

EXERCISE 9.1

1. Convert the following to logarithmic form: (i) $5^2 = 25$ (ii) $a^5 = 64$ (iii) $7^x = 100$ (iv) $9^{\circ} = 1$ (v) $6^1 = 6$ (vi) $3^{-2} = 1/9$ (vii) $10^{-2} = 0.01$ (viii) $(81)^{3/4} = 27$ **Solution:** (i) $5^2 = 25$ Let us apply log, we get $Log_5 25 = 2$ (ii) $a^5 = 64$ Let us apply log, we get $Log_{a} 64 = 5$ (iii) $7^{x} = 100$ Let us apply log, we get $Log_7 100 = x$ (iv) $9^\circ = 1$ Let us apply log, we get $Log_{9} 1 = 0$ (v) $6^1 = 6$ Let us apply log, we get $Log_{6} 6 = 1$ (vi) $3^{-2} = 1/9$ Let us apply log, we get $Log_3 1/9 = -2$ (vii) $10^{-2} = 0.01$ Let us apply log, we get $Log_{10} 0.01 = -2$

(viii) $(81)^{3/4} = 27$ Let us apply log, we get $Log_{81} 27 = \frac{3}{4}$

2. Convert the following into exponential form:

(i) $\log_2 32 = 5$ (ii) $\log_3 81=4$ (iii) $\log_3 1/3 = -1$ (iv) $\log_3 4 = 2/3$ (v) $\log_8 32 = 5/3$ (vi) $\log_{10} (0.001) = -3$ (vii) $\log_2 0.25 = -2$ (viii) $\log_2 0.25 = -2$ (viii) $\log_a (1/a) = -1$ Solution: (i) $\log_2 32 = 5$ The exponential form of the expression is $2^5 = 32$

(ii) $\log_3 81=4$ The exponential form of the expression is $3^4 = 81$

(iii) $\log_3 1/3 = -1$ The exponential form of the expression is $3^{-1} = 1/3$

(iv) $\log_3 4 = 2/3$ The exponential form of the expression is $(8)^{2/3} = 4$

(v) $\log_8 32 = 5/3$ The exponential form of the expression is $(8)^{5/3} = 32$

(vi) $\log_{10} (0.001) = -3$ The exponential form of the expression is $10^{-3} = 0.001$

(vii) $\log_2 0.25 = -2$ The exponential form of the expression is $2^{-2} = 0.25$

(viii) $\log_a (1/a) = -1$ The exponential form of the expression is $a^{-1} = 1/a$

3. By converting to exponential form, find the values of:

(i) $\log_2 16$ (ii) log₅ 125 (iii) log₄ 8 (iv) log₉ 27 $(v) \log_{10} (.01)$ (vi) $\log_7 1/7$ (vii) log.₅ 256 (viii) log₂ 0.25 **Solution:** (i) log₂ 16 Let us consider $\log_2 16 = x$ So, $(2)^{x} = 16$ $= 2 \times 2 \times 2 \times 2$ $2^{x} = 2^{4}$ By comparing the powers, $\mathbf{x} = 4$ (ii) log₅ 125 Let us consider $\log_5 125 = x$ So, $(5)^{x} = 125$ $= 5 \times 5 \times 5$ $5^{x} = 5^{3}$ By comparing the powers, $\mathbf{x} = \mathbf{3}$ (iii) log₄ 8 Let us consider $\log_4 8 = x$ So,

 $(4)^{x} = 8$ $(2 \times 2)^{x} = 2 \times 2 \times 2$ $2^{2x} = 2^3$ By comparing the powers, 2x = 3x = 3/2(iv) log₉ 27 Let us consider $\log_9 27 = x$ So, $(9)^{x} = 27$ $(3 \times 3)^{x} = 3 \times 3 \times 3$ $3^{2x} = 3^{3}$ By comparing the powers, 2x = 3x = 3/2 $(\mathbf{v}) \log_{10}(.01)$ Let us consider $\log_{10}(.01) = x$ So, $(10)^{x} = 1/100$ $= 1/10 \times 1/10$ $10^{x} = 1/(10)^{2}$ $10^{x} = 10^{-2}$ By comparing the powers, x = -2 (vi) $\log_7 1/7$ Let us consider $\log_7 1/7 = x$ So, $(7)^{x} = 1/7$ $7^{x} = 7^{-1}$ By comparing the powers, x = -1(vii) log.₅ 256 Let us consider $\log_{5} 256 = x$ So, $(.5)^{x} = 256$

(**viii**) log₂ 0.25

Let us consider $\log_2 0.25 = x$ So, $(2)^x = 0.25$ = 25/100 $2^x = 1/4$ $2^x = (2)^{-2}$ By comparing the powers, x = -2

4. Solve the following equations for x: (i) $\log_3 x = 2$ (ii) $\log_x 25 = 2$ (iii) $\log_{10} x = -2$ (iv) $\log_4 x = \frac{1}{2}$ (v) $\log_{x} 11 = 2.5$ (vi) $\log_x \frac{1}{4} = -1$ (vii) $\log_{81} x = 3/2$ (viii) $\log_9 x = 2.5$ (ix) $\log_4 x = -1.5$ **Solution:** (i) $\log_3 x = 2$ Let us simplify the expression, $(3)^2 = x$ x = 9(ii) $\log_x 25 = 2$ Let us simplify the expression, $(x)^2 = 25$ $= 5 \times 5$ $x^2 = 5^2$ Since the powers are same,

ML Aggarwal Solutions for Class 9 Maths Chapter 9 – Logarithms

So, x = 5(iii) $\log_{10} x = -2$ Let us simplify the expression, $(10)^{-2} = x$ $x = 1/(10)^2$ = 1/100x = 0.01(iv) $\log_4 x = \frac{1}{2}$ Let us simplify the expression, $(4)^{1/2} = x$ $x = (2 \times 2)^{1/2}$ $=(2)^{2}\times^{1/2}$ $\mathbf{x} = 2$ (v) $\log_x 11 = 2.5$ Let us simplify the expression, $(x)^{1} = 11$ x = 11 (vi) $\log_x \frac{1}{4} = -1$ Let us simplify the expression, $(\mathbf{x})^{-1} = \frac{1}{4}$ $\hat{x}^{-1} = 4^{-1}$ Since the powers are same, So, x = 4 (vii) $\log_{81} x = 3/2$ Let us simplify the expression, $(81)^{3/2} = x^{3/2}$ $x = 81^{3/2}$ $=(3^4)^{3/2}$ $=3^{4}\times^{3/2}$ $=3^{6}$ $= 3 \times 3 \times 3 \times 3 \times 3 \times 3$ = 729

x = 729

(viii) $\log_9 x = 2.5$ $\log_9 x = 5/2$ Let us simplify the expression, $(9)^{5/2} = x$ $x = (3^2)^{5/2}$ $=3^{2}\times^{5/2}$ $=3^{5}$ $= 3 \times 3 \times 3 \times 3 \times 3$ = 234x = 234 (ix) $\log_4 x = -1.5$ $\log_4 x = -3/2$ Let us simplify the expression, $(4)^{-3/2} = x$ $x = (2^2)^{-3/2}$ $= 2^2 \times^{-3/2}$ $= 2^{-3}$ $= 1/2^3$ $= 1/(2 \times 2 \times 2)$ = 1/8x = 1/8

5. Given $\log_{10} a = b$, express 10^{2b-3} in terms of a. Solution:

Given: $log_{10} a = b$ $(10)^{b} = a$ Now, $10^{2b-3} = (10)^{2b} / (10)^{3}$ $= (10^{b})^{2} / (10 \times 10 \times 10)$ Substitute the value of $(10)^{b} = a$, we get $= a^{2}/1000$

6. Given $\log_{10} x = a$, $\log_{10} y = b$ and $\log_{10} z = c$, (i) write down 10^{2a-3} in terms of x. (ii) write down 10^{3b-1} in terms of y.

(iii) if $\log_{10} P = 2a + b/2 - 3c$, express P in terms of x, y and z. Solution: Given: $\log_{10} x = a$ \Rightarrow (10)^a = x $\log_{10} y = b$ \Rightarrow (10)^b = v $\log_{10} z = c$ \Rightarrow (10)^c = z (i) Write down 10^{2a-3} in terms of x. $10^{2a-3} = (10)^{2a} / (10)^3$ $=(10^{a})^{2}/(10 \times 10 \times 10)$ Substitute the value of $(10)^a = x$, we get $= x^2/1000$ (ii) Write down 10^{3b-1} in terms of y. $10^{3b-1} = (10)^{3b} / (10)^{1}$ $=(10^{b})^{3}/(10)$ Substitute the value of $(10)^{b} = v$, we get $= v^{3}/10$ (iii) If $\log_{10} P = 2a + b/2 - 3c$, express P in terms of x, y and z. we know that, $(10)^{a} = x$ $(10)^{b} = y$ $(10)^{c} = z$ By substituting the values $\log_{10} P = 2a + b/2 - 3c$ $= 2 \log_{10} x + \frac{1}{2} \log_{10} y - 3 \log_{10} z$ $= \log_{10} x^{2} + \log_{10} y^{1/2} - \log_{10} z^{3}$ $= \log_{10} (x^{2} + y^{1/2}) - \log_{10} z^{3}$ $= \log_{10} \left[(x^2 \sqrt{y})/z^3 \right]$ $P = (x^2 \sqrt{v})/z^3$

7. If $log_{10}x = a$ and $log_{10}y = b$, find the value of xy. Solution:

Given: $log_{10}x = a$

 $(10)^{a} = x$

 $log_{10}y = b$ (10)^b = y Then, $xy = (10)^{a} \times (10)^{b}$ $= (10)^{a+b}$

8. Given $\log_{10} a = m$ and $\log_{10} b = n$, express a^3/b^2 in terms of m and n. Solution:

Given: $\log_{10} a = m$ $(10)^m = a$

 $log_{10} b = n$ (10)ⁿ = b So, $a^{3}/b^{2} = (10^{m})^{3} / (10^{n})^{2}$ = $10^{3m} / 10^{2n}$ = 10^{3m-2n}

9. Given $\log_{10}a = 2a$ and $\log_{10}y = -b/2$ (i) write 10^{a} in terms of x. (ii) write 10^{2b+1} in terms of y. (iii) if $\log_{10}P = 3a - 2b$, express P in terms of x and y. Solution: Given: $\log_{10}a = 2a$ $(10)^{2a} = a$ $\log_{10}y = -b/2$ $(10)^{-b/2} = y$ (i) Write 10^{a} in terms of x. $10^{a} = (10^{2a})^{1/2}$ $= (x)^{1/2}$ $= \sqrt{x}$

(ii) Write 10^{2b+1} in terms of y. $10^{2b+1} = 10^{2b} \times 10^{1}$

$$= 10^{4(b/2)} \times 10^{1}$$

= $(10^{b/2})^{4} \times 10^{1}$
= $y^{4} \times 10^{1}$
= $10y^{4}$

(iii) If $\log_{10}P = 3a - 2b$, express P in terms of x and y. $\log_{10}P = 3a - 2b$ Substitute the values, $\log_{10}P = 3/2 (2a) - 4(b/2)$ $= 3/2 (\log_{10} x) - 4 (\log_{10} y)$ $= (\log_{10} x)^{3/2} - (\log_{10} y)^4$ $= \log_{10} [(x^{3/2}) / y^4]$ P = $(x^{3/2}) / y^4$

10. If $\log_2 y = x$ and $\log_3 z = x$, find 72^x in terms of y and z.

Solution:

Given: $\log_2 y = x$ $2^x = y$

```
log_{3} z = x
3^{x} = z
So,
72^{x} = (2 \times 2 \times 2 \times 3 \times 3)^{x}
= (2^{3} \times 3^{2})^{x}
= 2^{3x} \times 3^{2x}
= (2^{x})^{3} \times (3^{x})^{2}
= y^{3} \times z^{2}
= y^{3} z^{2}
```

11. If $\log_2 x = a$ and $\log_5 y = a$, write 100^{2a-1} in terms of x and y. Solution:

Given:

 $log_2 x = a$ $2^a = x$

 $log_5 y = a$ $5^a = y$ So,

$$100^{2a-1} = (2 \times 2 \times 5 \times 5)^{2a-1}$$

= $(2^2 \times 5^2)^{2a-1}$
= $2^{4a-2} \times 5^{a-2}$
= $(2^{4a})/2^2 \times (5^{4a})/5^2$
= $[(2^a)^4 \times (5^a)^4] / (4 \times 25)$
= $(x^4y^4)/100$

EXERCISE 9.2

1. Simplify the following: (i) $\log a^3 - \log a^2$ (ii) $\log a^3 \div \log a^2$ (iii) log 4/log 2 (iv) (log 8 log 9)/log 27 (v) $\log \frac{27}{\log \sqrt{3}}$ (vi) $(\log 9 - \log 3)/\log 27$ Solution: (i) $\log a^3 - \log a^2$ By using Quotient law, $\log a^3 - \log a^2 = \log (a^3/a^2)$ $= \log a$ (ii) $\log a^3 \div \log a^2$ By using power law, $\log a^3 \div \log a^2 = 3\log a \div 2\log a$ $= 3\log a / 2\log a$ = 3/2(iii) log 4/log 2 Let us simplify the expression, $\log 4/\log 2 = \log(2 \times 2)/\log 2$ By using power law, $= 2 \log 2 / \log 2$ = 2 (iv) (log 8 log 9)/log 27 Let us simplify the expression, $(\log 8 \log 9)/\log 27 = (\log 2^3 \cdot \log 3^2)/\log 3^3$ By using power law, $= [(3 \log 2).(2 \log 3)]/(3 \log 3)$ $= [(\log 2).2] / 1$ $= 2 \log 2$ $=\log 2^2$ $= \log 4$ (v) $\log \frac{27}{\log \sqrt{3}}$

Let us simplify the expression,

ML Aggarwal Solutions for Class 9 Maths Chapter 9 – Logarithms

 $\log \frac{27}{\log \sqrt{3}} = \log(3 \times 3 \times 3)/\log(3)^{1/2}$ $= \log 3^{3} / \log 3^{1/2}$ By using power law $= 3\log 3/((1/2)\log 3)$ $= (3 \times 2)/1 (\log 3/\log 3)$ =(6)(1)= 6 (vi) $(\log 9 - \log 3)/\log 27$ Let us simplify the expression, $(\log 9 - \log 3)/\log 27 = [\log(3 \times 3) - \log 3] / \log(3 \times 3 \times 3)$ $= [\log 3^2 - \log 3] / \log 3^3$ By using power law $= [2 \log 3 - \log 3]/3 \log 3$ $= \log 3/3 \log 3$ = 1/32. Evaluate the following: (i) $\log (10 \div \sqrt[3]{10})$ (ii) $2 + \frac{1}{2} \log(10^{-3})$ (iii) $2 \log 5 + \log 8 - \frac{1}{2} \log 4$ (iv) $2 \log 10^3 + 3 \log 10^{-2} - \frac{1}{3} \log 5^{-3} + \frac{1}{2} \log 4$ (v) $2 \log 2 + \log 5 - \frac{1}{2} \log 36 - \log \frac{1}{30}$ (vi) $2 \log 5 + \log 3 + 3 \log 2 - \frac{1}{2} \log 36 - 2 \log 10$ (vii) $\log 2 + 16 \log 16/15 + 12 \log 25/24 + 7 \log 81/80$ (viii) $2 \log_{10} 5 + \log_{10} 8 - \frac{1}{2} \log_{10} 4$ **Solution:** (i) $\log (10 \div \sqrt[3]{10})$ Let us simplify the expression, $\log (10 \div \sqrt[3]{10}) = \log (10 \div 10^{1/3})$ $= \log (10^{1-1/3})$ $= \log (10^{2/3})$ $= 2/3 \log 10$ = 2/3 (1)= 2/3(ii) $2 + \frac{1}{2} \log(10^{-3})$ Let us simplify the expression,

$$2 + \frac{1}{2} \log(10^{-3}) = 2 + \frac{1}{2} \times (-3) \log 10$$

= 2 - 3/2 log 10
= 2 - 3/2 (1)
= 2 - 3/2
= (4-3)/2
= 1/2
(iii) 2 log 5 + log 8 - \frac{1}{2} log 4

Let us simplify the expression,

$$2 \log 5 + \log 8 - \frac{1}{2} \log 4 = \log 5^2 + \log 8 - \frac{1}{2} \log 2^2$$

 $= \log 25 + \log 8 - \frac{1}{2} 2 \log 2$
 $= \log 25 + \log 8 - \log 2$
 $= \log (25 \times 8)/2$
 $= \log 100$
 $= \log 10^2$
 $= 2 \log 10$
 $= 2 (1)$
 $= 2$

(iv) $2 \log 10^3 + 3 \log 10^{-2} - \frac{1}{3} \log 5^{-3} + \frac{1}{2} \log 4$ Let us simplify the expression, $2 \log 10^3 + 3 \log 10^{-2} - \frac{1}{3} \log 5^{-3} + \frac{1}{2} \log 4 = 2 \times 3 \log 10 + 3(-2) \log 10 - \frac{1}{3} (-3) \log 5 + \frac{1}{2} \log 2^2$ $= 6 \log 10 - 6 \log 10 + \log 5 + \frac{1}{2} \log 2$

```
= 6 \log 10 - 6 \log 10 + \log 5 + \frac{1}{2} 2 \log 2
= 6 \log 10 - 6 \log 10 + \log 5 + \log 2
= 0 + \log 5 + \log 2
= \log (5 \times 2)
= \log 10
= 1
```

(v) $2 \log 2 + \log 5 - \frac{1}{2} \log 36 - \log \frac{1}{30}$ Let us simplify the expression, $2 \log 2 + \log 5 - \frac{1}{2} \log 36 - \log \frac{1}{30} = \log 2^2 + \log 5 - \frac{1}{2} \log 6^2 - \log (\frac{1}{30})$ $= \log 4 + \log 5 - \log 6 - \log \frac{1}{30}$ $= \log 4 + \log 5 - \log 6 - (\log 1 - \log 30)$ $= \log 4 + \log 5 - \log 6 - \log 1 + \log 30$ $= \log 4 + \log 5 + \log 30 - (\log 6 + \log 1)$ $= \log (4 \times 5 \times 30) - \log (6 \times 1)$

 $= \log (4 \times 5 \times 30)/(6 \times 1)$ = log (4×5×5) = log 100 = log 10² = 2 log 10 = 2 (1) = 2

(vi) $2 \log 5 + \log 3 + 3 \log 2 - \frac{1}{2} \log 36 - 2 \log 10$

Let us simplify the expression, $2\log 5 + \log 3 + 3\log 2 - \frac{1}{2}\log 36 - 2\log 10 = \log 5^{2} + \log 3 + \log 2^{3} - \frac{1}{2}\log 6^{2} - \log 10^{2}$ $= \log 25 + \log 3 + \log 8 - \log 6 - \log 100$ $= \log (25 \times 3 \times 8) - \log(6 \times 100)$ $= \log (1 \times 3 \times 8) / (6 \times 4)$ $= \log 24/24$ $= \log 1$ = 0

(vii) $\log 2 + 16 \log 16/15 + 12 \log 25/24 + 7 \log 81/80$ Let us simplify the expression, $\log 2 + 16 \log 16/15 + 12 \log 25/24 + 7 \log 81/80 = \log 2 + 16(\log 16 - \log 15) + 12(\log 16) + 12(\log 16$ $25 - \log 24$) + 7(log 81 - log 80) $= \log 2 + 16 (\log 2^4 - \log (3 \times 5)) + 12$ $(\log 5^2 - \log (3 \times 2 \times 2 \times 2)) + 7 (\log (3 \times 3 \times 3 \times 3) - \log (2^4 \times 5))$ $= \log 2 + 16(4\log 2 - (\log 3 + \log 5)) +$ $12 (2\log 5 - \log (3 \times 2^3)) + 7 (\log 3^4 - (\log 2^4 + \log 5))$ $= \log 2 + 16 (4\log 2 - \log 3 - \log 5) +$ $12 (2\log 5 - (\log 3 + 3\log 2)) + 7 (4\log 3 - 4\log 2 - \log 5)$ $= \log 2 + 64\log 2 - 16\log 3 - 16\log 5$ $+ 24\log 5 - 12\log 3 - 36\log 2 + 28\log 3 - 28\log 2 - 7\log 5$ $= (\log 2 + 64\log 2 - 36\log 2 - 28\log 2)$ $+(-16\log 3 - 12\log 3 + 28\log 3) + (-16\log 5 + 24\log 5 - 7\log 5)$ $= (65\log 2 - 64\log 2) + (-28\log 3 +$ $28\log 3$ + (-23log 5 + 24log 5) $= \log 2 + 0 + \log 5$ $= \log (2 \times 5)$ $= \log 10$ = 1

(viii) $2 \log_{10} 5 + \log_{10} 8 - \frac{1}{2} \log_{10} 4$ Let us simplify the expression, $2 \log_{10} 5 + \log_{10} 8 - \frac{1}{2} \log_{10} 4 = \log_{10} 5^2 + \log_{10} 8 - \log_{10} 4^{1/2}$ $= \log_{10} 25 + \log_{10} 8 - \log_{10} (2)^2 \times^{1/2}$ $= \log_{10} 25 + \log_{10} 8 - \log_{10} 2$ $= \log_{10} \left[(25 \times 8)/2 \right]$ $= \log_{10} (25 \times 4)$ $= \log_{10} 100$ $= \log_{10} 10^2$ $= 2 \log_{10} 10$ = 2 (1)= 23. Express each of the following as a single logarithm: (i) $2 \log 3 - \frac{1}{2} \log 16 + \log 12$ (ii) $2 \log_{10} 5 - \log_{10} 2 + 3 \log_{10} 4 + 1$ (iii) $\frac{1}{2} \log 36 + 2 \log 8 - \log 1.5$ $(iv) \frac{1}{2} \log 25 - 2 \log 3 + 1$ $(v) \frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$ Solution: (i) $2 \log 3 - \frac{1}{2} \log 16 + \log 12$ Let us simplify the expression into single logarithm, $2 \log 3 - \frac{1}{2} \log 16 + \log 12 = 2 \log 3 - \frac{1}{2} \log 4^2 + \log 12$ $= 2 \log 3 - \log 4 + \log 12$ $= \log 3^2 - \log 4 + \log 12$ $= \log 9 - \log 4 + \log 12$ $= \log (9 \times 12)/4$ $= \log (9 \times 3)$ $= \log 27$ (ii) $2 \log_{10} 5 - \log_{10} 2 + 3 \log_{10} 4 + 1$ Let us simplify the expression into single logarithm, $2 \log_{10} 5 - \log_{10} 2 + 3 \log_{10} 4 + 1 = \log_{10} 5^2 - \log_{10} 2 + \log_{10} 4^3 + \log_{10} 10$ $= \log_{10} 25 - \log_{10} 2 + \log_{10} 64 + \log_{10} 10$ $= \log_{10} (25 \times 64 \times 10) - \log_{10} 2$ $= \log_{10} (16000) - \log_{10} 2$ $= \log_{10} (16000/2)$ $= \log_{10} 8000$

(iii)
$$\frac{1}{2} \log 36 + 2 \log 8 - \log 1.5$$

Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 36 + 2 \log 8 - \log 1.5 = \log 36^{1/2} + \log 8^2 - \log 1.5$
 $= \log (6)^2 x^{1/2} + \log 64 - \log 1.5$
 $= \log 6 + \log 64 - \log (15/10)$
 $= \log 6 + \log 64 - \log 15 - \log 10$
 $= \log (6x64) - \log 15 + \log 10$
 $= \log (6x64x + 10)/15]$
 $= \log (6x64x + 10)/15]$
 $= \log (4x64)$
 $= \log 256$
(iv) $\frac{1}{2} \log 25 - 2 \log 3 + 1$
Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 25 - 2 \log 3 + 1 = \log 25^{1/2} - \log 3^2 + \log 10$
 $= \log (5)^2 x^{1/2} - \log 9 + \log 10$
 $= \log (5x + 10) - \log 9$
 $= \log 50/9$
(v) $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$
Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$
Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$
Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2$
Let us simplify the expression into single logarithm,
 $\frac{1}{2} \log 9 + 2 \log 3 - \log 6 + \log 2 - 2 = \log 9^{1/2} + \log 3^2 - \log 6 + \log 2 - \log 100$
 $= \log 3 + \log 9 - \log 6 + \log 2 - \log 100$
 $= \log 9 (100$
4. Prove the following:
(i) $\log_{10} 4 + \log_{10} 2 = \log_3 9$
(ii) $\log_{10} 4 + \log_{10} 2 = \log_3 9$
Let us consider LHS, $\log_{10} 4 + \log_{10} 2$
 $= 2 \log_{10} 2^2 + \log_{10} 2$
 $= 2 \log_{10} 2/\log_{10} 2$

= 2(1)= 2Now let us consider RHS, $\log_3 9 = \log_3 3^2$ $= 2 \log_3 3$ = 2(1)= 2 \therefore LHS = RHS Hence proved. (ii) $\log_{10} 25 + \log_{10} 4 = \log_5 25$ Let us consider LHS, $\log_{10} 25 + \log_{10} 4$ $\log_{10} 25 + \log_{10} 4 = \log_{10} (25 \times 4)$ $= \log_{10} 100$ $= \log_{10} 10^2$ $= 2 \log_{10} 10$ = 2(1)= 2Now, let us consider RHS, $\log_5 25 = \log_5 5^2$ $= 2 \log_5 5$ = 2 (1)= 2 \therefore LHS = RHS Hence proved.

5. If $x = (100)^{a}$, $y = (10000)^{b}$ and $z = (10)^{c}$, express log $[(10\sqrt{y})/x^{2}z^{3}]$ in terms of a, b, c. Solution:

Given: $x = (100)^{a} = (10^{2})^{a} = 10^{2a}$ $y = (10000)^{b} = (10^{4})^{b} = 10^{4b}$ $z = (10)^{c}$ It is given that, $\log [(10\sqrt{y})/x^{2}z^{3}]$ $\log [(10\sqrt{y})/x^{2}z^{3}] = (\log 10 + \log \sqrt{y}) - (\log x^{2} + \log z^{3})$ $= (1 + \log(y)^{1/2}) - (\log x^{2} + \log z^{3})$ [we know that, $\log 10 = 1$] $= (1 + \frac{1}{2} \log y) - (2 \log x + 3 \log z)$ Now substitute the values of x, y, z, we get $= (1 + \frac{1}{2} \log 10^{4b}) - (2 \log 10^{2a} + 3 \log 10^{c})$

 $= (1 + \frac{1}{2} 4b \log 10) - (2 \times 2a \log 10 + 3 \times c \log 10)$

$$= (1 + \frac{1}{2} 4b) - (2 \times 2a + 3c) \text{ [Since, log } 10 = 1\text{]}$$

= (1 + 2b) - (4a + 3c)
= 1 + 2b - 4a - 3c

```
6. If a = \log_{10}x, find the following in terms of a :
(i) x
(ii) \log_{10} \sqrt[5]{x^2}
(iii) \log_{10} 5x
Solution:
Given:
a = \log_{10} x
(i) x
10^{a} = x
\therefore x = 10^{a}
(ii) \log_{10} \sqrt[5]{x^2}
\log_{10} \sqrt[5]{x^2} = \log_{10} (x^2)^{1/5}
                =\log_{10}(x)^{2/5}
                = 2/5 \log_{10} x
                = 2/5 (a)
                = 2a/5
(iii) log<sub>10</sub> 5x
x = (10)^{a}
  = \log_{10} 5x
  = \log_{10} 5(10)^{a}
  = \log_{10} 5 + \log_{10} 10
  = \log_{10} 5 + a(1)
  = a + \log_{10} 5
7. If a =log 2/3, b = log 3/5 and c = 2 log \sqrt{(5/2)}. Find the value of
(i) a + b + c
(ii) 5^{a+b+c}
```

Solution:

Given: $a = \log 2/3$ $b = \log 3/5$ $c = 2 \log \sqrt{(5/2)}$ (i) a + b + c

Let us substitute the given values, we get $a + b + c = \log 2/3 + \log 3/5 + 2 \log \sqrt{(5/2)}$ $= (\log 2 - \log 3) + (\log 3 - \log 5) + 2 \log (5/2)^{1/2}$ $= \log 2 - \log 3 + \log 3 - \log 5 + 2 \times \frac{1}{2} (\log 5 - \log 2)$ $= \log 2 - \log 3 + \log 3 - \log 5 + \log 5 - \log 2$ = 0(ii) 5^{a+b+c} $5^{a+b+c} = 5^0$ = 1 8. If x = log 3/5, y = log 5/4 and z = 2 log $\sqrt{3}/2$, find the value of (i) x + y - z(ii) 3^{x+y-z} Solution: Given: $x = \log 3/5 = \log 3 - \log 5$ $y = \log 5/4 = \log 5 - \log 4$ $z = 2 \log \sqrt{3/2} = \log (\sqrt{3/2})^2 = \log \frac{3}{4} = \log 3 - \log 4$ (i) x + y - zLet us substitute the given values, we get $x + y - z = \log 3 - \log 5 + \log 5 - \log 4 - (\log 3 - \log 4)$ $= \log 3 - \log 5 + \log 5 - \log 4 - \log 3 + \log 4$ = 0(ii) 3^{x+y-z} $3^{x+y-z} = 3^0$ = 1 9. If $x = \log_{10} 12$, $y = \log_4 2 \times \log_{10} 9$ and $z = \log_{10} 0.4$, find the values of (i) $\mathbf{x} - \mathbf{y} - \mathbf{z}$ (ii) 7^{x-y-z} Solution: Given: $x = \log_{10} 12$ $y = \log_4 2 \times \log_{10} 9$ $z = \log_{10} 0.4$ (i) x - y - zLet us substitute the given values, we get

$$\begin{aligned} x - y - z &= \log_{10} 12 - \log_4 2 \times \log_{10} 9 - \log_{10} 0.4 \\ &= \log_{10} (3 \times 4) - \log_4 4^{1/2} \times \log_{10} 3^2 - \log_{10} 4/10 \\ &= \log_{10} 3 + \log_{10} 4 - \frac{1}{2} \log_4 4 \times 2 \log_{10} 3 - (\log_{10} 4 - \log_{10} 10) \\ &= \log_{10} 3 + \log_{10} 4 - \frac{1}{2} \times 1 \times 2 \log_{10} 3 - \log_{10} 4 + 1 \\ &= \log_{10} 3 + \log_{10} 4 - \log_{10} 3 - \log_{10} 4 + 1 \\ &= 1 \end{aligned}$$

(ii)
$$7^{x-y-z}$$

 $7^{x-y-z} = 7^1$
 $= 7$

10. If $\log V + \log 3 = \log \pi + \log 4 + 3 \log r$, find V in terms of other quantities. Solution:

Given:

log V + log 3 = log π + log 4 + 3 log r Let us simplify the given expression to find V, log (V × 3) = log (π × 4 × r³) log 3V = log 4 π r³ 3V = 4 π r³ V = 4 π r³/3

11. Given 3 (log 5 – log 3) – (log 5 - 2 log 6) = 2 – log n, find n. Solution:

Given: 3 (log 5 - log 3) - (log 5 - 2 log 6) = 2 - log n Let us simplify the given expression to find n, 3 log 5 - 3 log 3 - log 5 + 2 log 6 = 2 - log n 2 log 5 - 3 log 3 + 2 log 6 = 2 (1) - log n log 5² - log 3³ + log 6² = 2 log 10 - log n [Since, 1 = log 10] log 25 - log 27 + log 36 - log 10² = - log n log n = - log 25 + log 27 - log 36 + log 100 = (log 100 + log 27) - (log 25 + log 36) = log (100×27) - log (25×36) = log (100×27)/(25×36) log n = log 3 n = 3

12. Given that $\log_{10} y + 2 \log_{10} x = 2$, express y in terms of x. Solution:

Given:

$$\begin{split} &\log_{10} y + 2 \ \log_{10} x = 2 \\ &\text{Let us simplify the given expression,} \\ &\log_{10} y + \log_{10} x^2 = 2(1) \\ &\log_{10} y + \log_{10} x^2 = 2 \ \log_{10} 10 \\ &\log_{10} (y \times x^2) = \log_{10} 10^2 \\ &yx^2 = 100 \\ &y = 100/x^2 \end{split}$$

13. Express $\log_{10} 2 + 1$ in the form $\log_{10} x$. Solution:

Given: $log_{10} 2 + 1$ Let us simplify the given expression, $log_{10} 2 + 1 = log_{10} 2 + log_{10} 10$ [Since, $1 = log_{10} 10$] $= log_{10} (2 \times 10)$ $= log_{10} 20$

14. If $a^2 = \log_{10} x$, $b^2 = \log_{10} y$ and $a^2/2 - b^2/3 = \log_{10} z$. Express z in terms of x and y. Solution:

Given:

 $\begin{array}{l} a^{2} = \log_{10} x \\ b^{2} = \log_{10} y \\ a^{2}/2 - b^{2}/3 = \log_{10} z \\ \text{Let us substitute the given values in the expression, we get} \\ \log_{10} x/2 - \log_{10} y/3 = \log_{10} z \\ \log_{10} x^{1/2} - \log_{10} y^{1/3} = \log_{10} z \\ \log_{10} \sqrt{x} - \log_{10} \sqrt[3]{y} = \log_{10} z \\ \log_{10} \sqrt{x}/\sqrt[3]{y} = \log_{10} z \\ \sqrt{x}/\sqrt[3]{y} = z \\ z = \sqrt{x}/\sqrt[3]{y} \end{array}$

15. Given that $\log m = x + y$ and $\log n = x - y$, express the value of $\log m^2 n$ in terms of x and y.

Solution: Given: $\log m = x + y$ $\log n = x - y$ $\log m^2 n$

Let us simplify the given expression, $log m^{2}n = log m^{2} + log n$ = 2 log m + log nBy substituting the given values, we get = 2 (x + y) + (x - y) = 2x + 2y + x - y = 3x + y

16. Given that $\log x = m + n$ and $\log y = m - n$, express the value of $\log (10x/y^2)$ in terms of m and n.

Solution:

Given: log x = m + n log y = m - n log (10x/y²) Let us simplify the given expression, log (10x/y²) = log 10x - log y² = log 10 + log x - 2 log y = 1 + log x - 2 log y = 1 + (m + n) - 2(m - n) = 1 + m + n - 2m + 2n = 1 - m + 3n

17. If $\log x/2 = \log y/3$, find the value of y^4/x^6 . Solution: Given:

log x/2 = log y/3 Let us simplify the given expression, By cross multiplying, we get $3 \log x = 2 \log y$ $\log x^3 = \log y^2$ so, $x^3 = y^2$ now square on both sides, we get $(x^3)^2 = (y^2)^2$ $x^6 = y^4$ $y^4/x^6 = 1$

18. Solve for x:
(i) log x + log 5 = 2 log 3

(ii) $\log_3 x - \log_3 2 = 1$ (iii) $x = \log \frac{125}{\log 25}$ (iv) $(\log 8/\log 2) \times (\log 3/\log \sqrt{3}) = 2 \log x$ Solution: (i) $\log x + \log 5 = 2 \log 3$ Let us solve for x, $Log x = 2 \log 3 - \log 5$ $= \log 3^2 - \log 5$ $= \log 9 - \log 5$ $= \log (9/5)$ $\therefore x = 9/5$ (ii) $\log_3 x - \log_3 2 = 1$ Let us solve for x, $\log_3 x = 1 + \log_3 2$ $= \log_3 3 + \log_3 2$ [Since, 1 can be written as $\log_3 3 = 1$] $= \log_3 (3 \times 2)$ $= \log_3 6$ $\therefore x = 6$ (iii) $x = \log \frac{125}{\log 25}$ $x = \log 5^3 / \log 5^2$ $= 3 \log 5 / 2 \log 5$ = 3/2 [Since, log 5/log 5 = 1] $\therefore \mathbf{x} = 3/2$ (iv) $(\log 8/\log 2) \times (\log 3/\log \sqrt{3}) = 2 \log x$ $(\log 2^3/\log 2) \times (\log 3/\log 3^{1/2}) = 2 \log x$ $(3\log 2/\log 2) \times (\log 3/\frac{1}{2} \log 3) = 2 \log x$ $3 \times 1/(1/2) = 2 \log x$ $3 \times 2 = 2 \log x$ $6 = 2 \log x$ $\log x = 6/2$ $\log x = 3$ $x = (10)^3$ = 1000 $\therefore x = 1000$

19. Given $2 \log_{10} x + 1 = \log_{10} 250$, find

(i) **x** (ii) $\log_{10}2x$ **Solution:** Given: $2 \log_{10} x + 1 = \log_{10} 250$ (i) let us simplify the above expression, $\log_{10} x^2 + \log_{10} 10 = \log_{10} 250$ [Since, 1 can be written as $\log_{10} 10$] $\log_{10} (x^2 \times 10) = \log_{10} 250$ $(x^{2} \times 10) = 250$ $x^2 = 250/10$ $x^2 = 25$ $x = \sqrt{25}$ = 5 $\therefore x = 5$ (ii) $\log_{10} 2x$ We know that, x = 5So, $\log_{10} 2x = \log_{10} 2 \times 5$ $= \log_{10} 10$ = 1 20. If $\log x/\log 5 = \log y^2/\log 2 = \log 9/\log (1/3)$, find x and y. **Solution:** Given: $\log x/\log 5 = \log y^2/\log 2 = \log 9/\log (1/3)$ let us consider, $\log x / \log 5 = \log 9 / \log (1/3)$ $\log x = (\log 9 \times \log 5) / \log (1/3)$ $= (\log 3^2 \times \log 5) / (\log 1 - \log 3)$ $= (2 \log 3 \times \log 5) / (-\log 3) [\log 1 = 0]$ $= -2 \times \log 5$ $= \log 5^{-2}$ $x = 5^{-2}$ $= 1/5^{2}$ = 1/25Now. $\log y^2 / \log 2 = \log 9 / \log (1/3)$ $\log y^2 = (\log 9 \times \log 2) / \log (1/3)$ $= (\log 3^2 \times \log 2) / (\log 1 - \log 3)$

 $= (2 \log 3 \times \log 2) / (-\log 3) [\log 1 = 0]$ = -2 × log 2 = log 2⁻² $y^{2} = 2^{-2}$ = 1/2² = 1/4 = $\sqrt{(1/4)}$ = 1/2

21. Prove the following: (i) $3^{\log 4} = 4^{\log 3}$ (ii) $27^{\log 2} = 8^{\log 3}$ Solution: (i) $3^{\log 4} = 4^{\log 3}$ Let us take log on both sides, If $\log 3^{\log 4} = \log 4^{\log 3}$ $\log 4 \cdot \log 3 = \log 3 \cdot \log 4$ $\log 2^2 \cdot \log 3 = \log 3 \cdot \log 2^2$ $2 \log 2 \cdot \log 3 = \log 3 \cdot 2 \log 2$ Which is true. Hence proved.

```
(ii) 27^{\log 2} = 8^{\log 3}
Let us take log on both sides,
If \log 27^{\log 2} = \log 8^{\log 3}
\log 2 \cdot \log 27 = \log 3 \cdot \log 8
\log 2 \cdot \log 3^3 = \log 3 \cdot \log 2^3
\log 2 \cdot 3 \log 3 = \log 3 \cdot 3 \log 2
3 \log 2 \cdot \log 3 = 3 \log 2 \cdot \log 3
Which is true.
Hence proved.
```

22. Solve the following equations:

(i) $\log (2x + 3) = \log 7$ (ii) $\log (x + 1) + \log (x - 1) = \log 24$ (iii) $\log (10x + 5) - \log (x - 4) = 2$ (iv) $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$ (v) $\log (4y - 3) = \log (2y + 1) - \log 3$ (vi) $\log_{10} (x + 2) + \log_{10} (x - 2) = \log_{10} 3 + 3 \log_{10} 4$

(vii) $\log (3x + 2) + \log (3x - 2) = 5 \log 2$ Solution: (i) $\log (2x + 3) = \log 7$ Let us simplify the expression, 2x + 3 = 72x = 7 - 32x = 4x = 4/2= 2 (ii) $\log (x + 1) + \log (x - 1) = \log 24$ Let us simplify the expression, $\log [(x+1) (x-1)] = \log 24$ $\log (x^2 - 1) = \log 24$ $(x^2 - 1) = 24$ $x^2 = 24 + 1$ = 25 $x = \sqrt{25}$ = 5 (iii) $\log (10x + 5) - \log (x - 4) = 2$ Let us simplify the expression, $\log (10x + 5) / (x - 4) = 2 \log 10$ $\log (10x + 5) / (x - 4) = \log 10^2$ (10x + 5) / (x - 4) = 10010x + 5 = 100 (x - 4)10x + 5 = 100x - 400

= 4.5 (iv) $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$ Let us simplify the expression, $\log_{10} [5 \times (5x + 1)] = \log_{10} (x + 5) + \log_{10} 10$ $\log_{10} [5 \times (5x + 1)] = \log_{10} [(x + 5) \times 10]$ $[5 \times (5x + 1)] = [(x + 5) \times 10]$

5 + 400 = 100x - 10x

90x = 405x = 405/90= 81/18= 9/2

25x + 5 = 10x + 5025x - 10x = 50 - 515x = 45x = 45/15= 3 (v) $\log (4y-3) = \log (2y+1) - \log 3$ Let us simplify the expression, $\log (4y - 3) = \log (2y + 1) / 3$ (4y-3) = (2y+1)/3By cross multiplying, we get 3(4y - 3) = 2y + 112y - 9 = 2y + 112y - 2y = 9 + 110y = 10y = 10/10= 1 (vi) $\log_{10}(x+2) + \log_{10}(x-2) = \log_{10}3 + 3\log_{10}4$ Let us simplify the expression, $\log_{10} [(x + 2) \times (x - 2)] = \log_{10} 3 + \log_{10} 4^3$ $\log_{10} \left[(x+2) \times (x-2) \right] = \log_{10} (3 \times 4^3)$ $[(x + 2) \times (x - 2)] = (3 \times 4^3)$ $(x^2 - 4) = (3 \times 4 \times 4 \times 4)$ $(x^2 - 4) = 192$ $x^2 = 192 + 4$ = 196 $\mathbf{x} = \sqrt{196}$ = 14(vii) $\log (3x + 2) + \log (3x - 2) = 5 \log 2$ Let us simplify the expression, $\log (3x + 2) + \log (3x - 2) = \log 2^5$ $\log [(3x + 2) \times (3x - 2)] = \log 32$ $\log (9x^2 - 4) = \log 32$ $(9x^2 - 4) = 32$ $9x^2 = 32 + 4$ $9x^2 = 36$ $x^2 = 36/9$

 $x^2 = 4$ $x = \sqrt{4}$ = 2

23. Solve for x: $\log_3 (x+1) - 1 = 3 + \log_3 (x-1)$ **Solution:** Given: $\log_3 (x + 1) - 1 = 3 + \log_3 (x - 1)$ Let us simplify the expression, $\log_3 (x + 1) - \log_3 (x - 1) = 3 + 1$ $\log_3 (x + 1) / (x - 1) = 4 \log_3 3$ [Since, $\log_3 3 = 1$] $\log_3 (x + 1) / (x - 1) = \log_3 3^4$ $(x+1)/(x-1) = 3^4$ By cross multiplying, we get (x + 1) = 81 (x - 1)x + 1 = 81x - 8181x - x = 1 + 8180x = 82x = 82/80= 41/40= 1 1/4024. Solve for x: $5^{\log x} + 3^{\log x} = 3^{\log x + 1} - 5^{\log x - 1}$ Solution: Given: $5^{\log x} + 3^{\log x} - 3^{\log x+1} - 5^{\log x-1}$ Let us simplify the expression, $5^{\log x} + 3^{\log x} = 3^{\log x} \cdot 3^1 - 5^{\log x} \cdot 5^{-1}$ $5^{\log x} + 3^{\log x} = 3.3^{\log x} - 1/5 \cdot 5^{\log x}$ $5^{\log x} + 1/5 \cdot 5^{\log x} = 3.3^{\log x} - 3^{\log x}$ $(1 + 1/5) 5^{\log x} = (3 - 1) 3^{\log x}$ (6/5) 5^{\log x} = 2(3^{\log x}) $5^{\log x} / 3^{\log x} = (2 \times 5)/6$ $(5/3)^{\log x} = 10/6$ $(5/3)^{\log x} = 5/3$ $(5/3)^{\log x} = (5/3)^1$ So, by comparing the powers

log x = 1log x = log 10 x = 10

25. If $\log (x-y)/2 = \frac{1}{2} (\log x + \log y)$, prove that $x^2 + y^2 = 6xy$ Solution: Given: $\log (x-y)/2 = \frac{1}{2} (\log x + \log y)$ Let us simplify, $\log (x-y)/2 = \frac{1}{2} (\log x \times y)$ $\log (x-y)/2 = \frac{1}{2} \log xy$ $\frac{\log (x-y)}{(x-y)/2} = \log (xy)^{1/2}$ (x-y)/2 = (xy)^{1/2} By squaring on both sides, we get $[(x-y)/2]^2 = [(xy)^{1/2}]^2$ $(x - y)^2/4 = xy$ By cross multiplying, we get $(\mathbf{x} - \mathbf{y})^2 = 4\mathbf{x}\mathbf{y}$ $x^2 + y^2 - 2xy = 4xy$ $x^2 + y^2 = 4xy + 2xy$ $x^2 + y^2 = 6xy$ Hence proved. 26. If $x^2 + y^2 = 23xy$, Prove that $\log (x + y)/5 = \frac{1}{2} (\log x + \log y)$ Solution: Given: $x^2 + y^2 = 23xy$ So, the above equation can be written as $x^2 + y^2 = 25xy - 2xy$

 $x^{2} + y^{2} - 23xy - 2xy$ $x^{2} + y^{2} + 2xy = 25xy$ $(x + y)^{2} = 25xy$ $(x + y)^{2} / 25 = xy$

Now by taking log on both sides, we get

 $\log [(x + y)^2 / 25] = \log xy$

 $\log \left[(x+y)/5 \right]^2 = \log xy$

 $2 \log (x+y)/5 = \log x + \log y$ $\log (x+y)/5 = \frac{1}{2} \log x + \log y$ Hence proved.

27. If $p = \log_{10} 20$ and $q = \log_{10} 25$, find the value of x if $2 \log_{10} (x + 1) = 2p - q$ Solution: Given: $p = \log_{10} 20$ $q = \log_{10} 25$ Then. $2 \log_{10} (x + 1) = 2p - q$ Now substitute the values of p and q, we get $2 \log_{10} (x + 1) = 2 \log_{10} 20 - \log_{10} 25$ $= 2 \log_{10} 20 - \log_{10} 5^2$ $= 2 \log_{10} 20 - 2 \log_{10} 5$ $2 \log_{10} (x + 1) = 2 (\log_{10} 20 - \log_{10} 5)$ $\log_{10} (x + 1) = (\log_{10} 20 - \log_{10} 5)$ $= \log_{10} (20/5)$ $\log_{10} (x + 1) = \log_{10} 4$ (x + 1) = 4x = 4 - 1= 3 28. Show that: (i) $1/\log_2 42 + 1/\log_3 42 + 1/\log_7 42 = 1$ (ii) $1/\log_8 36 + 1/\log_9 36 + 1/\log_{18} 36 = 2$ **Solution:** (i) $1/\log_2 42 + 1/\log_3 42 + 1/\log_7 42 = 1$ Let us consider LHS: $1/\log_2 42 + 1/\log_3 42 + 1/\log_7 42$ By using the formula, $\log_n m = \log_m / \log_n$ $1/\log_2 42 + 1/\log_3 42 + 1/\log_7 42 = 1/(\log 42/\log_2) + 1/(\log 42/\log_3) + 1/(\log 42/\log_7)$ $= \log_2/\log 42 + \log_3/\log 42 + \log_7/\log 42$ $= (\log_2 + \log_3 + \log_7)/\log 42$ $= (\log 2 \times 3 \times 7)/\log 42$ $= \log 42 / \log 42$ $= \log \frac{42}{\log 42}$ = 1 = RHS

(ii) $1/\log_8 36 + 1/\log_9 36 + 1/\log_{18} 36 = 2$ Let us consider LHS: $1/\log_8 36 + 1/\log_9 36 + 1/\log_{18} 36$

By using the formula, $\log_n m = \log_m / \log_n$ $1/\log_8 36 + 1/\log_9 36 + 1/\log_{18} 36 = 1/(\log 36/\log_8) + 1/(\log 36/\log_9) + 1/(\log 36/\log_{18})$ $= \log_8/\log 36 + \log_9/\log 36 + \log_{18}/\log 36$ $= (\log_8 + \log_9 + \log_{18})/\log 36$ $= (\log 8 \times 9 \times 18)/\log 36$ $= \log 36^2 / \log 36$ $= 2 \log \frac{36}{\log 36}$ = 2 = RHS**29. Prove the following identities:** (i) $1/\log_a abc + 1/\log_b abc + 1/\log_c abc = 1$ (ii) $\log_b a \cdot \log_c b \cdot \log_d c = \log_d a$ Solution: (i) $1/\log_a abc + 1/\log_b abc + 1/\log_c abc = 1$ Let us consider LHS: $1/\log_a abc + 1/\log_b abc + 1/\log_c abc$ By using the formula, $\log_n m = \log_m / \log_n$ $1/\log_a abc + 1/\log_b abc + 1/\log_c abc = 1/(\log abc/\log_a) + 1/(\log abc/\log_b) + 1/(\log abc/\log_c)$ $= \log_a / \log_a bc + \log_b / \log_a bc + \log_c / \log_a bc$ $= (\log_a + \log_b + \log_c) / \log_abc$ $= (\log a \times b \times c) / \log abc$ $= \log abc/\log abc$ = 1 = RHS (ii) $\log_b a \cdot \log_c b \cdot \log_d c = \log_d a$ Let us consider LHS: $\log_b a \cdot \log_c b \cdot \log_d c = (\log a / \log b) \times (\log b / \log c) \times (\log c / \log d)$ $= \log a / \log d$ $= \log_d a$ = RHS **30.** Given that $\log_a x = 1/\alpha$, $\log_b x = 1/\beta$, $\log_c x = 1/\gamma$, find $\log_{abc} x$. Solution:

It is given that: $\log_a x = 1/\alpha$, $\log_b x = 1/\beta$, $\log_c x = 1/\gamma$ So, $\log_a x = 1/\alpha \Rightarrow \log x/\log_a = 1/\alpha \Rightarrow \log_a = \alpha \log x$

 $\log_b x = 1/\beta \Longrightarrow \log x/\log_b = 1/\beta \Longrightarrow \log_b = \beta \log x$

$$\begin{split} \log_c x &= 1/\gamma \Longrightarrow \log x/\log_c = 1/\gamma \Longrightarrow \log_c = \gamma \log x \\ \text{Now,} \\ \log_{abc} x &= \log x/\log abc \\ &= \log x/(\log a + \log b + \log c) \\ &= \log x/(\alpha \log x + \beta \log x + \gamma \log x) \\ &= \log x/\log x(\alpha + \beta + \gamma) \\ &= 1/(\alpha + \beta + \gamma) \end{split}$$

31. Solve for x:
(i) log₃ x + log₉ x + log₈₁ x = 7/4

(ii) $\log_2 x + \log_8 x + \log_{32} x = 23/15$ Solution: (i) $\log_3 x + \log_9 x + \log_{81} x = 7/4$ let us simplify the expression, $1/\log_x 3 + 1/\log_x 9 + 1/\log_x 81 = 7/4$ $1/\log_x 3^1 + 1/\log_x 3^2 + 1/\log_x 3^4 = 7/4$ $1/\log_x 3 + 1/2\log_x 3 + 1/4\log_x 3 = 7/4$ $1/\log_x 3 [1 + \frac{1}{2} + \frac{1}{4}] = 7/4$ $1/\log_x 3 [(4+2+1)/4] = 7/4$ $\log_3 x [7/4] = 7/4$ $\log_3 x = (7/4) \times (4/7)$ $\log_3 x = 1$ $\log_3 x = \log_3 3$ [Since, $1 = \log_a a$] On comparing, we get x = 3

(ii) $\log_2 x + \log_8 x + \log_{32} x = 23/15$ let us simplify the expression, $1/\log_x 2 + 1/\log_x 8 + 1/\log_x 32 = 23/15$ $1/\log_x 2^1 + 1/\log_x 2^3 + 1/\log_x 2^5 = 23/15$ $1/\log_x 2 + 1/3\log_x 2 + 1/5\log_x 2 = 23/15$ $1/\log_x 2 [1 + 1/3 + 1/5] = 23/15$ $\log_2 x [(15 + 5 + 3)/15] = 23/15$ $\log_2 x [23/15] = 23/15$ $\log_2 x = (23/15) \times (15/23)$ $\log_2 x = 1$ $\log_2 x = \log_2 2$ [Since, $1 = \log_a a$]

On comparing, we get x = 2

