

EXERCISE 25(A)

1. Two straight lines AB and CD intersect each other at a point O and angle AOC = **50⁰**; find: (i) angle BOD (ii) ∠AOD (iii) ∠BOC 50° Α B **Solution:** (i) ∠BOD Given $\angle AOC = 50^{\circ}$ We know that, Vertically opposite angles are equal So, $\angle BOD = \angle AOC$ Therefore, $\angle BOD = 50^{\circ}$ (ii) ∠AOD $\angle AOD + \angle BOD = 180^{\circ}$ $\angle AOD + 50^{\circ} = 180^{\circ}$ {From (i)} $\angle AOD = 180^{\circ} - 50^{\circ}$ We get, $\angle AOD = 130^{\circ}$ (iii) ∠BOC We know that, Vertically opposite angles are equal So, $\angle BOC = \angle AOD$ Therefore, $\angle BOC = 130^{\circ}$

2. The adjoining figure, shows two straight lines AB and CD intersecting at P. If $\angle BPC = 4x - 5^{\circ} \text{ and } \angle APD = 3x + 15^{\circ}; \text{ find:}$

Selina Solutions Concise Mathematics Class 6 Chapter 25 Properties of Angles and Lines

(i) the value of x (ii) ∠APD (iii) ∠BPD (iv) $\angle BPC$ **Solution:** (i) The value of x is calculated as, $3x + 15^0 = 4x - 5^0$ $3x - 4x = -5^{\circ} - 15^{\circ}$ $-x = -20^{\circ}$ $x = 20^{0}$ (ii) the value of $\angle APD$ is calculated as, $\angle APD = 3x + 15^{\circ}$ $= 3 \times 20^{0} + 15^{0}$ We get, $= 60^{\circ} + 15^{\circ}$ $=75^{\circ}$ (iii) The value of \angle BPD is calculated as, $\angle BPD = 180 - \angle BPC$ $= 180^{\circ} - (4x - 5^{\circ})$ $= 180^{\circ} - (4 \times 20^{\circ} - 5^{\circ})$ $= 180^{\circ} - 80^{\circ} + 5^{\circ}$ We get, $= 105^{\circ}$ (iv) The value of \angle BPC is calculated as, $\angle BPC = (4x - 5^0)$ $= (4 \times 20^{0} - 5^{0})$ We get, $= 80^{\circ} - 5^{\circ}$ $=75^{0}$

3. The given diagram, shows two adjacent angles AOB and AOC, whose exterior sides are along the same straight line. Find the value of x.

Solution:

Here, the exterior arms of the adjacent angles are in a straight line, Hence, the adjacent angles are supplementary $\angle AOB + \angle AOC = 180^{\circ}$ $68^{\circ} + (3x - 20^{\circ}) = 180^{\circ}$ $68^{\circ} + 3x - 20^{\circ} = 180^{\circ}$ $3x = 180^{\circ} + 20^{\circ} - 68^{\circ}$ $3x = 200^{\circ} - 68^{\circ}$ We get, $3x = 132^{\circ}$ $x = 132^{\circ} / 3$ $x = 44^{\circ}$

4. Each figure given below shows a pair of adjacent angles AOB and BOC. Find whether or not the exterior arms OA and OC are in the same straight line.(i)

Selina Solutions Concise Mathematics Class 6 Chapter 25 Properties of Angles and Lines

The sum of adjacent angles AOB and $COB = 180^{\circ}$

Hence, $\angle AOB + \angle COB = 180^{\circ}$ $(90^{\circ} - x) + (90^{\circ} + x) = 180^{\circ}$ $90^{0} - x + 90^{0} + x = 180^{0}$ We get, $180^{\circ} = 180^{\circ}$ The exterior arms OA and OC are in the same straight line (ii) $\angle AOB + \angle BOC = 97^{\circ} + 83^{\circ}$ $= 180^{\circ}$ The sum of adjacent angles AOB and BOC is 180° Hence, the exterior arms OA and OC are in the same straight line (iii) $\angle COB + \angle AOB = 88^{\circ} + 112^{\circ}$ We get, [which is not equal to 180°] $=200^{\circ}$ Hence, the exterior arms OA and OC are not in the same straight line

5. A line segment AP stands at point P of a straight line BC such that $\angle APB = 5x - 40^{\circ}$ and $\angle APC = x + 10^{\circ}$; find the value of x and angle APB.

Solution:

Given A line segment AP stands at P and $\angle APB = 5x - 40^{\circ}$ $\angle APC = x + 10^{\circ}$ 5x - 40° x + 10° В Р С (i) BPC is a straight line $\angle APB + \angle APC = 180^{\circ}$ $5x - 40^{\circ} + x + 10^{\circ} = 180^{\circ}$ $6x - 30^0 = 180^0$ $6x = 180^0 + 30^0$ We get, $6x = 210^{\circ}$

Selina Solutions Concise Mathematics Class 6 Chapter 25 Properties of Angles and Lines

 $x = 210^{\circ} / 6$ x = 35° (ii) $\angle APB = 5x - 40^{\circ}$ = 5 × 35° - 40° We get, = 175° - 40° = 135°

