - 3x)/8 + \frac{3}{4}$ $(11 - 2x)/5 \ge (9 - 3x + 6)/8$ $8 (11 - 2x) \ge 5 (15 - 3x)$ $88 - 16x \ge 75 - 15x$ $15x - 16x \ge 75 - 88$ $-x \ge -13$ $\Rightarrow x \le 13$ As $x \in N$ Hence, the solution set is $\{1, 2, 3, 4, ..., 13\}$.

13. Find the values of x, which satisfy the inequation : $-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}$, $x \in N$. Graph the solution set on the number line. Solution:

 $-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}$ Given inequation, $-2 \le (3-4x)/6 \le 11/6$ $-12 \le 3 - 4x \le 11$ $-12 - 3 \le -4x \le 11 - 3$ $-15 \leq -4x \leq 8$ $-15/4 \le -x \le 8/4$ $\Rightarrow 15/4 \ge x \ge -2$ As $x \in N$. The solution set is $\{1, 2, 3\}$. Representing the solution on a number line: 0 1 2 -3 -2

> 14. If $x \in W$, find the solution set of 3/5 x - (2x - 1)/3 > 1. Also graph the solution set on the number line, if possible. Solution:

Given inequation, $3/5 \ge (2x - 1)/3 > 1$ $9/15 \ge -5(2x - 1)/15 > 1$ [Taking L.C.M] 9x - 5(2x - 1) > 15 [Multiplying by 15 on both sides] 9x - 10x + 5 > 15 -x > 15 - 5 -x > 10 $\Rightarrow x < -10$ But, $x \in W$

Hence, the solution set is a null set. Thus, it can't be represented on number line.

15. Solve:

(i) $x/2 + 5 \le x/3 + 6$ where x is a positive odd integer. (ii) $(2x + 3)/3 \ge (3x - 1)/4$ where x is positive even integer. Solution:

(i) Given inequation, $x/2 + 5 \le x/3 + 6$ $(x + 10)/2 \le (x + 18)/3$ [Taking L.C.M on both sides] $3 (x + 10) \le 2 (x + 18)$ [On cross-multiplying] $3x + 30 \le 2x + 36$ $3x - 2x \le 36 - 30$ $\Rightarrow x \le 6$ As x is a positive odd integer. Hence, the solution set is $\{1, 3, 5\}$.

(ii) Given inequation, $(2x + 3)/3 \ge (3x - 1)/4$ 4 $(2x + 3) \ge 3 (3x - 1)$ [On cross-multiplying] $8x + 12 \ge 9x - 3$ $-9x + 8x \ge -12 - 3$ $-x \ge -15$ $\Rightarrow x \le 15$ As x is positive even integer. Hence, the solution set is {2, 4, 6, 8, 10, 12, 14}.

16. Given that $x \in I$, solve the inequation and graph the solution on the number line: $3 \ge (x - 4)/2 + x/3 \ge 2$ Solution:

Given inequation, $3 \ge (x - 4)/2 + x/3 \ge 2$ Now, let's take $3 \ge (x - 4)/2 + x/3$, we have $3 \ge (3x - 12 + 2x)/6$ [Taking L.C.M] $18 \ge 5x - 12$ $30 \ge 5x$ \Rightarrow x \leq 6 (i) Next. $(x - 4)/2 + x/3 \ge 2$ $(3x - 12 + 2x)/6 \ge 2$ $5x-12 \geq 12$ $5x \ge 24$ $x \ge 24/5 \Rightarrow x \ge 4.8 \dots$ (ii) Hence, from (i) and (ii) we have Solution of $x = \{5, 6\}$ Representing the solution on a number line:

17. Given $x \in \{1, 2, 3, 4, 5, 6, 7, 9\}$, find the values of x for which -3 < 2x - 1 < x + 4. Solution:

Given inequation, -3 < 2x - 1 < x + 4So, we have -3 < 2x - 12x - 1 < x + 4and -2x < 3 - 1and 2x - x < 4 + 1-2x < 2and x < 5 x > -1 and x < 5 As $x \in \{1, 2, 3, 4, 5, 6, 7, 9\}$ The solution set is $\{1, 2, 3, 4\}$.

18. Solve: $1 \ge 15 - 7x > 2x - 27$, $x \in N$ Solution:

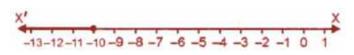
Given inequation, $1 \ge 15 - 7x > 2x - 27$, So, we have $1 \ge 15 - 7x$ 15 - 7x > 2x - 27and $7x \ge 15 - 1$ -2x - 7x > -27 - 15and $7x \ge 14$ -9x > -42and -x > -42/9 $x \ge 2$ and $x \ge 2$ x < 14/3and $\Rightarrow 2 \le x < 14/3$ But as $x \in N$ The solution set is $\{2, 3, 4\}$.

19. If $x \in \mathbb{Z}$, solve $2 + 4x < 2x - 5 \le 3x$. Also represent its solution on the number line. Solution

```
Given inequation, 2 + 4x < 2x - 5 \le 3x
So, we have
2 + 4x < 2x - 5
                                2x - 5 \leq 3x
                        and
4x - 2x < -5 - 2
                        and
                                2x - 3x \le 5
2x < -7
                               -x ≤ 5
                        and
x < -7/2
                        and
                               x \ge -5
\Rightarrow -5 \leq x < -7/2
As x \in Z
The solution set is \{-5, -4\}.
Representing the solution on a number line:
X'
           -6 -5 -4 -3 -2 -1 0 1
                                            2
```


20. Solve the inequation $12 + \frac{15}{6}x \le 5 + 3x$, $x \in \mathbb{R}$. Represent the solution on a number line. Solution:

Given inequation, $12 + 1\frac{5}{6}x \le 5 + 3x$ $12 + 11/6 x \le 5 + 3x$ [Multiplying by 6 on both sides] $11x - 18x \le 30 - 72$ $-7x \le -42$ $-x \le -6$ $x \ge 6$ As $x \in \mathbb{R}$ The solution set is $\{x : x \in \mathbb{R}, x \ge 6\}$ Representing the solution on a number line:


21. Solve: $(4x - 10)/3 \le (5x - 7)/2$, $x \in \mathbb{R}$ and represent the solution set on the number line. Solution:

Given inequation, $(4x - 10)/3 \le (5x - 7)/2$ 2 $(4x - 10) \le 3 (5x - 7)$ [On cross-multiplying] $8x - 20 \le 15x - 21$ $8x - 15x \le -21 + 20$ $-7x \le -1$ $-x \le -1/7$ $x \ge 1/7$ As $x \in \mathbb{R}$ Hence, the solution set is $\{x: x \in \mathbb{R}, x \ge 1/7\}$ Representing the solution on a number line:

22. Solve 3x/5 - (2x - 1)/3 > 1, $x \in R$ and represent the solution set on the number line. Solution:

Given inequation, 3x/5 - (2x - 1)/3 > 1 (9x - 10x + 5)/15 > 1 [Taking L.C.M] -x + 5 > 15 -x > 15 - 5 -x > 10 x < -10As $x \in \mathbb{R}$ Hence, the solution set is $\{x: x \in \mathbb{R}, x < -10\}$ Representing the solution on a number line:

23. Solve the inequation $-3 \le 3 - 2x < 9$, $x \in \mathbb{R}$. Represent your solution on a number line. Solution:

Given inequation, $-3 \le 3 - 2x < 9$ $-3 - 3 \le -2x < 9 - 3$ $-6 \le -2x < 6$ $-3 \le -x < 3$ $-3 < x \le 3$ As $x \in \mathbb{R}$ The solution set is $\{x: x \in \mathbb{R}, -3 < x \le 3\}$ Representing the solution on a number line:

24. Solve $2 \le 2x - 3 \le 5$, $x \in \mathbb{R}$ and mark it on a number line. Solution:

Given inequation, $2 \le 2x - 3 \le 5$ $2 + 3 \le 2x \le 5 + 3$ $5 \le 2x \le 8$ $5/2 \le x \le 4$ Hence, the solution set is $\{x: x \in \mathbb{R}, 5/2 \le x \le 4\}$ Representing the solution on a number line:

-2 -1 0 1 2 3 4 5 6

.2

25. Given that $x \in R$, solve the following inequation and graph the solution on the number line: -1 $\leq 3 + 4x < 23$. Solution:

Given inequation, $-1 \le 3 + 4x < 23$ $-1 - 3 \le 4x < 23 - 3$ $-4 \le 4x < 20$ $-4/4 \le x < 20/4$ $-1 \le x < 5$ Hence, the solution set is $\{-1 \le x < 5; x \in R\}$ Representing the solution on a number line:

26. Solve the following inequation and graph the solution on the number line.

$$-2\frac{2}{3} \le x + \frac{1}{3} < 3 + \frac{1}{3}$$
, $x \in \mathbb{R}$
Solution:

Given inequation, $-2\frac{2}{3} \le x + \frac{1}{3} < 3 + \frac{1}{3}$ $-8/3 \le (3x + 1)/3 < 10/3$ $-8 \le 3x + 1 < 10$ [Multiplying by 3] $-8 - 1 \le 3x < 10 - 1$ $-9 \le 3x < 9$ $-3 \le x < 3$ [Dividing by 5] Thus, the solution set is {x: x \in R, $-3 \le x < 3$ } Representing the solution on a number line:

0

27. Solve the following inequation and represent the solution set on the number line:

3

2

 $-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}, x \in R$ Solution:

Given in equation,

 $-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}, x \in R$ -3 < -(3 + 4x)/6 ≤ 5/6 [Taking L.C.M] -18 < -3 - 4x ≤ 5 [Multiplying by 6] -18 + 3 < -4x ≤ 5 + 3 -15 < -4x ≤ 8 -15/4 < -x ≤ 8/4 -2 ≤ x < 15/4 Hence, the solution set is $\{x : x \in \mathbb{R}, 2 \le x \le 15\}$

Hence, the solution set is $\{x : x \in \mathbb{R}, -2 \le x < 15/4\}$ Representing the solution on a number line:

28. Solve $\frac{2x+1}{2} + 2(3-x) \ge 7, x \in R_{. Also graph the solution set on the number line Solution:$

Given inequation, $\frac{2x+1}{2} + 2(3-x) \ge 7, x \in R$ $[2x+1+4(3-x)]/2 \ge 7$ [Taking L.C.M] $2x+1+12-4x \ge 14$ $-2x+13 \ge 14$ $-2x \ge 14-13$

 $\begin{array}{l} -2x \geq 1 \\ -x \geq \frac{1}{2} \\ x \leq -\frac{1}{2} \\ \end{array}$ Hence, the solution set is $\{x : x \in \mathbb{R}, x \leq -\frac{1}{2}\}$ Representing the solution on a number line:

29. Solving the following inequation, write the solution set and represent it on the number line -

 $3(x-7) \ge 15-7x > \frac{x-1}{3}, x \in \mathbb{R}$ **Solution:** Given inequation, $-3(x-7) \ge 15 - 7x > \frac{x+1}{3}$ -3x + 21 > 15 - 7 $-3x + 21 \ge 15 - 7x > (x + 1)/3$ So, $-3x + 21 \ge 15 - 7x$ $7x-3x \geq 15-21$ $4x \ge -6$ $x \ge -6/4$ x > -3/2And, 15 - 7x > (x + 1)/33(15-7x) > x+145 - 21x > x + 1-21x - x > 1 - 45-22x > -44-x > -44/22x < 2Hence, the solution set is $\{x : x \in \mathbb{R}, -3/2 \le x \le 2\}$ Representing the solution on a number line: -3 -2 -1 0 1 2 3 4

30. Solve the inequation : $-2\frac{1}{2}+2x\leq\frac{4x}{3}\leq\frac{4}{3}+2x,\quad x\in W_{.}\ \text{Graph the solution set on the number line.}$ Solution:

Given inequation, $-2\frac{1}{2} + 2x \le \frac{4x}{3} \le \frac{4}{3} + 2x, \quad x \in W$ $-5/2 + 2x \le 4x/3 \le 4/3 + 2x$ So, we have $-5/2 + 2x \le 4x/3$ and $4x/3 \le 4/3 + 2x$

 $2x - 4x/3 \le 5/2$ $4x/3 - 2x \le 4/3$ and $(6x - 4x)/3 \le 5/2$ $(4x - 6x)/3 \le 4/3$ [Taking L.C.M] and $2x \le 15/2$ and $-2x \le 4$ $x \le 15/4$ -x ≤ 2 [Dividing by 2] and $x \le 15/4$ $x \ge -2$ and $-2 \le x \le 15/4$ For $x \in W$ Thus, the solution set is $\{0, 1, 2, 3\}$ Representing the solution on a number line: X'

-2 -1 0 1 2 3 4 5 6

31. Solve the inequation $2x - 5 \le 5x + 4 < 11$, where $x \in I$. Also represent the solution set on the number line. Solution:

Given inequation, $2x - 5 \le 5x + 4 < 11$ So, we have $2x - 5 \le 5x + 4$ 5x + 4 < 11and 2x - 5x < 4 + 55x < 11 - 4and $-3x \le 9$ 5x < 7and $-x \le 9/3$ x < 7/5 and $x \ge -3$ and x < 7/5 -3 < x < 7/5As $x \in I$ Thus, the solutions set is $\{-3, -2, -1, 0, 1\}$

Representing the solution on a number line:

 $\xrightarrow{X'}$

32. If $x \in I$, A is the solution set of 2(x - 1) < 3x - 1 and B is the solution set of $4x - 3 \le 8 + x$, find A \cap B. Solution:

Given inequations,

2(x-1) < 3x-1 $4x - 3 \le 8 + x$ for $x \in I$ and Solving for both, we have 2x - 3x < 2 - 1and $4x - x \le 8 + 3$ -x < 1 $3x \le 11$ and x > -1 and $x \le 11/3$ Hence. Solution set $A = \{0, 1, 2, 3, ...\}$ Solution set $B = \{3, 2, 1, 0, -1, ...\}$ Thus, $A \cap B = \{0, 1, 2, 3\}$

33. If P is the solution set of -3x + 4 < 2x - 3, $x \in N$ and Q is the solution set of 4x - 5 < 12, $x \in W$, find (i) $\mathbf{P} \cap \mathbf{Q}$ (ii) Q – P. Solution: Given inequations, -3x + 4 < 2x - 3 where $x \in N$ and 4x - 5 < 12 where $x \in W$ So, solving -3x + 4 < 2x - 3 where $x \in N$ -3x - 2x < -3 - 4-5x < -7 x > 7/5Hence, the solution set P is $\{2, 3, 4, 5, \ldots\}$ And, solving 4x - 5 < 12 where $x \in W$ 4x < 12 + 54x < 17 x < 17/4Hence, the solution set Q is $\{0, 1, 2, 3, 4\}$ Therefore, (i) $P \cap Q = \{2, 3, 4\}$ (ii) $Q - P = \{0, 1\}$ 34. $A = \{x : 11x - 5 > 7x + 3, x \in R\}$ and $B = \{x : 18x - 9 \ge 15 + 12x, x \in R\}$ Find the range of set $A \cap B$ and represent it on a number line Solution: Given, $A = \{x : 11x - 5 > 7x + 3, x \in R\}$ and $B = \{x : 18x - 9 \ge 15 + 12x, x \in R\}$ Solving for A, 11x - 5 > 7x + 311x - 7x > 3 + 54x > 8x > 2Hence, $A = \{x : x > 2, x \in R\}$ Next, solving for B 18x - 9 > 15 + 12x $18x - 12x \ge 15 + 9$ $6x \ge 24$ x > 4Hence, $B = \{x : x \ge 4, x \in R\}$ Thus, $A \cap B = x \ge 4$ Representing the solution on a number line: X'

35. Given: P {x : $5 < 2x - 1 \le 11$, $x \in R$ } Q {x : $-1 \le 3 + 4x < 23$, $x \in I$ } where R = (real numbers), I = (integers) Represent P and Q on number line. Write down the elements of P \cap Q. Solution:

Given, P {x : $5 < 2x - 1 \le 11$, x $\in \mathbb{R}$ } and Q {x : $-1 \le 3 + 4x < 23$, x $\in \mathbb{I}$ } Solving for P, $5 < 2x - 1 \le 11$ $5 + 1 < 2x \le 11 + 1$ 6 < 2x < 12 $3 < x \leq 6$ Hence, $P = P \{x : 3 < x \le 6, x \in R\}$ Representing the solution on a number line: X' Next, solving for Q -1 < 3 + 4x < 23 $-1 - 3 \le 4x < 23 - 3$ $-4 \le 4x < 20$ $-1 \le x < 5$ Hence, solution $Q = \{-1, 0, 1, 2, 3, 4\}$ Representing the solution on a number line:

-1 0 1 2 3 Therefore, $P \cap Q = \{4\}$

X'

36. If $x \in I$, find the smallest value of x which satisfies the inequation $2x + \frac{5}{2} > \frac{5x}{3} + 2$ Solution:

Given inequation, $2x + \frac{5}{2} > \frac{5x}{3} + 2$ (4x + 5)/2 > (5x + 6)/3 [Taking L.C.M] 3 (4x + 5) > 2 (5x + 6) [On cross-multiplication] 12x + 15 > 10x + 12 12x - 10x > 12 - 15 2x > -3 x > -3/2Hence, for $x \in I$ the smallest value of x is -1.

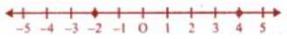
37. Given 20 - 5 x < 5 (x + 8), find the smallest value of x, when
(i) x ∈ I
(ii) x ∈ W

(iii) $x \in N$. Solution:

Given inequation, $20 - 5 \ge (x + 8)$ $20 - 5 \le 5 \le 40$ $-5 \ge -5 \le 40 - 20$ $-10 \le 20$ $-x \le 20/10$ $x \ge -2$ Thus, (i) For $x \in I$, the smallest value = -1 (ii) For $x \in W$, the smallest value = 0 (iii) For $x \in N$, the smallest value = 1

38. Solve the following inequation and represent the solution set on the number line:

 $4x - 19 < \frac{3x}{5} - 2 \le -\frac{2}{5} + x, x \in R$ Solution:


Given inequation, $4x - 19 < \frac{3x}{5} - 2 \le -\frac{2}{5} + x, x \in \mathbb{R}$ So, we have $3x/5 - 2 \le -2/5 + x$ 4x - 19 < 3x/5 - 2and 4x - 3x/5 < 19 - 2 $3x/5 - x \le 2 - 2/5$ and (20x - 3x)/5 < 17 $(3x - 5x)/5 \le (10 - 2)/5$ and 17x < 35 $-2x \le 8$ [Multiplying by 5] and x < 5 $-x \le 4$ and x < 5 and $x \ge 4$ $-4 \le x < 5, x \in R$ Hence, the solution set is $\{x : -4 \le x < 5, x \in R\}$ Representing the solution on a number line:

-5 -4 -3 -2 -1 0. 1 2 3 4 5

39. Solve the given inequation and graph the solution on the number line: $2y - 3 < y + 1 \le 4y + 7$; $y \in \mathbb{R}$. Solution:

The solution set is $\{y : -2 \le y < 4, y \in R\}$ Representing the solution on a number line:

40. Solve the inequation and represent the solution set on the number line.

 $-3+x \leq \frac{8\hat{x}}{3}+2 \leq \frac{14}{3}+2x$, Where $x \in I$ Solution:

Given inequation,

 $-3+x \leq \tfrac{8x}{3}+2 \leq \tfrac{14}{3}+2x, Where \quad x \in I$ So, we have -3 + x < 8x/3 + 2 $8x/3 + 2 \le 14/3 + 2x$ and $x - 8x/3 \le 2 + 3$ $8x/3 - 2x \le 14/3 - 2$ and [Taking L.C.M] $(3x - 8x)/3 \le 5$ $(8x - 6x)/3 \le (14 - 6)/3$ and $-5x/3 \le 5$ $2x \le 8$ and $-5x \le 15$ $x \le 8/2$ and -x ≤ 3 $x \leq 4$ and $x \ge -3$ $x \leq 4$ and \Rightarrow -3 \leq x \leq 4 Thus, the solution set is {-3, -2, -1, 0, 1, 2, 3, 4} Representing the solution on a number line: -4 -3 -2 -1 0

41. Find the greatest integer which is such that if 7 is added to its double, the resulting number becomes greater than three times the integer. Solution:

Let's consider the greatest integer to be x Then according to the given condition, we have 2x + 7 > 3x2x - 3x > -7-x > -7x < 7, $x \in \mathbb{R}$ Hence, the greatest integer value is 6.

42. One-third of a bamboo pole is buried in mud, one-sixth of it is in water and the part above the water is greater than or equal to 3 metres. Find the length of the shortest pole. Solution:

Let's assume the length of the shortest pole = x metre Now,

Length of the pole which is buried in mud = x/3Length of the pole which is in the water = x/6

Then according to the given condition, we have $x - [x/3 + x/6] \ge 3$

 $x - [(2x + x)/6] \ge 3$ $x - 3x/6 \ge 3$ $x - x/2 \ge 3$ $x/2 \ge 3$ $x \ge 6$ [Multiplying by 6] Therefore, the length of the shortest pole is 6 metres.

Chapter Test

1. Solve the inequation: $5x - 2 \le 3 (3 - x)$ where $x \in \{-2, -1, 0, 1, 2, 3, 4\}$. Also represent its solution on the number line. Solution:

Given inequation, $5x - 2 \le 3 (3 - x)$ $5x - 2 \le 9 - 3x$ $5x + 3x \le 9 + 2$ $8x \le 11$ $x \le 11/8$ As $x \in \{-2, -1, 0, 1, 2, 3, 4\}$ The solution set is $\{-2, -1, 0, 1\}$ Representing the solution on a number line:

2. Solve the inequation: 6x - 5 < 3x + 4, $x \in I$ Solution:

Given inequation, 6x - 5 < 3x + 4 6x - 3x < 4 + 5 3x < 9 x < 9/3 x < 3As $x \in I$ The solution set is {2, 1, 0, -1, -2, ...}

3. Find the solution set of the inequation $x + 5 \le 2x + 3$; $x \in \mathbb{R}$ Graph the solution set on the number line. Solution:

Given inequation, $x + 5 \le 2x + 3$ $x - 2x \le 3 - 5$ $-x \le -2$ $x \ge 2$ As $x \in \mathbb{R}$ Thus, the solution set is $\{2, 3, 4, 5, ...\}$ Representing the solution on a number line:

4. If $x \in \mathbb{R}$ (real numbers) and $-1 < 3 - 2x \le 7$, find solution set and present it on a number line. Solution:

Given inequation, $-1 < 3 - 2x \le 7$

 $\begin{array}{l} -1-3 < -2x \leq 7 - 3 \\ -4 < -2x \leq 4 \\ -4/2 < -x \leq 4/2 \\ -2 < -x \leq 2 \\ Thus, -2 \leq x < 2 \\ The solution set is \{x : x \in \mathbb{R}, -2 \leq x < 2\} \\ Representing the solution on a number line: \\ \end{array}$

5. Solve the inequation:

 $\frac{5x+1}{7} - 4\left(\frac{x}{7} + \frac{2}{5}\right) \le 1\frac{3}{5} + \frac{3x-1}{7}, x \in R$
Solution:

Given inequation,

 $\frac{5x+1}{7} - 4\left(\frac{x}{7} + \frac{2}{5}\right) \le 1\frac{3}{5} + \frac{3x-1}{7}, x \in R$ $(5x + 1)/7 - 4(5x + 14)/35 \le 8/5 + (3x - 1)/7$ $[5(5x + 1) - 4(5x + 14)]/35 \le [56 + 5(3x - 1)]/35$ $(25x + 5 - 20x - 56) \le 56 + 15x - 5$ $5x - 51 \le 51 + 15x$ $5x - 15x \le 51 + 51$ $-10x \le 102$ $-x \le 102/10$ $x \ge - 51/5$ Hence, the solution set is $\{x : x \in \mathbb{R}, x \ge -51/5\}$

[Taking L.C.M]